Abstract
The renormalization group is a pillar of the theory of scaling, scale invariance and universality in physics. Recently, this tool has been adapted to complex networks with pairwise interactions through a scheme based on diffusion dynamics. However, as the importance of polyadic interactions in complex systems becomes more evident, there is a pressing need to extend the renormalization group methods to higher-order networks. Here we fill this gap and propose a Laplacian renormalization group scheme for arbitrary higher-order networks. At the heart of our approach is the introduction of cross-order Laplacians, which generalize existing higher-order Laplacians by allowing the description of diffusion processes that can happen on hyperedges of any order via hyperedges of any other order. This approach enables us to probe higher-order structures, define scale invariance at various orders and propose a coarse-graining scheme. We validate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data supporting the results presented in this Article are available via GitHub at https://github.com/nplresearch/higher_order_LRG.
Code availability
The code supporting the results presented in this Article are available via GitHub at https://github.com/nplresearch/higher_order_LRG.
References
Fisher, M. E. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597 (1974).
Tu, Y. The renormalization group for non-equilibrium systems. Nat. Phys. 19, 1536–1538 (2023).
Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–395 (2005).
Goh, K.-I., Salvi, G., Kahng, B. & Kim, D. Skeleton and fractal scaling in complex networks. Phys. Rev. Lett. 96, 018701 (2006).
Rozenfeld, H. D., Song, C. & Makse, H. A. Small-world to fractal transition in complex networks: a renormalization group approach. Phys. Rev. Lett. 104, 025701 (2010).
García-Pérez, G., Boguñá, M. & Serrano, M. Á. Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018).
Garuccio, E., Lalli, M. & Garlaschelli, D. Multiscale network renormalization: scale-invariance without geometry. Phys. Rev. Res. 5, 043101 (2023).
Zheng, M., García-Pérez, G., Boguñá, M. & Serrano, M. Á. Geometric renormalization of weighted networks. Commun. Phys. 7, 97 (2024).
de C Loures, M., Piovesana, A. A. & Brum, J. A. Laplacian coarse graining in complex networks. Preprint at https://arxiv.org/abs/2302.07093 (2023).
Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).
Serrano, M. Á., Krioukov, D. & Boguná, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).
Kadanoff, L. P. Scaling laws for Ising models near Tc. Phys. Phys. Fiz. 2, 263 (1966).
Boguna, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).
Bianconi, G. & Dorogovstev, S. N. The spectral dimension of simplicial complexes: a renormalization group theory. J. Stat. Mech. 2020, 014005 (2020).
De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).
Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).
Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).
Bick, C., Gross, E., Harrington, H. A. & Schaub, M. T. What are higher-order networks? SIAM Rev. 65, 686–731 (2023).
Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. & Jadbabaie, A. Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM Rev. 62, 353–391 (2020).
Mukherjee, S. & Steenbergen, J. Random walks on simplicial complexes and harmonics. Random Struct. Alg. 49, 379–405 (2016).
Parzanchevski, O. & Rosenthal, R. Simplicial complexes: spectrum, homology and random walks. Random Struct.Alg. 50, 225–261 (2017).
Muhammad, A. & Egerstedt, M. Control using higher order Laplacians in network topologies. In Proc. 17th International Symposium on Mathematical Theory of Networks and Systems 1024–1038 (Citeseer, 2006).
Torres, J. J. & Bianconi, G. Simplicial complexes: higher-order spectral dimension and dynamics. J. Phys. Complex. 1, 015002 (2020).
Lucas, M., Iacopini, I., Robiglio, T., Barrat, A. & Petri, G. Simplicially driven simple contagion. Phys. Rev.Res. 5, 013201 (2023).
Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).
Chowdhary, S., Kumar, A., Cencetti, G., Iacopini, I. & Battiston, F. Simplicial contagion in temporal higher-order networks. J. Phys. Complex. 2, 035019 (2021).
St-Onge, G. et al. Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs. Commun. Phys. 5, 25 (2022).
Ferraz de Arruda, G., Petri, G., Rodriguez, P. M. & Moreno, Y. Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs. Nat. Commun. 14, 1375 (2023).
Chen, Y., Gel, Y. R., Marathe, M. V. & Poor, H. V. A simplicial epidemic model for COVID-19 spread analysis. Proc. Natl Acad. Sci. USA 121, e2313171120 (2024).
Kiss, I. Z., Iacopini, I., Simon, P. L. & Georgiou, N. Insights from exact social contagion dynamics on networks with higher-order structures. J. Complex Netw. 11, cnad044 (2023).
Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Human Behav. 5, 586–595 (2021).
Iacopini, I., Karsai, M. & Barrat, A. The temporal dynamics of group interactions in higher-order social networks. Nat. Commun. 15, 7391 (2024).
Mancastroppa, M., Iacopini, I., Petri, G. & Barrat, A. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat. Commun. 14, 6223 (2023).
Shang, Y. A system model of three-body interactions in complex networks: consensus and conservation. Proc. R. Soc. A 478, 20210564 (2022).
Neuhäuser, L., Mellor, A. & Lambiotte, R. Multibody interactions and nonlinear consensus dynamics on networked systems. Phys. Rev.E 101, 032310 (2020).
Neuhäuser, L., Lambiotte, R. & Schaub, M. T. Consensus dynamics on temporal hypergraphs. Phys. Rev.E 104, 064305 (2021).
Sahasrabuddhe, R., Neuhäuser, L. & Lambiotte, R. Modelling non-linear consensus dynamics on hypergraphs. J. Phys. Complex. 2, 025006 (2021).
Skardal, P. S. & Arenas, A. Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys. Rev. Lett. 122, 248301 (2019).
Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev.Res. 2, 033410 (2020).
Zhang, Y., Lucas, M. & Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 14, 1605 (2023).
Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).
Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).
Nurisso, M. et al. A unified framework for simplicial Kuramoto models. Chaos 34, 053118 (2024).
Cheng, A., Xu, Y., Sun, P. & Tian, Y. A simplex path integral and a simplex renormalization group for high-order interactions. Rep. Prog. Phys. 87, 087601 (2024).
Reitz, M. & Bianconi, G. The higher-order spectrum of simplicial complexes: a renormalization group approach. J. Phys. A Math. Theor. 53, 295001 (2020).
Sun, H., Ziff, R. M. & Bianconi, G. Renormalization group theory of percolation on pseudofractal simplicial and cell complexes. Phys. Rev.E 102, 012308 (2020).
Villegas, P., Gabrielli, A., Santucci, F., Caldarelli, G. & Gili, T. Laplacian paths in complex networks: information core emerges from entropic transitions. Phys. Rev.Res. 4, 033196 (2022).
Eckmann, B. Harmonische funktionen und randwertaufgaben in einem komplex. Comment. Math. Helv. 17, 240–255 (1944).
Hajij, M. et al. Topological deep learning: going beyond graph data. Preprint at https://arxiv.org/abs/2206.00606 (2023).
Aktas, M. E. & Akbas, E. Hypergraph Laplacians in diffusion framework. In Complex Networks & Their Applications X 277–288 (Springer, 2022).
Whitney, H. in Hassler Whitney Collected Papers 61–79 (Birkhäuser Boston, 1992).
Ghavasieh, A., Nicolini, C. & De Domenico, M. Statistical physics of complex information dynamics. Phys. Rev. E 102, 052304 (2020).
Ghavasieh, A. & De Domenico, M. Generalized network density matrices for analysis of multiscale functional diversity. Phys. Rev. E 107, 044304 (2023).
Ghavasieh, A. & De Domenico, M. Diversity of information pathways drives sparsity in real-world networks. Nat. Phys. 20, 512–519 (2024).
Rammal, R. & Toulouse, G. Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44, 13–22 (1983).
Ambjørn, J., Jurkiewicz, J. & Loll, R. The spectral dimension of the Universe is scale dependent. Phys. Rev. Lett. 95, 171301 (2005).
Calcagni, G., Oriti, D. & Thürigen, J. Spectral dimension of quantum geometries. Class. Quantum Grav. 31, 135014 (2014).
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Pseudofractal scale-free web. Phys. Rev.E 65, 066122 (2002).
Bianconi, G. & Rahmede, C. Network geometry with flavor: from complexity to quantum geometry. Phys. Rev.E 93, 032315 (2016).
Bianconi, G. & Rahmede, C. Emergent hyperbolic network geometry. Sci. Rep. 7, 41974 (2017).
Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10, e0136497 (2015).
Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).
Goh, K.-I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007).
Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).
Cohen, W. W. Enron email dataset (2024); https://www.cs.cmu.edu/~enron/
Šubelj, L. & Bajec, M. Robust network community detection using balanced propagation. Eur. Phys. J. B 81, 353–362 (2011).
Newman, M. E. J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev.E 74, 036104 (2006).
Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F. & Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev.E 68, 065103 (2003).
Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev.E 72, 027104 (2005).
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).
Overbeek, R. et al. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28, 123–125 (2000).
Beveridge, A. & Shan, J. Network of thrones. Math Horiz. 23, 18–22 (2013).
Petri, G., Scolamiero, M., Donato, I. & Vaccarino, F. Topological strata of weighted complex networks. PLoS ONE 8, e66506 (2013).
James, G. et al. An Introduction To Statistical Learning Vol. 112 (Springer, 2013).
Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302 (2024).
Lyu, H., Kureh, Y. H., Vendrow, J. & Porter, M. A. Learning low-rank latent mesoscale structures in networks. Nat. Commun. 15, 224 (2024).
Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Functional reducibility of higher-order networks. Preprint at https://arxiv.org/abs/2404.08547 (2024).
Murphy, C., Thibeault, V., Allard, A. & Desrosiers, P. Duality between predictability and reconstructability in complex systems. Nat. Commun. 15, 4478 (2024).
Lim, L.-H. Hodge Laplacians on graphs. SIAM Rev. 62, 685–715 (2020).
Krishnagopal, S. & Bianconi, G. Spectral detection of simplicial communities via Hodge Laplacians. Phys. Rev.E 104, 064303 (2021).
Estrada, E. & Ross, G. J. Centralities in simplicial complexes. Applications to protein interaction networks. J. Theor. Biol. 438, 46–60 (2018).
Atkin, R. H. From cohomology in physics to q-connectivity in social science. Int. J. Man-Mach. Stud. 4, 139–167 (1972).
Atkin, R. H. An algebra for patterns on a complex, II. Int. J. Man-Mach. Stud. 8, 483–498 (1976).
Atkin, R. H. Mathematical Structure in Human Affairs (Heinemann Educational, 1974).
Baccini, F., Geraci, F. & Bianconi, G. Weighted simplicial complexes and their representation power of higher-order network data and topology. Phys. Rev.E 106, 034319 (2022).
Ghavasieh, A. & De Domenico, M. Statistical physics of network structure and information dynamics. J. Phys. Complex. 3, 011001 (2022).
Grande, V. P. & Schaub, M. T. Topological point cloud clustering. In Proc. 40th International Conference on Machine Learning 469 (JMLR.org, 2023).
Munkres, J. R. Elements of Algebraic Topology (CRC Press, 2018).
Acknowledgements
M.N. acknowledges the project PNRR-NGEU, which has received funding from the MUR-DM 352/2022. M.L. is a postdoctoral researcher of the Fonds de la Recherche Scientifique–FNRS with project Under-Net 40016866. T.G. acknowledges financial support from the European Union NextGenerationEU–National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza (PNRR)), project ‘SoBigData.it—Strengthening the Italian RI for Social Mining and Big Data Analytics’—grant IR0000013 (no. 3264, 28/12/2021). F.V. acknowledges financial support from the European Union NextGenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013). This project was carried out within the project FAIR (Future Artificial Intelligence Research). We also thank P. Villegas, A. Gabrielli, C. Agostinelli, M. Neri and T. Robiglio for extremely valuable suggestions on preliminary versions of the manuscript.
Author information
Authors and Affiliations
Contributions
All authors designed the research and wrote the paper. M.N. and M.M. performed the computational simulations and data analysis.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Hanlin Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, Tables 1 and 2 and Sections 1–7.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nurisso, M., Morandini, M., Lucas, M. et al. Higher-order Laplacian renormalization. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-02784-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41567-025-02784-1