Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
High-temperature superconductors are now used mostly in large-scale applications, such as magnets and scientific apparatus. Overcoming barriers such as alternating current losses, or high manufacturing costs, will enable many more applications such as motors, generators and fusion reactors.
With more public and private funding in fusion, the expectations in terms of spillover benefits are increasing, but these can only happen through enhanced cross-sector collaboration.
Inertial confinement represents one of two viable approaches for producing energy from the fusion of hydrogen isotopes. Scientists have now achieved a record yield of fusion energy when directly irradiating targets with only 28 kilojoules of laser energy.
Ignition of a millimetre-sized pellet containing a mix of deuterium–tritium, published in 2022, puts to rest questions about the capability of lasers to ignite thermonuclear fuel.
In a burning plasma, fusion-born α particles are the dominant source of heating. In such conditions, the deuterium and tritium ion energy distribution deviates from the expected thermal Maxwellian distribution.