Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Laser-produced plasmas are plasmas produced by firing high-intensity beams of light. Laser-produced plasmas have been used to create short bursts of x-rays and to accelerate particles — so-called plasma-based accelerators. Laser produced plasmas are also useful for recreating astrophysical plasmas in the laboratory.
Hard X-ray free electron lasers allow new insights into dense matter dynamics. Here, the authors show that a single-beam, short-pulse laser can generate a converging cylindrical shock in a thin wire, providing a new method for high energy density research with improved repetition rates.
Intense, short-pulse laser irradiation generates energetic electrons that heat targets to extreme conditions relevant to laser fusion. Here, authors used an X-ray Free Electron Laser to perform spatiotemporal measurements in solid-density copper foil with sub-micron and femtosecond resolutions.
Ultrafast relativistic plasma instabilities accompany and influence laser matter interactions that accelerate particlebeams with potential applications in e.g radiotherapy or fussion fast ignition scenarios. Here, the authors use Small Angle X-ray Scattering to observe such instabilities on a femtosecond, tens of nanometer scale in solids, and draw conclusions on the underlying plasma dynamics.
The successes of the National Ignition Facility (NIF) and the Joint European Torus (JET) showcase how fusion energy research requires bold decisions, teamwork and strong partnership with funders.
Laser-driven acceleration is a promising path towards more compact machines. Now, proton beams with energies up to 150 MeV have been achieved with a repetitive petawatt laser.
Inertial confinement represents one of two viable approaches for producing energy from the fusion of hydrogen isotopes. Scientists have now achieved a record yield of fusion energy when directly irradiating targets with only 28 kilojoules of laser energy.
Particles in space can be accelerated to high energy, the distribution of which follows a power law. This has now been reproduced in laboratory experiments mimicking astrophysical scenarios, which helps to understand the underlying mechanisms.