[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Higher-order Laplacian renormalization

Abstract

The renormalization group is a pillar of the theory of scaling, scale invariance and universality in physics. Recently, this tool has been adapted to complex networks with pairwise interactions through a scheme based on diffusion dynamics. However, as the importance of polyadic interactions in complex systems becomes more evident, there is a pressing need to extend the renormalization group methods to higher-order networks. Here we fill this gap and propose a Laplacian renormalization group scheme for arbitrary higher-order networks. At the heart of our approach is the introduction of cross-order Laplacians, which generalize existing higher-order Laplacians by allowing the description of diffusion processes that can happen on hyperedges of any order via hyperedges of any other order. This approach enables us to probe higher-order structures, define scale invariance at various orders and propose a coarse-graining scheme. We validate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-order Laplacian renormalization scheme: partition and coarse graining.
Fig. 2: Scale invariance and renormalization in pseudofractal simplicial complexes.
Fig. 3: Higher-order Laplacian renormalization scheme applied to NGF simplicial complexes.
Fig. 4: Higher-order scale invariance in real data.

Similar content being viewed by others

Data availability

The data supporting the results presented in this Article are available via GitHub at https://github.com/nplresearch/higher_order_LRG.

Code availability

The code supporting the results presented in this Article are available via GitHub at https://github.com/nplresearch/higher_order_LRG.

References

  1. Fisher, M. E. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597 (1974).

    Article  ADS  MATH  Google Scholar 

  2. Tu, Y. The renormalization group for non-equilibrium systems. Nat. Phys. 19, 1536–1538 (2023).

    Article  MATH  Google Scholar 

  3. Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–395 (2005).

    Article  ADS  MATH  Google Scholar 

  4. Goh, K.-I., Salvi, G., Kahng, B. & Kim, D. Skeleton and fractal scaling in complex networks. Phys. Rev. Lett. 96, 018701 (2006).

    Article  ADS  MATH  Google Scholar 

  5. Rozenfeld, H. D., Song, C. & Makse, H. A. Small-world to fractal transition in complex networks: a renormalization group approach. Phys. Rev. Lett. 104, 025701 (2010).

    Article  ADS  MATH  Google Scholar 

  6. García-Pérez, G., Boguñá, M. & Serrano, M. Á. Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018).

    Article  MATH  Google Scholar 

  7. Garuccio, E., Lalli, M. & Garlaschelli, D. Multiscale network renormalization: scale-invariance without geometry. Phys. Rev. Res. 5, 043101 (2023).

    Article  Google Scholar 

  8. Zheng, M., García-Pérez, G., Boguñá, M. & Serrano, M. Á. Geometric renormalization of weighted networks. Commun. Phys. 7, 97 (2024).

    Article  MATH  Google Scholar 

  9. de C Loures, M., Piovesana, A. A. & Brum, J. A. Laplacian coarse graining in complex networks. Preprint at https://arxiv.org/abs/2302.07093 (2023).

  10. Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).

    Article  MATH  Google Scholar 

  11. Serrano, M. Á., Krioukov, D. & Boguná, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).

    Article  ADS  MATH  Google Scholar 

  12. Kadanoff, L. P. Scaling laws for Ising models near Tc. Phys. Phys. Fiz. 2, 263 (1966).

    MathSciNet  MATH  Google Scholar 

  13. Boguna, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).

    Article  MATH  Google Scholar 

  14. Bianconi, G. & Dorogovstev, S. N. The spectral dimension of simplicial complexes: a renormalization group theory. J. Stat. Mech. 2020, 014005 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).

    MATH  Google Scholar 

  16. Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  MATH  Google Scholar 

  18. Bick, C., Gross, E., Harrington, H. A. & Schaub, M. T. What are higher-order networks? SIAM Rev. 65, 686–731 (2023).

    Article  MathSciNet  MATH  Google Scholar 

  19. Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. & Jadbabaie, A. Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM Rev. 62, 353–391 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. Mukherjee, S. & Steenbergen, J. Random walks on simplicial complexes and harmonics. Random Struct. Alg. 49, 379–405 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. Parzanchevski, O. & Rosenthal, R. Simplicial complexes: spectrum, homology and random walks. Random Struct.Alg. 50, 225–261 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. Muhammad, A. & Egerstedt, M. Control using higher order Laplacians in network topologies. In Proc. 17th International Symposium on Mathematical Theory of Networks and Systems 1024–1038 (Citeseer, 2006).

  23. Torres, J. J. & Bianconi, G. Simplicial complexes: higher-order spectral dimension and dynamics. J. Phys. Complex. 1, 015002 (2020).

    Article  ADS  MATH  Google Scholar 

  24. Lucas, M., Iacopini, I., Robiglio, T., Barrat, A. & Petri, G. Simplicially driven simple contagion. Phys. Rev.Res. 5, 013201 (2023).

    Article  MATH  Google Scholar 

  25. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).

    Article  ADS  MATH  Google Scholar 

  26. Chowdhary, S., Kumar, A., Cencetti, G., Iacopini, I. & Battiston, F. Simplicial contagion in temporal higher-order networks. J. Phys. Complex. 2, 035019 (2021).

    Article  ADS  MATH  Google Scholar 

  27. St-Onge, G. et al. Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs. Commun. Phys. 5, 25 (2022).

    Article  MATH  Google Scholar 

  28. Ferraz de Arruda, G., Petri, G., Rodriguez, P. M. & Moreno, Y. Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs. Nat. Commun. 14, 1375 (2023).

    Article  ADS  MATH  Google Scholar 

  29. Chen, Y., Gel, Y. R., Marathe, M. V. & Poor, H. V. A simplicial epidemic model for COVID-19 spread analysis. Proc. Natl Acad. Sci. USA 121, e2313171120 (2024).

    Article  Google Scholar 

  30. Kiss, I. Z., Iacopini, I., Simon, P. L. & Georgiou, N. Insights from exact social contagion dynamics on networks with higher-order structures. J. Complex Netw. 11, cnad044 (2023).

    Article  MathSciNet  MATH  Google Scholar 

  31. Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Human Behav. 5, 586–595 (2021).

    Article  MATH  Google Scholar 

  32. Iacopini, I., Karsai, M. & Barrat, A. The temporal dynamics of group interactions in higher-order social networks. Nat. Commun. 15, 7391 (2024).

    Article  MATH  Google Scholar 

  33. Mancastroppa, M., Iacopini, I., Petri, G. & Barrat, A. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat. Commun. 14, 6223 (2023).

    Article  ADS  MATH  Google Scholar 

  34. Shang, Y. A system model of three-body interactions in complex networks: consensus and conservation. Proc. R. Soc. A 478, 20210564 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Neuhäuser, L., Mellor, A. & Lambiotte, R. Multibody interactions and nonlinear consensus dynamics on networked systems. Phys. Rev.E 101, 032310 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Neuhäuser, L., Lambiotte, R. & Schaub, M. T. Consensus dynamics on temporal hypergraphs. Phys. Rev.E 104, 064305 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Sahasrabuddhe, R., Neuhäuser, L. & Lambiotte, R. Modelling non-linear consensus dynamics on hypergraphs. J. Phys. Complex. 2, 025006 (2021).

    Article  ADS  MATH  Google Scholar 

  38. Skardal, P. S. & Arenas, A. Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys. Rev. Lett. 122, 248301 (2019).

    Article  ADS  MATH  Google Scholar 

  39. Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev.Res. 2, 033410 (2020).

    Article  MATH  Google Scholar 

  40. Zhang, Y., Lucas, M. & Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 14, 1605 (2023).

    Article  ADS  MATH  Google Scholar 

  41. Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).

    Article  ADS  MATH  Google Scholar 

  42. Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Nurisso, M. et al. A unified framework for simplicial Kuramoto models. Chaos 34, 053118 (2024).

  44. Cheng, A., Xu, Y., Sun, P. & Tian, Y. A simplex path integral and a simplex renormalization group for high-order interactions. Rep. Prog. Phys. 87, 087601 (2024).

    Article  MathSciNet  MATH  Google Scholar 

  45. Reitz, M. & Bianconi, G. The higher-order spectrum of simplicial complexes: a renormalization group approach. J. Phys. A Math. Theor. 53, 295001 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, H., Ziff, R. M. & Bianconi, G. Renormalization group theory of percolation on pseudofractal simplicial and cell complexes. Phys. Rev.E 102, 012308 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Villegas, P., Gabrielli, A., Santucci, F., Caldarelli, G. & Gili, T. Laplacian paths in complex networks: information core emerges from entropic transitions. Phys. Rev.Res. 4, 033196 (2022).

    Article  MATH  Google Scholar 

  48. Eckmann, B. Harmonische funktionen und randwertaufgaben in einem komplex. Comment. Math. Helv. 17, 240–255 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  49. Hajij, M. et al. Topological deep learning: going beyond graph data. Preprint at https://arxiv.org/abs/2206.00606 (2023).

  50. Aktas, M. E. & Akbas, E. Hypergraph Laplacians in diffusion framework. In Complex Networks & Their Applications X 277–288 (Springer, 2022).

  51. Whitney, H. in Hassler Whitney Collected Papers 61–79 (Birkhäuser Boston, 1992).

  52. Ghavasieh, A., Nicolini, C. & De Domenico, M. Statistical physics of complex information dynamics. Phys. Rev. E 102, 052304 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Ghavasieh, A. & De Domenico, M. Generalized network density matrices for analysis of multiscale functional diversity. Phys. Rev. E 107, 044304 (2023).

    Article  ADS  MATH  Google Scholar 

  54. Ghavasieh, A. & De Domenico, M. Diversity of information pathways drives sparsity in real-world networks. Nat. Phys. 20, 512–519 (2024).

  55. Rammal, R. & Toulouse, G. Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44, 13–22 (1983).

    Article  MATH  Google Scholar 

  56. Ambjørn, J., Jurkiewicz, J. & Loll, R. The spectral dimension of the Universe is scale dependent. Phys. Rev. Lett. 95, 171301 (2005).

    Article  ADS  MATH  Google Scholar 

  57. Calcagni, G., Oriti, D. & Thürigen, J. Spectral dimension of quantum geometries. Class. Quantum Grav. 31, 135014 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Pseudofractal scale-free web. Phys. Rev.E 65, 066122 (2002).

    Article  ADS  Google Scholar 

  59. Bianconi, G. & Rahmede, C. Network geometry with flavor: from complexity to quantum geometry. Phys. Rev.E 93, 032315 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Bianconi, G. & Rahmede, C. Emergent hyperbolic network geometry. Sci. Rep. 7, 41974 (2017).

    Article  ADS  MATH  Google Scholar 

  61. Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10, e0136497 (2015).

    Article  Google Scholar 

  62. Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).

    Article  ADS  MATH  Google Scholar 

  63. Goh, K.-I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007).

    Article  ADS  MATH  Google Scholar 

  64. Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).

    Article  ADS  MATH  Google Scholar 

  65. Cohen, W. W. Enron email dataset (2024); https://www.cs.cmu.edu/~enron/

  66. Šubelj, L. & Bajec, M. Robust network community detection using balanced propagation. Eur. Phys. J. B 81, 353–362 (2011).

    Article  ADS  MATH  Google Scholar 

  67. Newman, M. E. J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev.E 74, 036104 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F. & Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev.E 68, 065103 (2003).

    Article  ADS  MATH  Google Scholar 

  69. Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev.E 72, 027104 (2005).

    Article  ADS  MATH  Google Scholar 

  70. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  ADS  MATH  Google Scholar 

  71. Overbeek, R. et al. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28, 123–125 (2000).

    Article  MATH  Google Scholar 

  72. Beveridge, A. & Shan, J. Network of thrones. Math Horiz. 23, 18–22 (2013).

  73. Petri, G., Scolamiero, M., Donato, I. & Vaccarino, F. Topological strata of weighted complex networks. PLoS ONE 8, e66506 (2013).

    Article  ADS  MATH  Google Scholar 

  74. James, G. et al. An Introduction To Statistical Learning Vol. 112 (Springer, 2013).

  75. Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302 (2024).

  76. Lyu, H., Kureh, Y. H., Vendrow, J. & Porter, M. A. Learning low-rank latent mesoscale structures in networks. Nat. Commun. 15, 224 (2024).

    Article  ADS  Google Scholar 

  77. Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Functional reducibility of higher-order networks. Preprint at https://arxiv.org/abs/2404.08547 (2024).

  78. Murphy, C., Thibeault, V., Allard, A. & Desrosiers, P. Duality between predictability and reconstructability in complex systems. Nat. Commun. 15, 4478 (2024).

    Article  ADS  MATH  Google Scholar 

  79. Lim, L.-H. Hodge Laplacians on graphs. SIAM Rev. 62, 685–715 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  80. Krishnagopal, S. & Bianconi, G. Spectral detection of simplicial communities via Hodge Laplacians. Phys. Rev.E 104, 064303 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Estrada, E. & Ross, G. J. Centralities in simplicial complexes. Applications to protein interaction networks. J. Theor. Biol. 438, 46–60 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Atkin, R. H. From cohomology in physics to q-connectivity in social science. Int. J. Man-Mach. Stud. 4, 139–167 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  83. Atkin, R. H. An algebra for patterns on a complex, II. Int. J. Man-Mach. Stud. 8, 483–498 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  84. Atkin, R. H. Mathematical Structure in Human Affairs (Heinemann Educational, 1974).

  85. Baccini, F., Geraci, F. & Bianconi, G. Weighted simplicial complexes and their representation power of higher-order network data and topology. Phys. Rev.E 106, 034319 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Ghavasieh, A. & De Domenico, M. Statistical physics of network structure and information dynamics. J. Phys. Complex. 3, 011001 (2022).

    Article  ADS  MATH  Google Scholar 

  87. Grande, V. P. & Schaub, M. T. Topological point cloud clustering. In Proc. 40th International Conference on Machine Learning 469 (JMLR.org, 2023).

  88. Munkres, J. R. Elements of Algebraic Topology (CRC Press, 2018).

Download references

Acknowledgements

M.N. acknowledges the project PNRR-NGEU, which has received funding from the MUR-DM 352/2022. M.L. is a postdoctoral researcher of the Fonds de la Recherche Scientifique–FNRS with project Under-Net 40016866. T.G. acknowledges financial support from the European Union NextGenerationEU–National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza (PNRR)), project ‘SoBigData.it—Strengthening the Italian RI for Social Mining and Big Data Analytics’—grant IR0000013 (no. 3264, 28/12/2021). F.V. acknowledges financial support from the European Union NextGenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013). This project was carried out within the project FAIR (Future Artificial Intelligence Research). We also thank P. Villegas, A. Gabrielli, C. Agostinelli, M. Neri and T. Robiglio for extremely valuable suggestions on preliminary versions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the research and wrote the paper. M.N. and M.M. performed the computational simulations and data analysis.

Corresponding authors

Correspondence to Tommaso Gili or Giovanni Petri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Hanlin Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1 and 2 and Sections 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurisso, M., Morandini, M., Lucas, M. et al. Higher-order Laplacian renormalization. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-02784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-025-02784-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing