Abstract
How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing the accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender–career and racial bias. After we provided them with historical trend data on the relevant domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N = 86 teams and 359 forecasts), with an opportunity to update forecasts on the basis of new data six months later (Tournament 2; N = 120 teams and 546 forecasts). Benchmarking forecasting accuracy revealed that social scientists’ forecasts were on average no more accurate than those of simple statistical models (historical means, random walks or linear regressions) or the aggregate forecasts of a sample from the general public (N = 802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models and based predictions on prior data.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
All data used in the main text and supplementary analysis are accessible on GitHub (https://github.com/grossmania/Forecasting-Tournament). All prior data presented to the forecasters are available at https://predictions.uwaterloo.ca/. Historical and ground truth markers were obtained from Project FiveThirtyEight (https://projects.fivethirtyeight.com/polls/generic-ballot), Gallup (https://news.gallup.com/poll/203198/presidential-approval-ratings-donald-trump.aspx), Project Implicit (see the Open Science Framework website at https://osf.io/t4bnj) and the US Census Bureau (https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html).
Code availability
Our project page at https://github.com/grossmania/Forecasting-Tournament displays all code from this paper. See the Reporting Summary for the R packages and their versions.
References
Hutcherson, C. et al. On the accuracy, media representation, and public perception of psychological scientists’ judgments of societal change. Preprint at https://doi.org/10.31234/osf.io/g8f9s (2023).
Collins, H. & Evans, R. Rethinking Expertise (Univ. of Chicago Press, 2009).
Fama, E. F. Efficient capital markets: a review of theory and empirical work. J. Finance 25, 383–417 (1970).
Tetlock, P. E. Expert Political Judgement: How Good Is It? (Princeton University Press, 2017).
Hofman, J. M. et al. Integrating explanation and prediction in computational social science. Nature 595, 181–188 (2021).
Mandel, D. R. & Barnes, A. Accuracy of forecasts in strategic intelligence. Proc. Natl Acad. Sci. USA 111, 10984–10989 (2014).
Makridakis, S., Spiliotis, E. & Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36, 54–74 (2020).
Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).
Hofman, J. M., Sharma, A. & Watts, D. J. Prediction and explanation in social systems. Science 355, 486–488 (2017).
Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).
Fincher, C. L. & Thornhill, R. Parasite-stress promotes in-group assortative sociality: the cases of strong family ties and heightened religiosity. Behav. Brain Sci. 35, 61–79 (2012).
Varnum, M. E. W. & Grossmann, I. Pathogen prevalence is associated with cultural changes in gender equality. Nat. Hum. Behav. 1, 0003 (2016).
Schaller, M. & Murray, D. R. Pathogens, personality, and culture: disease prevalence predicts worldwide variability in sociosexuality, extraversion, and openness to experience. J. Pers. Soc. Psychol. 95, 212–221 (2008).
van Leeuwen, F., Park, J. H., Koenig, B. L. & Graham, J. Regional variation in pathogen prevalence predicts endorsement of group-focused moral concerns. Evol. Hum. Behav. 33, 429–437 (2012).
Hawkley, L. C. & Cacioppo, J. T. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Ann. Behav. Med. 40, 218–227 (2010).
Salganik, M. J. et al. Measuring the predictability of life outcomes with a scientific mass collaboration. Proc. Natl Acad. Sci. USA 117, 8398–8403 (2020).
Liberman, M. Reproducible Research and the Common Task Method (2015); https://www.simonsfoundation.org/event/reproducible-research-and-the-common-task-method/
Hyndman, R. J. & Koehler, A. B. Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688 (2006).
Eyal, P., David, R., Andrew, G., Zak, E. & Ekaterina, D. Data quality of platforms and panels for online behavioral research. Behav. Res. Methods https://doi.org/10.3758/s13428-021-01694-3 (2021).
Genz, A. & Bretz, F. Computation of Multivariate Normal and t Probabilities (Springer, 2009).
Green, K. C. & Armstrong, J. S. Simple versus complex forecasting: the evidence. J. Bus. Res. 68, 1678–1685 (2015).
Grossmann, I., Twardus, O., Varnum, M. E. W., Jayawickreme, E. & McLevey, J. Expert predictions of societal change: insights from the World After COVID Project. Am. Psychol. 77, 276–290 (2022).
Grossmann, I., Huynh, A. C. & Ellsworth, P. C. Emotional complexity: clarifying definitions and cultural correlates. J. Pers. Soc. Psychol. 111, 895–916 (2016).
Alves, H., Koch, A. & Unkelbach, C. Why good is more alike than bad: processing implications. Trends Cogn. Sci. 21, 69–79 (2017).
Dimant, E. et al. Politicizing mask-wearing: predicting the success of behavioral interventions among Republicans and Democrats in the U.S. Sci. Rep. 12, 7575 (2022).
Dunning, D., Heath, C. & Suls, J. M. Flawed self-assessment. Psychol. Sci. Public Interest 5, 69–106 (2004).
Grossmann, I. et al. The science of wisdom in a polarized world: knowns and unknowns. Psychol. Inq. 31, 103–133 (2020).
Porter, T. et al. Predictors and consequences of intellectual humility. Nat. Rev. Psychol. 1, 524–536 (2022).
Mellers, B., Tetlock, P. E. & Arkes, H. R. Forecasting tournaments, epistemic humility and attitude depolarization. Cognition 188, 19–26 (2019).
Grossmann, I. et al. Training for wisdom: the distanced-self-reflection diary method. Psychol. Sci. 32, 381–394 (2021).
Klein, R. A. et al. Many Labs 2: investigating variation in replicability across samples and settings. Adv. Methods Pract. Psychol. Sci. 1, 443–490 (2018).
Voslinsky, A. & Azar, O. H. Incentives in experimental economics. J. Behav. Exp. Econ. 93, 101706 (2021).
Cerasoli, C. P., Nicklin, J. M. & Ford, M. T. Intrinsic motivation and extrinsic incentives jointly predict performance: a 40-year meta-analysis. Psychol. Bull. 140, 980–1008 (2014).
Richard, F. D., Bond, C. F. Jr. & Stokes-Zoota, J. J. One hundred years of social psychology quantitatively described. Rev. Gen. Psychol. 7, 331–363 (2003).
Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83 (2010).
Yarkoni, T. The generalizability crisis. Behav. Brain Sci. 45, e1 (2022).
Cesario, J. What can experimental studies of bias tell us about real-world group disparities? Behav. Brain Sci. https://doi.org/10.1017/S0140525X21000017 (2021).
IJzerman, H. et al. Use caution when applying behavioural science to policy. Nat. Hum. Behav. 4, 1092–1094 (2020).
Varnum, M. E. W. & Grossmann, I. Cultural change: the how and the why. Perspect. Psychol. Sci. 12, 956–972 (2017).
Breiman, L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2001).
Lewin, K. Defining the ‘field at a given time’. Psychol. Rev. 50, 292–310 (1943).
Turchin, P., Currie, T. E., Turner, E. A. L. & Gavrilets, S. War, space, and the evolution of Old World complex societies. Proc. Natl Acad. Sci. USA 110, 16384–16389 (2013).
Brockwell, P. J. & Davis, R. A. Introduction to Time Series and Forecasting (Springer, 2016); https://doi.org/10.1007/978-3-319-29854-2
Makridakis, S. & Taleb, N. Living in a world of low levels of predictability. Int. J. Forecast. 25, 840–844 (2009).
Hitchens, N. M., Brooks, H. E. & Kay, M. P. Objective limits on forecasting skill of rare events. Weather Forecast. 28, 525–534 (2013).
Jebb, A. T., Tay, L., Wang, W. & Huang, Q. Time series analysis for psychological research: examining and forecasting change. Front. Psychol. 6, 727 (2015).
Van Bavel, J. et al. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 4, 460–471 (2020).
Seitz, B. M. et al. The pandemic exposes human nature: 10 evolutionary insights. Proc. Natl Acad. Sci. USA 117, 27767–27776 (2020).
Schaller, M. & Park, J. H. The behavioral immune system (and why it matters). Curr. Dir. Psychol. Sci. 20, 99–103 (2011).
Wang, I. M., Michalak, N. M. & Ackerman, J. M. in The SAGE Handbook of Personality and Individual Differences: Origins of Personality and Individual Differences Vol. 2 (eds Zeigler-Hill, V. & Shackelford, T. K.) 321–345 (2018); https://doi.org/10.4135/9781526451200.n18
Luhmann, M. Using Big Data to study subjective well-being. Curr. Opin. Behav. Sci. 18, 28–33 (2017).
Schwartz, H. A. et al. Predicting individual well-being through the language of social media. Biocomputing 2016 https://doi.org/10.1142/9789814749411_0047 (2016).
Kiritchenko, S., Zhu, X. & Mohammad, S. M. Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50, 723–762 (2014).
Witters, D. & Harter, J. In U.S., Life Ratings Plummet to 12-Year Low (2020); https://news.gallup.com/poll/391331/life-ratings-drop-month-low.aspx
Axt, J. R. The best way to measure explicit racial attitudes is to ask about them. Soc. Psychol. Pers. Sci. 9, 896–906 (2018).
Nosek, B. A. et al. Pervasiveness and correlates of implicit attitudes and stereotypes. Eur. Rev. Soc. Psychol. 18, 36–88 (2007).
Hehman, E., Flake, J. K. & Calanchini, J. Disproportionate use of lethal force in policing is associated with regional racial biases of residents. Soc. Psychol. Pers. Sci. 9, 393–401 (2018).
Ofosu, E. K., Chambers, M. K., Chen, J. M. & Hehman, E. Same-sex marriage legalization associated with reduced implicit and explicit antigay bias. Proc. Natl Acad. Sci. USA 116, 8846–8851 (2019).
Charlesworth, T. E. S. & Banaji, M. R. Patterns of implicit and explicit attitudes: I. Long-term change and stability from 2007 to 2016. Psychol. Sci. 30, 174–192 (2019).
Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the Implicit Association Test: I. An improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197–216 (2003).
Gobet, F. The future of expertise: the need for a multidisciplinary approach. J. Expertise 1, 107–113 (2018).
Lenth, R., Singmann, H., Love, J. & Maxime, H. emmeans: Estimated marginal means, aka least-squares means. R package version 1.8.0 (2020).
R Core Team. R: A Language and Environment for Statistical Computing (2022).
Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).
Acknowledgements
This programme of research was supported by the Basic Research Program at the National Research University Higher School of Economics (M. Fabrykant), John Templeton Foundation grant no. 62260 (I.G. and P.E.T.), Kega 079UK-4/2021 (P.K.), Ministerio de Ciencia e Innovación España grants no. PID2019-111512RB-I00-HMDM and no. HDL-HS-280218 (A.A.), the National Center for Complementary & Integrative Health of the National Institutes of Health under award no. K23AT010879 (S.B.G.), National Science Foundation RAPID grant no. 2026854 (M.E.W.V.), PID2019-111512RB-I00 (M.S.), NPO Systemic Risk Institute grant no. LX22NPO5101 (I.R.), the Slovak Research and Development Agency under contract no. APVV-20-0319 (M.A.), Social Sciences and Humanities Research Council of Canada Insight grant no. 435-2014-0685 (I.G.), Social Sciences and Humanities Research Council of Canada Connection grant no. 611-2020-0190 (I.G.), and Swiss National Science Foundation grant no. PP00P1_170463 (O. Strijbis). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank J. Axt for providing monthly estimates of Project Implicit data and the members of the Forecasting Collaborative who chose to remain anonymous for their contribution to the tournaments.
Author information
Authors and Affiliations
Consortia
Contributions
Conceptualization: I.G., A.R., C.A.H., M.E.W.V., L.T. and P.E.T. Data curation: I.G., K.S., G.T.S. and O.J.T. Forecasting: S.A., M.K.D., X.E.G., M. J. Hirshberg, M.K.-Y., D.R.M., L.R., A.V., L.W., M.A., A.A., P.A., K.B., G.B., F.B., E.B., C.B., M.B., C.K.B., D.T.B., E.M.C., R.C., B.-T.C., W.J.C., C.W.C., L.G.C., M. Davis, M.V.D., N.A.D., J.D.D., M. Dziekan, C.T.E., E.S., M. Fabrykant, M. Firat, G.T.F., J.A.F., J.M.G., S.B.G., A.G., J.G., L.G.-V., S.D.G., S.H., A.H., M. J. Hornsey, P.D.L.H., A.I., B.J., P.K., Y.J.K., R.K., D.G.L., H.-W.L., N.M.L., V.Y.Q.L., A.W.L., A.L.L., C.R.M., M. Maier, N.M.M., D.S.M., A.A.M., M. Misiak, K.O.R.M., J.M.N., J.N., K.N., J.O., T.O., M.P.-C., S.P., J.P., Q.R., I.R., R.M.R., Y.R., E.R., L.S., A.S., M.S., A.T.S., O. Simonsson, M.-C.S., C.-C.T., T.T., B.A.T., D.T., D.C.K.T., J.M.T., L.U., D.V., L.V.W., H.A.V., Q.W., K.W., M.E.W., C.E.W., T.Y., K.Y., S.Y., V.R.A., J.R.A.-H., P.A.B., A.B., L.C., M.C., S.D.-H., Z.E.F., C.R.K., S.T.K., A.L.O., L.M., M.S.M., M.F.R.C.M., E.K.M., P.M., J.B.N., W.N., R.B.R., P.S., A.H.S., O. Strijbis, D.S., E.T., A.v.L., J.G.V., M.N.A.W. and T.W. Formal analysis: I.G. and C.A.H. Funding acquisition: I.G. Investigation: I.G., A.R. and C.A.H. Methodology: I.G., A.R., C.A.H., K.S., M.E.W.V., S.A., D.R.M., L.R., L.T., A.V., R.N.C., L.U. and D.V. Project administration: I.G., A.R., M.E.W.V., M.K.-Y. and O.J.T. Resources: I.G., A.R., J.N. and G.T.S. Supervision: I.G. Validation: K.S., X.E.G. and L.W. Visualization: I.G. and M.K.D. Writing—original draft: I.G. Writing—review and editing: I.G., A.R., C.A.H., K.S., M.E.W.V., S.A., M.K.D., X.E.G., M. J. Hirshberg, M.K.-Y., D.R.M., L.R., L.T., A.V., L.W., M.A., A.A., P.A., K.B., G.B., F.B., E.B., C.B., M.B., C.K.B., D.T.B., E.M.C., R.C., B.-T.C., W.J.C., R.N.C., C.W.C., L.G.C., M. Davis, M.V.D., N.A.D., J.D.D., M. Dziekan, C.T.E., E.S., M. Fabrykant, M. Firat, G.T.F., J.A.F., J.M.G., S.B.G., A.G., J.G., L.G.-V., S.D.G., S.H., A.H., M. J. Hornsey, P.D.L.H., A.I., B.J., P.K., Y.J.K., R.K., D.G.L., H.-W.L., N.M.L., V.Y.Q.L., A.W.L., A.L.L., C.R.M., M. Maier, N.M.M., D.S.M., A.A.M., M. Misiak, K.O.R.M., J.M.N., K.N., J.O., T.O., M.P.-C., S.P., J.P., Q.R., I.R., R.M.R., Y.R., E.R., L.S., A.S., M.S., A.T.S., O. Simonsson, M.-C.S., C.-C.T., T.T., B.A.T., P.E.T., D.T., D.C.K.T., J.M.T., L.V.W., H.A.V., Q.W., K.W., M.E.W., C.E.W., T.Y., K.Y. and S.Y.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Richard Klein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods, Figs. 1–15, Tables 1–9 and Appendices 1–5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
The Forecasting Collaborative. Insights into the accuracy of social scientists’ forecasts of societal change. Nat Hum Behav 7, 484–501 (2023). https://doi.org/10.1038/s41562-022-01517-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-022-01517-1