[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immune cells link dietary cues to normal and abnormal metabolic regulation

Abstract

A slew of common metabolic disorders, including type 2 diabetes, metabolic dysfunction-associated steatotic liver disease and steatohepatitis, are exponentially increasing in our sedentary and overfed society. While macronutrients directly impact metabolism and bioenergetics, new evidence implicates immune cells as critical sensors of nutritional cues and important regulators of metabolic homeostasis. A deeper interrogation of the intricate and multipartite interactions between dietary components, immune cells and metabolically active tissues is needed for a better understanding of metabolic regulation and development of new treatments for common metabolic diseases. Responding to macronutrients and micronutrients, immune cells play pivotal roles in interorgan communication between the microbiota, small intestine, metabolically active cells including hepatocytes and adipocytes, and the brain, which controls feeding behavior and energy expenditure. This Review focuses on the response of myeloid cells and innate lymphocytes to dietary cues, their cross-regulatory interactions and roles in normal and aberrant metabolic control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gut–liver axis in metabolic regulation.
Fig. 2: ILCs orchestrate gastrointestinal and liver physiology in response to dietary components.

Similar content being viewed by others

References

  1. Myles, I. A. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr. J. 13, 61 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Ohtani, N., Kamiya, T. & Kawada, N. Recent updates on the role of the gut-liver axis in the pathogenesis of NAFLD/NASH, HCC, and beyond. Hepatol. Commun. 7, e0241 (2023).

    PubMed  PubMed Central  Google Scholar 

  3. Yan, M. et al. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct. Target. Ther. 8, 443 (2023).

    PubMed  PubMed Central  Google Scholar 

  4. De Cól, J. P. et al. Underlying mechanisms behind the brain-gut-liver axis and metabolic-associated fatty liver disease (MAFLD): an update. Int. J. Mol. Sci. 25, 3694 (2024).

    PubMed  PubMed Central  Google Scholar 

  5. Xie, L., Wang, H., Hu, J., Liu, Z. & Hu, F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): connections and interactions in liver diseases. Biochem. Pharm. 222, 116104 (2024).

    CAS  PubMed  Google Scholar 

  6. Zmora, N., Bashiardes, S., Levy, M. & Elinav, E. The role of the immune system in metabolic health and disease. Cell Metab. 25, 506–521 (2017).

    CAS  PubMed  Google Scholar 

  7. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  8. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, Q., Gao, Z. J., Yu, X. & Wang, P. Dietary regulation in health and disease. Signal Transduct. Target. Ther. 7, 252 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Akbari, G., Mard, S. A., Savari, F., Barati, B. & Sameri, M. J. Characterization of diet based nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in rodent models: histological and biochemical outcomes. Histol. Histopathol. 37, 813–824 (2022).

    CAS  PubMed  Google Scholar 

  11. Park, M. D., Silvin, A., Ginhoux, F. & Merad, M. Macrophages in health and disease. Cell 185, 4259–4279 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Feo, F., Canuto, R. A., Torrielli, M. V., Garcea, R. & Dianzani, M. U. Effect of a cholesterol-rich diet on cholesterol content and phagocytic activity of rat macrophages. Agents Actions 6, 135–142 (1976).

    CAS  PubMed  Google Scholar 

  13. Dianzani, M. U., Torrielli, M. V., Canuto, R. A., Garcea, R. & Feo, F. The influence of enrichment with cholesterol on the phagocytic activity of rat macrophages. J. Pathol. 118, 193–199 (1976).

    CAS  PubMed  Google Scholar 

  14. Ogle, C. K. et al. The effect of high lipid diet on in vitro prostaglandin E2 and thromboxane B2 production by splenic macrophages. JPEN J. Parenter. Enter. Nutr. 14, 250–254 (1990).

    CAS  Google Scholar 

  15. Moriguchi, S., Sone, S. & Kishino, Y. Changes of alveolar macrophages in protein-deficient rats. J. Nutr. 113, 40–46 (1983).

    CAS  PubMed  Google Scholar 

  16. Varaeva, Y. R., Kirichenko, T. V., Shaposhnikova, N. N., Nikityuk, D. B. & Starodubova, A. V. The role of diet in regulation of macrophages functioning. Biomedicines 10, 2087 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 8, 923–934 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodríguez-Morales, P. & Franklin, R. A. Macrophage phenotypes and functions: resolving inflammation and restoring homeostasis. Trends Immunol. 44, 986–998 (2023).

    PubMed  PubMed Central  Google Scholar 

  19. van der Heide, D., Weiskirchen, R. & Bansal, R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front. Immunol. 10, 2852 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Min, B. H. et al. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. Gut Microbes 16, 2307568 (2024).

    PubMed  PubMed Central  Google Scholar 

  21. Jaeger, J. W. et al. Microbiota modulation by dietary oat beta-glucan prevents steatotic liver disease progression. JHEP Rep. 6, 100987 (2024).

    PubMed  PubMed Central  Google Scholar 

  22. Vujičić, M. et al. A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice. Proc. Natl Acad. Sci. USA 121, e2313185121 (2024).

    PubMed  PubMed Central  Google Scholar 

  23. Todoric, J. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat. Metab. 2, 1034–1045 (2020). This study demonstrates that dietary fructose induces steatohepatitis via intestinal barrier disruption, which augments translocation of endotoxin that activates hepatic macrophages.

  24. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    CAS  PubMed  Google Scholar 

  25. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barreby, E., Chen, P. & Aouadi, M. Macrophage functional diversity in NAFLD - more than inflammation. Nat. Rev. Endocrinol. 18, 461–472 (2022).

    CAS  PubMed  Google Scholar 

  27. Peiseler, M. et al. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J. Hepatol. 77, 1136–1160 (2022).

    CAS  PubMed  Google Scholar 

  28. Huby, T. & Gautier, E. L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 22, 429–443 (2022).

    CAS  PubMed  Google Scholar 

  29. Guilliams, M. & Scott, C. L. Liver macrophages in health and disease. Immunity 55, 1515–1529 (2022).

    CAS  PubMed  Google Scholar 

  30. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698 (2019). This study shows that TREM2+ LAMs are present in adipose tissue from individuals with obesity and mice fed a HFD, and these macrophages counteract inflammation, adipocyte hypertrophy and metabolic disease.

  31. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell 169, 1276–1290 (2017).

    CAS  PubMed  Google Scholar 

  32. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). This study reveals TREM2+CD9+ LAMs in fibrotic scars in human cirrhotic livers, suggesting that they collaborate with endothelial and mesenchymal cells to promote liver fibrosis.

  33. Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat. Commun. 13, 2950 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stansbury, C. M. et al. A lipid-associated macrophage lineage rewires the spatial landscape of adipose tissue in early obesity. JCI Insight 8, e171701 (2023).

    PubMed  PubMed Central  Google Scholar 

  35. Nickl, B., Qadri, F. & Bader, M. Anti-inflammatory role of Gpnmb in adipose tissue of mice. Sci. Rep. 11, 19614 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Prabata, A., Ikeda, K., Rahardini, E. P., Hirata, K. I. & Emoto, N. GPNMB plays a protective role against obesity-related metabolic disorders by reducing macrophage inflammatory capacity. J. Biol. Chem. 297, 101232 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Winn, N. C., Wolf, E. M., Garcia, J. N. & Hasty, A. H. Exon 2-mediated deletion of Trem2 does not worsen metabolic function in diet-induced obese mice. J. Physiol. 600, 4485–4501 (2022).

    CAS  PubMed  Google Scholar 

  38. Hill, D. A. et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc. Natl Acad. Sci. USA 115, E5096–E5105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Reinisch, I. et al. Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape. Nat. Commun. 15, 1391 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Heymann, F. & Tacke, F. Immunology in the liver–from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    CAS  PubMed  Google Scholar 

  41. Zhang, W. & Lang, R. Macrophage metabolism in nonalcoholic fatty liver disease. Front. Immunol. 14, 1257596 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim, W. H. et al. Natural history of NASH cirrhosis in liver transplant waitlist registrants. J. Hepatol. 79, 1015–1024 (2023).

    CAS  PubMed  Google Scholar 

  43. Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    CAS  PubMed  Google Scholar 

  44. Parola, M. & Pinzani, M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 65, 37–55 (2019).

    CAS  PubMed  Google Scholar 

  45. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, L. et al. Hepatic danger signaling triggers TREM2. Sci. Transl. Med. 16, eadk1866 (2024).

    CAS  PubMed  Google Scholar 

  50. Daemen, S. et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 34, 108626 (2021). This study shows monocyte-derived LAMs, including MASH/MAFLD-protective and CLS-forming CX3CR1+CCR2+ macrophages, in diet-induced MASH.

  51. Hou, J. et al. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis. J. Clin. Invest. 131, e135197 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hendrikx, T. et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2. J. Hepatol. 77, 1373–1385 (2022).

    CAS  PubMed  Google Scholar 

  53. Wang, X. et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. Immunity 56, 58–77 (2023). This study showed that LAMs activated by hepatocyte-derived sphingosine-1-phosphate mediate TREM2-dependent efferocytosis of lipid-laden apoptotic hepatocytes to maintain hepatic immune homeostasis, but this is blocked in persistent obesity, which induces ADAM17-dependent TREM2 cleavage.

  54. Indira Chandran, V. et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness. Hepatology 77, 558–572 (2023).

    PubMed  Google Scholar 

  55. Katayama, A. et al. Beneficial impact of Gpnmb and its significance as a biomarker in nonalcoholic steatohepatitis. Sci. Rep. 5, 16920 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gabriel, T. L. et al. Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent Gpnmb induction. Diabetes 63, 3310–3323 (2014).

    CAS  PubMed  Google Scholar 

  57. Song, M. J. & Malhi, H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharm. Ther. 203, 107401 (2019).

    CAS  Google Scholar 

  58. Ogawa, Y. et al. Palmitate-induced lipotoxicity is crucial for the pathogenesis of nonalcoholic fatty liver disease in cooperation with gut-derived endotoxin. Sci. Rep. 8, 11365 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Ben-Moshe, S. et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 29, 973–989 (2022).

    CAS  PubMed  Google Scholar 

  60. Coelho, I., Duarte, N., Barros, A., Macedo, M. P. & Penha-Gonçalves, C. Trem-2 promotes emergence of restorative macrophages and endothelial cells during recovery from hepatic tissue damage. Front. Immunol. 11, 616044 (2020).

    CAS  PubMed  Google Scholar 

  61. Skuratovskaia, D. et al. Tissue-specific role of macrophages in noninfectious inflammatory disorders. Biomedicines 8, 400 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    CAS  PubMed  Google Scholar 

  63. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang, Y. et al. Unveiling macrophage diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-associated macrophage subset. Front. Immunol. 15, 1335333 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu, M. et al. High-salt diet downregulates TREM2 expression and blunts efferocytosis of macrophages after acute ischemic stroke. J. Neuroinflammation 18, 90 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Uribe-Querol, E. & Rosales, C. Neutrophils actively contribute to obesity-associated inflammation and pathological complications. Cells 11, 1883 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rhee, H., Love, T. & Harrington, D. Blood neutrophil count is associated with body mass index in adolescents with asthma. JSM Allergy Asthma 3, 1019 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Nijhuis, J. et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 17, 2014–2018 (2009).

    CAS  PubMed  Google Scholar 

  70. Shah, T. J., Leik, C. E. & Walsh, S. W. Neutrophil infiltration and systemic vascular inflammation in obese women. Reprod. Sci. 17, 116–124 (2010).

    CAS  PubMed  Google Scholar 

  71. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Thind, M. K. et al. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front. Immunol. 14, 1334205 (2023).

    CAS  PubMed  Google Scholar 

  74. Lodhi, I. J. et al. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 21, 51–64 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moorthy, A. N., Tan, K. B., Wang, S., Narasaraju, T. & Chow, V. T. Effect of high-fat diet on the formation of pulmonary neutrophil extracellular traps during influenza pneumonia in BALB/c mice. Front. Immunol. 7, 289 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Elgazar-Carmon, V., Rudich, A., Hadad, N. & Levy, R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49, 1894–1903 (2008).

    CAS  PubMed  Google Scholar 

  77. Bruun, J. M., Pedersen, S. B. & Richelsen, B. Regulation of interleukin 8 production and gene expression in human adipose tissue in vitro. J. Clin. Endocrinol. Metab. 86, 1267–1273 (2001).

    CAS  PubMed  Google Scholar 

  78. Girbl, T. et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 49, 1062–1076 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bruun, J. M., Pedersen, S. B., Kristensen, K. & Richelsen, B. Effects of pro-inflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol. Cell Endocrinol. 190, 91–99 (2002).

    CAS  PubMed  Google Scholar 

  81. Zang, S. et al. Neutrophils play a crucial role in the early stage of nonalcoholic steatohepatitis via neutrophil elastase in mice. Cell Biochem. Biophys. 73, 479–487 (2015).

    CAS  PubMed  Google Scholar 

  82. Zhao, X. et al. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis. 11, 379 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  84. Li, J. et al. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front. Cell Dev. Biol. 11, 1221361 (2023). This review summarizes the role of NETosis in the progression of obesity and obesity-related diseases.

  85. van der Windt, D. J. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68, 1347–1360 (2018).

    PubMed  Google Scholar 

  86. Arelaki, S. et al. Neutrophil extracellular traps enriched with IL-1β and IL-17A participate in the hepatic inflammatory process of patients with non-alcoholic steatohepatitis. Virchows Arch. 481, 455–465 (2022). This study shows that the presence of NETs decorated with IL-1β and IL-17A in the livers of individuals with MASLD/MASH positively correlates with disease progression.

  87. Wu, J. et al. Polyunsaturated fatty acids drive neutrophil extracellular trap formation in nonalcoholic steatohepatitis. Eur. J. Pharm. 945, 175618 (2023).

    CAS  Google Scholar 

  88. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS  PubMed  Google Scholar 

  89. Pellicci, D. G., Koay, H. F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    CAS  PubMed  Google Scholar 

  90. Zhang, F., Little, A. & Zhang, H. Chronic alcohol consumption inhibits peripheral NK cell development and maturation by decreasing the availability of IL-15. J. Leukoc. Biol. 101, 1015–1027 (2017).

    CAS  PubMed  Google Scholar 

  91. Cui, K. et al. Suppression of natural killer cell activity by regulatory NKT10 cells aggravates alcoholic hepatosteatosis. Front. Immunol. 8, 1414 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Cheng, C. et al. Interplay between liver type 1 innate lymphoid cells and NK cells drives the development of alcoholic steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 15, 261–274 (2023).

    CAS  PubMed  Google Scholar 

  93. Kang, J. et al. Type 1 innate lymphoid cells are proinflammatory effector cells in ischemia-reperfusion injury of steatotic livers. Front. Immunol. 13, 899525 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tosello-Trampont, A. C. et al. NKp46+ natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 63, 799–812 (2016).

    CAS  PubMed  Google Scholar 

  95. Fan, Y. et al. Hepatic NK cells attenuate fibrosis progression of non-alcoholic steatohepatitis in dependent of CXCL10-mediated recruitment. Liver Int. 40, 598–608 (2020).

    CAS  PubMed  Google Scholar 

  96. Wensveen, F. M. et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376–385 (2015). This study finds adipose NK cells as the key for macrophage polarization in obesity-induced insulin resistance.

  97. Lee, B. C. et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23, 685–698 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Sullivan, T. E. et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45, 428–441 (2016). This article links adipose tissue ILC1 with obesity-induced insulin resistance.

  99. Matsumura, K., Mori, T., Dohi, T., Kawamura, Y. I. & Takaki, S. Composition of fatty acids in a high-fat diet affects adipose tissue inflammation by inducing calreticulin on adipocytes and activating group 1 innate lymphoid cells. Eur. J. Immunol. 54, e2350800 (2024).

    PubMed  Google Scholar 

  100. Wang, H. et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat. Commun. 10, 3254 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Boulenouar, S. et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 46, 273–286 (2017).

    CAS  PubMed  Google Scholar 

  102. Cuff, A. O. et al. The obese liver environment mediates conversion of NK cells to a less cytotoxic ILC1-like phenotype. Front. Immunol. 10, 2180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    CAS  PubMed  Google Scholar 

  104. Stiglund, N. et al. Retained NK cell phenotype and functionality in non-alcoholic fatty liver disease. Front. Immunol. 10, 1255 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, G. Y. et al. Differential effect of dietary vitamin D supplementation on natural killer cell activity in lean and obese mice. J. Nutr. Biochem. 55, 178–184 (2018).

    CAS  PubMed  Google Scholar 

  106. Liebana-Garcia, R. et al. Intestinal group 1 innate lymphoid cells drive macrophage-induced inflammation and endocrine defects in obesity and promote insulinemia. Gut Microbes 15, 2181928 (2023). This paper indicates that the cross-talk between ILC1 and ILC3 is important for obesity-associated intestinal inflammation.

  107. Fujimoto, M. et al. Liver group 2 innate lymphoid cells regulate blood glucose levels through IL-13 signaling and suppression of gluconeogenesis. Nat. Commun. 13, 5408 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gonzalez-Polo, V. et al. Group 2 innate lymphoid cells exhibit progressively higher levels of activation during worsening of liver fibrosis. Ann. Hepatol. 18, 366–372 (2019).

    CAS  PubMed  Google Scholar 

  110. Hams, E., Locksley, R. M., McKenzie, A. N. & Fallon, P. G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    CAS  PubMed  Google Scholar 

  111. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ding, X. et al. IL-33-driven ILC2/eosinophil axis in fat is induced by sympathetic tone and suppressed by obesity. J. Endocrinol. 231, 35–48 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao, X. Y. et al. The obesity-induced adipokine sST2 exacerbates adipose Treg and ILC2 depletion and promotes insulin resistance. Sci. Adv. 6, eaay6191 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun, J. et al. Metabolic regulator LKB1 controls adipose tissue ILC2 PD-1 expression and mitochondrial homeostasis to prevent insulin resistance. Immunity 57, 1289–1305 (2024).

    CAS  PubMed  Google Scholar 

  115. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    CAS  PubMed  Google Scholar 

  116. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    CAS  PubMed  Google Scholar 

  117. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014). This work describes that vitamin A deficiency reduces ILC3 and expands ILC2 to protect against nematode infection.

  118. Wilhelm, C. et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J. Exp. Med. 213, 1409–1418 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, S. et al. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity 49, 915–928 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Arifuzzaman, M. et al. Dietary fiber is a critical determinant of pathologic ILC2 responses and intestinal inflammation. J. Exp. Med. 221, e20232148 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cui, W. et al. Diet-mediated constitutive induction of novel IL-4+ ILC2 cells maintains intestinal homeostasis in mice. J. Exp. Med. 220, e20221773 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sasaki, T. et al. Innate lymphoid cells in the induction of obesity. Cell Rep. 28, 202–217 (2019).

    CAS  PubMed  Google Scholar 

  123. Li, M., Wang, Z., Jiang, W., Lu, Y. & Zhang, J. The role of group 3 innate lymphoid cell in intestinal disease. Front. Immunol. 14, 1171826 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Keir, M., Yi, Y., Lu, T. & Ghilardi, N. The role of IL-22 in intestinal health and disease. J. Exp. Med. 217, e20192195 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Hamaguchi, M. et al. Group 3 innate lymphoid cells protect steatohepatitis from high-fat diet induced toxicity. Front. Immunol. 12, 648754 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Raabe, J. et al. Identification and characterization of a hepatic IL-13-producing ILC3-like population potentially involved in liver fibrosis. Hepatology 78, 787–802 (2023).

    PubMed  Google Scholar 

  127. Forkel, M. et al. Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers. Eur. J. Immunol. 47, 1280–1294 (2017).

    CAS  PubMed  Google Scholar 

  128. Wang, S. et al. Type 3 innate lymphoid cell: a new player in liver fibrosis progression. Clin. Sci. 132, 2565–2582 (2018).

    CAS  Google Scholar 

  129. Talbot, J. et al. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020). This study shows that feeding-induced neuronal vasoactive intestinal peptide release modulates intestinal homeostasis via ILC3.

  130. Seillet, C. et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 21, 168–177 (2020).

    CAS  PubMed  Google Scholar 

  131. Pascal, M. et al. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunol. 15, 629–641 (2022).

    CAS  PubMed  Google Scholar 

  132. Chen, H. et al. Intermittent fasting promotes type 3 innate lymphoid cells secreting IL-22 contributing to the beigeing of white adipose tissue. eLife 12, RP91060 (2024).

    PubMed  PubMed Central  Google Scholar 

  133. Zhang, P. et al. IL-22 resolves MASLD via enterocyte STAT3 restoration of diet-perturbed intestinal homeostasis. Cell Metab. 36, 2341–2354 (2024). This study shows that exogenous IL-22-to-STAT3 signaling reverses MASH diet-induced expansion of absorptive enterocytes to result in MASLD resolution.

  134. Boulenouar, S. A. T. et al. High-fat diet causes rapid loss of intestinal group 3 innate lymphoid cells through microbiota-driven inflammation. Preprint at SSRN https://doi.org/10.2139/ssrn.4207575 (2022).

  135. Babu, S. T. et al. Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight 3, e99223 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Zhou, J. et al. Dihydromyricetin improves high-fat diet-induced hyperglycemia through ILC3 activation via a SIRT3-dependent mechanism. Mol. Nutr. Food Res. 66, e2101093 (2022).

    PubMed  Google Scholar 

  137. Wu, W. et al. Limonin alleviates high-fat diet-induced dyslipidemia by regulating the intestinal barrier via the microbiota-related ILC3-IL22-IL22R pathway. Food Funct. 15, 2679–2692 (2024).

    CAS  PubMed  Google Scholar 

  138. Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  139. Yang, L. et al. Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J. Hepatol. 53, 339–347 (2010).

    CAS  PubMed  Google Scholar 

  140. Sajiir, H. et al. Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis. Nat. Commun. 15, 4527 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mao, K. et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554, 255–259 (2018).

    CAS  PubMed  Google Scholar 

  142. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021). This paper indicates γδ T cells sense nutrients and regulate the intestinal transcriptome by inhibiting IL-22 production by ILC3.

  143. Zou, J. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53 (2018).

    CAS  PubMed  Google Scholar 

  144. Correa, R. O. et al. Inulin diet uncovers complex diet–microbiota–immune cell interactions remodeling the gut epithelium. Microbiome 11, 90 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014). This paper identifies microbiota-dependent cross-talk between intestinal mononuclear phagocytes and ILCs that regulates gut immune tolerance.

  146. Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kong, C. et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 6, 154 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Aguiar, S. L. F. et al. High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice. Front. Immunol. 8, 1969 (2017).

    PubMed  Google Scholar 

  152. Sepahi, A., Liu, Q., Friesen, L. & Kim, C. H. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol. 14, 317–330 (2021).

    CAS  PubMed  Google Scholar 

  153. Chun, E. et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 51, 871–884 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, S. H., Cho, B. H., Kiyono, H. & Jang, Y. S. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches. Sci. Rep. 7, 3980 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Bhatt, B. et al. Gpr109a limits microbiota-induced IL-23 production to constrain ILC3-mediated colonic inflammation. J. Immunol. 200, 2905–2914 (2018).

    CAS  PubMed  Google Scholar 

  156. Burrows, K. et al. HIC1 links retinoic acid signalling to group 3 innate lymphoid cell-dependent regulation of intestinal immunity and homeostasis. PLoS Pathog. 14, e1006869 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kim, M. H., Taparowsky, E. J. & Kim, C. H. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Lin, Y. D., Arora, J., Diehl, K., Bora, S. A. & Cantorna, M. T. Vitamin D is required for ILC3 derived IL-22 and protection from Citrobacter rodentium infection. Front. Immunol. 10, 1 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. He, L., Zhou, M. & Li, Y. C. Vitamin D/vitamin D receptor signaling is required for normal development and function of group 3 innate lymphoid cells in the gut. iScience 17, 119–131 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen, J., Waddell, A., Lin, Y. D. & Cantorna, M. T. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 8, 618–626 (2015).

    CAS  PubMed  Google Scholar 

  163. Konya, V. et al. Vitamin D downregulates the IL-23 receptor pathway in human mucosal group 3 innate lymphoid cells. J. Allergy Clin. Immunol. 141, 279–292 (2018).

    CAS  PubMed  Google Scholar 

  164. Xiong, L. et al. Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71–iron axis. Nat. Immunol. 24, 1671–1684 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011). This article shows that AHR signaling is essential for intestinal ILC maintenance and infection resistance.

  166. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  167. Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    PubMed  Google Scholar 

  168. Maricic, I. et al. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology 61, 1357–1369 (2015).

    CAS  PubMed  Google Scholar 

  169. Cui, K. et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. J. Hepatol. 62, 1311–1318 (2015).

    CAS  PubMed  Google Scholar 

  170. Lee, K. C. et al. Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G585–G597 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Miyagi, T. et al. Absence of invariant natural killer T cells deteriorates liver inflammation and fibrosis in mice fed high-fat diet. J. Gastroenterol. 45, 1247–1254 (2010).

    CAS  PubMed  Google Scholar 

  172. Li, Z., Soloski, M. J. & Diehl, A. M. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 42, 880–885 (2005).

    CAS  PubMed  Google Scholar 

  173. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kremer, M. et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 51, 130–141 (2010).

    CAS  PubMed  Google Scholar 

  175. Takashima, S. et al. Glycine prevents metabolic steatohepatitis in diabetic KK-Ay mice through modulation of hepatic innate immunity. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1105–G1113 (2016).

    PubMed  Google Scholar 

  176. Ma, X., Hua, J. & Li, Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J. Hepatol. 49, 821–830 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wu, L. et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc. Natl Acad. Sci. USA 109, E1143–E1152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Tang, W. et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver. Cell Mol. Immunol. 19, 834–847 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Syn, W. K. et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61, 1323–1329 (2012).

    CAS  PubMed  Google Scholar 

  180. Sutti, S. et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 59, 886–897 (2014).

    CAS  PubMed  Google Scholar 

  181. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014). This work shows intrahepatic CD8+ T and NKT cells promote MASH and HCC through direct interactions with hepatocytes.

    CAS  PubMed  Google Scholar 

  182. Maricic, I. et al. Differential activation of hepatic invariant NKT cell subsets plays a key role in progression of nonalcoholic steatohepatitis. J. Immunol. 201, 3017–3035 (2018).

    CAS  PubMed  Google Scholar 

  183. Satoh, M. et al. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 28473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sagami, S. et al. Choline deficiency causes colonic type II natural killer T (NKT) cell loss and alleviates murine colitis under type I NKT cell deficiency. PLoS ONE 12, e0169681 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. Riva, A. et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 67, 918–930 (2018).

    CAS  PubMed  Google Scholar 

  186. Li, Y. et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 9, 1994 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. Liu, J., Nan, H., Brutkiewicz, R. R., Casasnovas, J. & Kua, K. L. Sex discrepancy in the reduction of mucosal-associated invariant T cells caused by obesity. Immun. Inflamm. Dis. 9, 299–309 (2021).

    CAS  PubMed  Google Scholar 

  188. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    CAS  PubMed  Google Scholar 

  189. Kishi, H. et al. Increased number of mucosal-associated invariant T cells is associated with the inhibition of nonalcoholic fatty liver disease in high fat diet-fed mice. Int. J. Mol. Sci. 23, 15309 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Jiang, X. et al. MAIT cells ameliorate liver fibrosis by enhancing the cytotoxicity of NK cells in cholestatic murine models. Liver Int. 42, 2743–2758 (2022).

    CAS  PubMed  Google Scholar 

  191. Hegde, P. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Magalhaes, I. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Invest. 125, 1752–1762 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Fazzone, B. et al. Short-term dietary restriction potentiates an anti-inflammatory circulating mucosal-associated invariant T-cell response. Nutrients 16, 1245 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Toubal, A. et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 11, 3755 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee, J. H. et al. Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through Toll-like receptor 3 in alcohol-associated liver injury. Hepatology 72, 609–625 (2020).

    CAS  PubMed  Google Scholar 

  196. Torres-Hernandez, A. et al. γδ T cells promote steatohepatitis by orchestrating innate and adaptive immune programming. Hepatology 71, 477–494 (2020).

    CAS  PubMed  Google Scholar 

  197. Li, F. et al. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat. Commun. 7, 13839 (2017).

    PubMed  Google Scholar 

  198. Mehta, P., Nuotio-Antar, A. M. & Smith, C. W. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J. Leukoc. Biol. 97, 121–134 (2015).

    PubMed  Google Scholar 

  199. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen, Y. & Tian, Z. Roles of hepatic innate and innate-like lymphocytes in nonalcoholic steatohepatitis. Front. Immunol. 11, 1500 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Böttcher, K. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 68, 172–186 (2018).

    PubMed  Google Scholar 

  202. Bolte, F. J. & Rehermann, B. Mucosal-associated invariant T cells in chronic inflammatory liver disease. Semin. Liver Dis. 38, 60–65 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    CAS  PubMed  Google Scholar 

  204. Mabire, M. et al. MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming. Nat. Commun. 14, 1830 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Lei, X., Gou, Y. N., Hao, J. Y. & Huang, X. J. Mechanisms of TREM2 mediated immunosuppression and regulation of cancer progression. Front. Oncol. 14, 1375729 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Lazaratos, A. M., Annis, M. G. & Siegel, P. M. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 41, 4573–4590 (2022).

    CAS  PubMed  Google Scholar 

  207. Diefenbach, A., Gnafakis, S. & Shomrat, O. Innate lymphoid cell-epithelial cell modules sustain intestinal homeostasis. Immunity 52, 452–463 (2020).

    CAS  PubMed  Google Scholar 

  208. Imajo, K. et al. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int. J. Mol. Sci. 14, 21833–21857 (2013).

    PubMed  PubMed Central  Google Scholar 

  209. Roeb, E. & Weiskirchen, R. Fructose and non-alcoholic steatohepatitis. Front. Pharm. 12, 634344 (2021).

    CAS  Google Scholar 

  210. Febbraio, M. A. & Karin, M. ‘Sweet death’: fructose as a metabolic toxin that targets the gut–liver axis. Cell Metab. 33, 2316–2328 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Charlton, M. et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G825–G834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ibrahim, S. H., Hirsova, P., Malhi, H. & Gores, G. J. Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Dig. Dis. Sci. 61, 1325–1336 (2016).

    PubMed  Google Scholar 

  213. Zhu, H. et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 7, 11 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants R37AI043477 and R01DK133448.

Author information

Authors and Affiliations

Authors

Contributions

P.Z., K.W. and M.K. jointly conceived and wrote this review. All authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Michael Karin.

Ethics declarations

Competing interests

M.K. is a founder and stockholder in Elgia Pharmaceuticals and has received research support from Merck and Janssen Pharmaceuticals. All other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Watari, K. & Karin, M. Innate immune cells link dietary cues to normal and abnormal metabolic regulation. Nat Immunol 26, 29–41 (2025). https://doi.org/10.1038/s41590-024-02037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-024-02037-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing