[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants of resistance and response to melanoma therapy

Abstract

Metastatic melanoma is among the most enigmatic advanced cancers to clinically manage despite immense progress in the way of available therapeutic options and historic decreases in the melanoma mortality rate. Most patients with metastatic melanoma treated with modern targeted therapies (for example, BRAFV600E/K inhibitors) and/or immune checkpoint blockade (for example, anti-programmed death 1 therapy) will progress, owing to profound tumor cell plasticity fueled by genetic and nongenetic mechanisms and dichotomous host microenvironmental influences. Here we discuss the determinants of tumor heterogeneity, mechanisms of therapy resistance and effective therapy regimens that hold curative promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors correlated with resistance in melanoma.
Fig. 2: Therapeutic strategies to treat melanoma in early 2024.

Similar content being viewed by others

References

  1. Kaufman, C. K. et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351, aad2197 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    CAS  PubMed  Google Scholar 

  4. Jager, M. J. et al. Uveal melanoma. Nat. Rev. Dis. Primers 6, 24 (2020).

    PubMed  Google Scholar 

  5. Yde, S. S., Sjoegren, P., Heje, M. & Stolle, L. B. Mucosal melanoma: a literature review. Curr. Oncol. Rep. 20, 28 (2018).

    PubMed  Google Scholar 

  6. Alicea, G. M. & Rebecca, V. W. Un-Fair Skin: racial disparities in acral melanoma research. Nat. Rev. Cancer 22, 127–128 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Alicea, G. M. & Rebecca, V. W. Emerging strategies to treat rare and intractable subtypes of melanoma. Pigment Cell Melanoma Res. 34, 44–58 (2021).

    PubMed  Google Scholar 

  8. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

    PubMed  Google Scholar 

  9. Kahlon, N. et al. Melanoma treatments and mortality rate trends in the US, 1975 to 2019. JAMA Netw. Open 5, e2245269 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Switzer, B., Puzanov, I., Skitzki, J. J., Hamad, L. & Ernstoff, M. S. Managing metastatic melanoma in 2022: a clinical review. JCO Oncol. Pract. 18, 335–351 (2022).

    PubMed  PubMed Central  Google Scholar 

  11. Olbryt, M. et al. Genetic profiling of advanced melanoma: candidate mutations for predicting sensitivity and resistance to targeted therapy. Target. Oncol. 15, 101–113 (2020).

    PubMed  PubMed Central  Google Scholar 

  12. Vergani, E. et al. Genetic layout of melanoma lesions is associated with BRAF/MEK-targeted therapy resistance and transcriptional profiles. J. Invest. Dermatol. 142, 3030–3040 (2022).

    CAS  PubMed  Google Scholar 

  13. Dharanipragada, P. et al. Blocking genomic instability prevents acquired resistance to MAPK inhibitor therapy in melanoma. Cancer Discov. 13, 880–909 (2023).

    PubMed  PubMed Central  Google Scholar 

  14. Baggiolini, A. et al. Developmental chromatin programs determine oncogenic competence in melanoma. Science 373, eabc1048 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Baron, M. et al. The stress-like cancer cell state is a consistent component of tumorigenesis. Cell Syst. 11, 536–546 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature 610, 190–198 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goyal, Y. et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 620, 651–659 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Boshuizen, J. et al. Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nat. Commun. 11, 3946 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell https://doi.org/10.1016/j.ccell.2021.05.015 (2021).

    Article  PubMed  Google Scholar 

  21. Gruen, C. et al. Melanoma clonal subline analysis uncovers heterogeneity-driven immunotherapy resistance mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2023.04.03.535074 (2023).

  22. Lim, S. Y. et al. The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma. Nat. Commun. 14, 1516 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Samarkina, A. et al. Androgen receptor is a determinant of melanoma targeted drug resistance. Nat. Commun. 14, 6498 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Paraiso, K. H. T. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71, 2750–2760 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shih, A. J., Telesco, S. E. & Radhakrishnan, R. Analysis of somatic mutations in cancer: molecular mechanisms of activation in the ErbB family of receptor tyrosine kinases. Cancers (Basel) 3, 1195–1231 (2011).

    CAS  PubMed  Google Scholar 

  26. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, B. et al. Targeting mTOR signaling overcomes acquired resistance to combined BRAF and MEK inhibition in BRAF-mutant melanoma. Oncogene 40, 5590–5599 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spain, L. et al. Late-stage metastatic melanoma emerges through a diversity of evolutionary pathways. Cancer Discov. 13, 1364–1385 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    PubMed  Google Scholar 

  32. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Emery, C. M. et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA 106, 20411–20416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eichhoff, O. M. et al. ROS induction targets persister cancer cells with low metabolic activity in NRAS-mutated melanoma. Cancer Res. 83, 1128–1146 (2023).

    CAS  PubMed  Google Scholar 

  35. Haas, L. et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat. Cancer 2, 693–708 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang, Y., Ji, Z., Li, H. & Tsao, H. Divergent BRAF inhibitor resistance mechanisms revealed through epigenetic mapping. J. Invest. Dermatol. 143, 842–853 (2023).

    CAS  PubMed  Google Scholar 

  37. Emmons, M. F. et al. HDAC8-mediated inhibition of EP300 drives a transcriptional state that increases melanoma brain metastasis. Nat. Commun. 14, 7759 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, M. M. et al. Epigenetic control of CD1D expression as a mechanism of resistance to immune checkpoint therapy in poorly immunogenic melanomas. Front. Immunol. 14, 1152228 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, G. et al. The evolution of acquired resistance to BRAFV600E kinase inhibitor is sustained by IGF1-driven tumor vascular remodeling. J. Invest. Dermatol. 142, 445–458 (2022).

    CAS  PubMed  Google Scholar 

  40. Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Somasundaram, R. et al. Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nat. Commun. 12, 346 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Romano, V. et al. Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape. Int. J. Mol. Sci. 22, 5283 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Berking, C. et al. Transforming growth factor-β1 increases survival of human melanoma through stroma remodeling. Cancer Res. 61, 8306–8316 (2001).

    CAS  PubMed  Google Scholar 

  44. Miskolczi, Z. et al. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene 37, 3166–3182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Emon, B., Bauer, J., Jain, Y., Jung, B. & Saif, T. Biophysics of tumor microenvironment and cancer metastasis—a mini review. Comput. Struct. Biotechnol. J. 16, 279–287 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cooper, J. & Giancotti, F. G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35, 347–367 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Girard, C. A. et al. A feed-forward mechanosignaling loop confers resistance to therapies targeting the MAPK pathway in BRAF-mutant melanoma. Cancer Res. 80, 1927–1941 (2020).

    CAS  PubMed  Google Scholar 

  48. Orgaz, J. L. et al. Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance. Cancer Cell 37, 85–103 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Almeida, F. V., Douglass, S. M., Fane, M. E. & Weeraratna, A. T. Bad company: microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell Melanoma Res. 32, 237–247 (2019).

    PubMed  Google Scholar 

  50. Ahmadzadeh, H. et al. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc. Natl Acad. Sci. USA 114, E1617–E1626 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mazurkiewicz, J. et al. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun. Signal. 20, 63 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, C. et al. Integrin–Src–YAP1 signaling mediates the melanoma acquired resistance to MAPK and PI3K/mTOR dual targeted therapy. Mol. Biomed. 1, 12 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, M. H. et al. YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol. Res. 6, 255–266 (2018).

    CAS  PubMed  Google Scholar 

  55. Rebecca, V. W. et al. Dasatinib resensitizes MAPK inhibitor efficacy in standard-of-care relapsed melanomas. Preprint at bioRxiv https://doi.org/10.1101/2023.01.20.524923 (2023).

  56. Tas, F. & Erturk, K. Patient age and cutaneous malignant melanoma: elderly patients are likely to have more aggressive histological features and poorer survival. Mol. Clin. Oncol. 7, 1083–1088 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fane, M. E. et al. sFRP2 supersedes VEGF as an age-related driver of angiogenesis in melanoma, affecting response to anti-VEGF therapy in older patients. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-20-0446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Webster, M. R. et al. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res. 28, 184–195 (2015).

    CAS  PubMed  Google Scholar 

  60. Webster, M. R. et al. Paradoxical role for wild-type p53 in driving therapy resistance in melanoma. Mol. Cell https://doi.org/10.1016/j.molcel.2019.11.009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature https://doi.org/10.1038/s41586-022-04774-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-18-0193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-18-0168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Marino-Bravante, G. E. et al. Age-dependent loss of HAPLN1 erodes vascular integrity via indirect upregulation of endothelial ICAM1 in melanoma. Nat. Aging https://doi.org/10.1038/S43587-024-00581-8 (2024).

    Article  PubMed  Google Scholar 

  65. Alicea, G. M. et al. Changes in aged fibroblast lipid metabolism induce age-dependent melanoma cell resistance to targeted therapy via the fatty acid transporter FATP2. Cancer Discov. 10, 1282–1295 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kugel, C. H.3rd et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Betof, A. S. et al. Impact of age on outcomes with immunotherapy for patients with melanoma. Oncologist 22, 963–971 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Figueiredo, A. S. P., Hurez, V., Liu, A. & Curiel, T. J. Age and sex affect αCTLA-4 efficacy alone and combined with αB7-H1 or regulatory T cell depletion in a melanoma model. J. Immunol. 196, 213.4 (2016).

    Google Scholar 

  69. Safi, M. et al. Age-based disparities in metastatic melanoma patients treated in the immune checkpoint inhibitors (ICI) versus non-ICI era: a population-based study. Front. Immunol. 12, 609728 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hugdahl, E., Bachmann, I. M., Schuster, C., Ladstein, R. G. & Akslen, L. A. Prognostic value of uPAR expression and angiogenesis in primary and metastatic melanoma. PLoS ONE 14, e0210399 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Atzori, M. G. et al. Role of VEGFR-1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. J. Cell. Mol. Med. 24, 465–475 (2020).

    CAS  PubMed  Google Scholar 

  72. Caporali, S. et al. miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. J. Exp. Clin. Cancer Res. 38, 272 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Pari, A. A. A. et al. Tumor cell-derived angiopoietin-2 promotes metastasis in melanoma. Cancer Res. 80, 2586–2598 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. Helfrich, I. et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin. Cancer Res. 15, 1384–1392 (2009).

    CAS  PubMed  Google Scholar 

  75. Liu, S., Kumar, S. M., Martin, J. S., Yang, R. & Xu, X. Snail1 mediates hypoxia-induced melanoma progression. Am. J. Pathol. 179, 3020–3031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hutchenreuther, J. et al. Cancer-associated fibroblast-specific expression of the matricellular protein CCN1 coordinates neovascularization and stroma deposition in melanoma metastasis. Cancer Res. Commun. 4, 556–570 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. de Almeida, P. E. et al. Anti-VEGF treatment enhances CD8+ T-cell antitumor activity by amplifying hypoxia. Cancer Immunol. Res. 8, 806–818 (2020).

    PubMed  Google Scholar 

  78. Tran, T. T. et al. Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight 8, e157347 (2023).

    PubMed  PubMed Central  Google Scholar 

  79. Baginska, J. et al. Ziv-aflibercept plus pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment. Cancer Immunol. Immunother. 73, 17 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Willsmore, Z. N. et al. B cells in patients with melanoma: implications for treatment with checkpoint inhibitor antibodies. Front. Immunol. 11, 622442 (2020).

    CAS  PubMed  Google Scholar 

  81. Curti, B. D. & Faries, M. B. Recent advances in the treatment of melanoma. N. Engl. J. Med. 384, 2229–2240 (2021).

    CAS  PubMed  Google Scholar 

  82. Atkins, M. B. et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 41, 186–197 (2023).

    CAS  PubMed  Google Scholar 

  83. Harding, J. J., Pulitzer, M. & Chapman, P. B. Vemurafenib sensitivity skin reaction after ipilimumab. N. Engl. J. Med. 366, 866–868 (2012).

    CAS  PubMed  Google Scholar 

  84. Liu, J. et al. Neural crest-like stem cell transcriptome analysis identifies LPAR1 in melanoma progression and therapy resistance. Cancer Res. https://doi.org/10.1158/0008-5472.Can-20-1496 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Khazen, R. et al. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat. Commun. 7, 10823 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Serratì, S. et al. Circulating extracellular vesicles are monitoring biomarkers of anti-PD1 response and enhancer of tumor progression and immunosuppression in metastatic melanoma. J. Exp. Clin. Cancer Res. 42, 251 (2023).

    PubMed  PubMed Central  Google Scholar 

  87. Martinez-Morilla, S. et al. Digital spatial profiling of melanoma shows CD95 expression in immune cells is associated with resistance to immunotherapy. Oncoimmunology 12, 2260618 (2023).

    PubMed  PubMed Central  Google Scholar 

  88. Sharma, G. et al. PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight 5, e133225 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. Chen, Y.-Q. et al. Tumor-released autophagosomes induces CD4+ T cell-mediated immunosuppression via a TLR2–IL-6 cascade. J. Immunother. Cancer 7, 178 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Imbert, C. et al. Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat. Commun. 11, 437 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rebecca, V. W. & Herlyn, M. Nongenetic mechanisms of drug resistance in melanoma. Annu. Rev. Cancer Biol. 4, 315–330 (2020).

    Google Scholar 

  92. Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl. Med. 10, eaan3311 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Zhao, H. et al. Myeloid-derived itaconate suppresses cytotoxic CD8+ T cells and promotes tumour growth. Nat. Metab. 4, 1660–1673 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Marzagalli, M., Ebelt, N. D. & Manuel, E. R. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin. Cancer Biol. 59, 236–250 (2019).

    CAS  PubMed  Google Scholar 

  96. Thornton, J. et al. Mechanisms of immunotherapy resistance in cutaneous melanoma: recognizing a shapeshifter. Front. Oncol. 12, 880876 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, W. J. et al. Expression of lymphocyte-activating gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM domains in cutaneous melanoma and their correlation with programmed cell death 1 expression in tumor-infiltrating lymphocytes. J. Am. Acad. Dermatol. 81, 219–227 (2019).

    PubMed  Google Scholar 

  99. Liu, L. et al. Blocking TIGIT/CD155 signalling reverses CD8+ T cell exhaustion and enhances the antitumor activity in cervical cancer. J. Transl. Med. 20, 280 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cai, L., Li, Y., Tan, J., Xu, L. & Li, Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J. Hematol. Oncol. 16, 101 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. 5, 200ra116 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Le Naour, J., Galluzzi, L., Zitvogel, L., Kroemer, G. & Vacchelli, E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 9, 1777625 (2020).

    PubMed  PubMed Central  Google Scholar 

  104. Tang, K., Wu, Y.-H., Song, Y. & Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14, 68 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zakharia, Y. et al. Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. J. Immunother. Cancer 9, e002057 (2021).

    PubMed  PubMed Central  Google Scholar 

  106. Lynch, K. T. et al. IDO1 expression in melanoma metastases is low and associated with improved overall survival. Am. J. Surg. Pathol. 45, 787–795 (2021).

    PubMed  PubMed Central  Google Scholar 

  107. Van den Eynde, B. J., van Baren, N. & Baurain, J.-F. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? Annu. Rev. Cancer Biol. 4, 241–256 (2020).

    Google Scholar 

  108. Lee, H. et al. Targeting NK cells to enhance melanoma response to immunotherapies. Cancers (Basel) 13, 1363 (2021).

    CAS  PubMed  Google Scholar 

  109. van Vliet, A. A., Georgoudaki, A.-M., Raimo, M., de Gruijl, T. D. & Spanholtz, J. Adoptive NK cell therapy: a promising treatment prospect for metastatic melanoma. Cancers (Basel) 13, 4722 (2021).

    PubMed  Google Scholar 

  110. Selitsky, S. R. et al. Prognostic value of B cells in cutaneous melanoma. Genome Med. 11, 36 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Gilbert, A. E. et al. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS ONE 6, e19330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bosisio, F. M. et al. Plasma cells in primary melanoma. Prognostic significance and possible role of IgA. Mod. Pathol. 29, 347–358 (2016).

    CAS  PubMed  Google Scholar 

  113. Kobayashi, T. et al. Regulatory B1a cells suppress melanoma tumor immunity via IL-10 production and inhibiting T helper type 1 cytokine production in tumor-infiltrating CD8+ T cells. J. Invest. Dermatol. 139, 1535–1544 (2019).

    CAS  PubMed  Google Scholar 

  114. Karagiannis, P. et al. Elevated IgG4 in patient circulation is associated with the risk of disease progression in melanoma. Oncoimmunology 4, e1032492 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Brase, J. C. et al. Role of tumor-infiltrating B cells in clinical outcome of patients with melanoma treated with dabrafenib plus trametinib. Clin. Cancer Res. 27, 4500–4510 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pieniazek, M., Matkowski, R. & Donizy, P. Macrophages in skin melanoma—the key element in melanomagenesis. Oncol. Lett. 15, 5399–5404 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Mrad, M. et al. Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget 7, 71873–71886 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Meng, L. et al. Predicting the clinical outcome of melanoma using an immune-related gene pairs signature. PLoS ONE 15, e0240331 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ilkovitch, D. & Lopez, D. M. Immune modulation by melanoma-derived factors. Exp. Dermatol. 17, 977–985 (2008).

    CAS  PubMed  Google Scholar 

  121. Quandt, D., Fiedler, E., Boettcher, D., Marsch, W. C. & Seliger, B. B7-H4 expression in human melanoma: its association with patients’ survival and antitumor immune response. Clin. Cancer Res. 17, 3100–3111 (2011).

    CAS  PubMed  Google Scholar 

  122. Kakizaki, A. et al. Immunomodulatory effect of peritumorally administered interferon-β on melanoma through tumor-associated macrophages. Oncoimmunology 4, e1047584 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Massi, D. et al. Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors. Hum. Pathol. 38, 1516–1525 (2007).

    CAS  PubMed  Google Scholar 

  124. Kale, S. et al. Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene 33, 2295–2306 (2014).

    CAS  PubMed  Google Scholar 

  125. Hollander, L. et al. Renalase expression by melanoma and tumor-associated macrophages promotes tumor growth through a STAT3-mediated mechanism. Cancer Res. 76, 3884–3894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ceci, C., Atzori, M. G., Lacal, P. M. & Graziani, G. Targeting tumor-associated macrophages to increase the efficacy of immune checkpoint inhibitors: a glimpse into novel therapeutic approaches for metastatic melanoma. Cancers (Basel) 12, 3401 (2020).

    CAS  PubMed  Google Scholar 

  127. Huang, L. et al. Targeting regulatory T cells for immunotherapy in melanoma. Mol. Biomed. 2, 11 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Droeser, R. et al. Differential pattern and prognostic significance of CD4+, FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer 12, 134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gambichler, T. et al. Decline of programmed death-1-positive circulating T regulatory cells predicts more favourable clinical outcome of patients with melanoma under immune checkpoint blockade. Br. J. Dermatol. 182, 1214–1220 (2020).

    CAS  PubMed  Google Scholar 

  130. Ketcham, J. M., Marshall, L. A. & Talay, O. CCR4 antagonists inhibit Treg trafficking into the tumor microenvironment. ACS Med. Chem. Lett. 9, 953–955 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jordan, K. R. et al. Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol. Immunother. 62, 1711–1722 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Weide, B. et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin. Cancer Res. 20, 1601–1609 (2014).

    CAS  PubMed  Google Scholar 

  133. Jiang, H. et al. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int. J. Cancer 136, 2352–2360 (2015).

    CAS  PubMed  Google Scholar 

  134. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Meyer, C. et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc. Natl Acad. Sci. USA 108, 17111–17116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. de Coaña, Y. P. et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget 8, 21539–21553 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Weber, R. et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol. 9, 1310 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Mrázek, J. et al. Melanoma-related changes in skin microbiome. Folia Microbiol. (Praha) 64, 435–442 (2019).

    PubMed  Google Scholar 

  139. Vitali, F. et al. Early melanoma invasivity correlates with gut fungal and bacterial profiles. Br. J. Dermatol. 186, 106–116 (2022).

    CAS  PubMed  Google Scholar 

  140. Mekadim, C. et al. Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol. 22, 63 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mizuhashi, S. et al. Skin microbiome in acral melanoma: Corynebacterium is associated with advanced melanoma. J. Dermatol. 48, e15–e16 (2021).

    PubMed  Google Scholar 

  142. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  144. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Park, J. S. et al. Targeting PD-L2–RGMb overcomes microbiome-related immunotherapy resistance. Nature 617, 377–385 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhu, G. et al. Intratumour microbiome associated with the infiltration of cytotoxic CD8+ T cells and patient survival in cutaneous melanoma. Eur. J. Cancer 151, 25–34 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Vandoni, G. et al. Gut microbiota, metabolome, and body composition signatures of response to therapy in patients with advanced melanoma. Int. J. Mol. Sci. 24, 11611 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Fang, S. et al. Association between body mass index, C-reactive protein levels, and melanoma patient outcomes. J. Invest. Dermatol. 137, 1792–1795 (2017).

    CAS  PubMed  Google Scholar 

  153. Harrell Shreckengost, C. S. et al. The impact of obesity on surgically treated locoregional melanoma. Ann. Surg. Oncol. 28, 6140–6151 (2021).

    PubMed  Google Scholar 

  154. Cassano, N., Caccavale, S., Vena, G. A. & Argenziano, G. Body mass index and melanoma prognosis. Dermatol. Pract. Concept. 11, e2021106 (2021).

    PubMed  PubMed Central  Google Scholar 

  155. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    CAS  PubMed  Google Scholar 

  157. Molinelli, E. et al. Melanoma and subcutaneous adipose tissue: role of peritumoral adipokines in disease characterization and prognosis. Pigment Cell Melanoma Res. 36, 423–430 (2023).

    CAS  PubMed  Google Scholar 

  158. Caan, B. J. et al. Explaining the obesity paradox: the association between body composition and colorectal cancer survival (C-SCANS study). Cancer Epidemiol. Biomarkers Prev. 26, 1008–1015 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Koo/Adler Fund for Cancer Research, US National Institutes of Health award K01 CA245124-01, and a Melanoma Research Alliance Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito W. Rebecca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Jean-Christophe Marine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, B.M., Fane, M.E., Weeraratna, A.T. et al. Determinants of resistance and response to melanoma therapy. Nat Cancer 5, 964–982 (2024). https://doi.org/10.1038/s43018-024-00794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-024-00794-1

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer