[go: up one dir, main page]

login
A014198
Number of integer solutions to x^2 + y^2 <= n excluding (0,0).
5
0, 4, 8, 8, 12, 20, 20, 20, 24, 28, 36, 36, 36, 44, 44, 44, 48, 56, 60, 60, 68, 68, 68, 68, 68, 80, 88, 88, 88, 96, 96, 96, 100, 100, 108, 108, 112, 120, 120, 120, 128, 136, 136, 136, 136, 144, 144, 144, 144, 148, 160, 160, 168, 176, 176, 176, 176, 176, 184, 184
OFFSET
0,2
COMMENTS
a(32)/32 = 100/32 = 3.125; lim_{n->infinity} a(n)/n = Pi.
The terms of this sequence are four times the running total of the excess of the 4k + 1 divisors of the natural numbers (from 1 through to n) over their 4k + 3 divisors. - Ant King, Mar 12 2013
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 339
LINKS
Eric Weisstein's World of Mathematics, Sum of Squares Function
FORMULA
a(n) = 4*A014200(n).
a(n) = A057655(n)-1.
EXAMPLE
For n=2 the 8 solutions are (x,y) = (+-1,0), (0,+-1), (+-1,+-1).
MAPLE
A014198 := proc(n)
nops([ numtheory[thue]( abs( x^2+y^2) <= n, [ x, y ] ) ]);
end proc:
seq(A014198(n), n=0..60) ;
MATHEMATICA
Prepend[SquaresR[2, #] &/@Range[59], 0]//Accumulate (* Ant King, Mar 12 2013 *)
PROG
(PARI) a(n)=local(j); j=sqrtint(n); sum(x=-j, j, sum(y=-j, j, x^2+y^2<=n))-1
(Python)
from math import prod
from itertools import count, accumulate, islice
from sympy import factorint
def A014198_gen(): # generator of terms
return accumulate(map(lambda n:prod(e+1 if p & 3 == 1 else (e+1) & 1 for p, e in factorint(n).items() if p > 2) << 2, count(1)), initial=0)
A014198_list = list(islice(A014198_gen(), 30)) # Chai Wah Wu, Jun 28 2022
CROSSREFS
Sequence in context: A299771 A375027 A294963 * A316316 A333288 A159786
KEYWORD
nonn,easy
STATUS
approved