OFFSET
3,2
COMMENTS
Also unlabeled connected simple graphs with n vertices and n edges. The labeled version is A057500. - Gus Wiseman, Feb 12 2024
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..500
Washington G. Bomfim, A picture of the twenty one unicycles with 3,4,5 and 6 vertices
Audace A. V. Dossou-Olory, Graphs and unicyclic graphs with extremal connected subgraphs, arXiv:1812.02422 [math.CO], 2018.
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy) Includes illustrations for n <= 6.
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
S. Karim, J. Sawada, Z. Alamgirz and S. M. Husnine, Generating bracelets with fixed content, Theoretical Computer Science, Volume 475, 4 March 2013, Pages 103-112.
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
Marko Riedel et al., Non-isomorphic, connected, unicyclic graphs, Math Stackexchange, November 2018. (Derivation of algorithm and Maple implementation using PET.)
Marko Riedel, Maple implementation using PET.
M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points, Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967. doi: 10.2172/4180737.
Eric Weisstein's World of Mathematics, Unicyclic Graph
EXAMPLE
From Gus Wiseman, Feb 12 2024: (Start)
Representatives of the a(3) = 1 through a(6) = 13 simple graphs:
{12,13,23} {12,13,14,23} {12,13,14,15,23} {12,13,14,15,16,23}
{12,13,24,34} {12,13,14,23,25} {12,13,14,15,23,26}
{12,13,14,23,45} {12,13,14,15,23,46}
{12,13,14,25,35} {12,13,14,15,26,36}
{12,13,24,35,45} {12,13,14,23,25,36}
{12,13,14,23,25,46}
{12,13,14,23,45,46}
{12,13,14,23,45,56}
{12,13,14,25,26,35}
{12,13,14,25,35,46}
{12,13,14,25,35,56}
{12,13,14,25,36,56}
{12,13,24,35,46,56}
(End)
MATHEMATICA
Needs["Combinatorica`"];
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; Apply[Plus, Table[Take[CoefficientList[CycleIndex[DihedralGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 3, nn}]] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
(* Second program: *)
TreeGf[nn_] := Module[{A}, A = Table[1, {nn}]; For[n = 1, n <= nn 1, n++, A[[n + 1]] = 1/n * Sum[Sum[ d*A[[d]], {d, Divisors[k]}]*A[[n - k + 1]], {k, 1, n}]]; x A.x^Range[0, nn-1]];
seq[n_] := Module[{t, g}, If[n < 3, {}, t = TreeGf[n - 2]; g[e_] := Normal[t + O[x]^(Quotient[n, e]+1)] /. x -> x^e + O[x]^(n+1); Sum[Sum[ EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[k], g[1]* g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2], {k, 3, n}]]/2 // Drop[CoefficientList[#, x], 3]&];
seq[32] (* Jean-François Alcover, Oct 05 2019, after Andrew Howroyd's PARI code *)
PROG
(PARI) \\ TreeGf gives gf of A000081
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={if(n<3, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2))} \\ Andrew Howroyd, May 05 2018
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Ronald C. Read
a(27) corrected, more terms, formula from Christian G. Bower, Feb 12 2002
Edited by Charles R Greathouse IV, Oct 05 2009
Terms a(30) and beyond from Andrew Howroyd, May 05 2018
STATUS
approved