[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enrichment by extragalactic first stars in the Large Magellanic Cloud

Abstract

The Large Magellanic Cloud (LMC) is the Milky Way’s most massive satellite galaxy, which only recently (~2 billion years ago) fell into our Galaxy. As stellar atmospheres preserve the composition of their natal cloud, the LMC’s recent infall makes its most ancient, metal-deficient (‘low-metallicity’) stars unique windows into early star formation and nucleosynthesis in a formerly distant region of the high-redshift universe. Here we present the elemental abundances of ten stars in the LMC with iron-to-hydrogen ratios ranging from ~1/300th to ~1/12,000th that of the Sun. Our most metal-deficient star is markedly more metal-deficient than any in the LMC with available detailed chemical abundance patterns and was probably enriched by a single extragalactic ‘first-star’ supernova. This star lacks appreciable carbon enhancement, as does our overall sample, unlike the lowest-metallicity stars in the Milky Way. This and other abundance differences affirm that the extragalactic early LMC experienced diverging enrichment processes compared to the early Milky Way. Early element production, driven by the earliest stars, thus, appears to proceed in an environment-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of low-metallicity member stars in the LMC.
Fig. 2: Elemental abundance trends of stars in the LMC versus the Milky Way and the Sculptor dwarf galaxy.

Similar content being viewed by others

Data availability

The velocities and chemical abundances derived from the long-exposure MIKE spectra in this study are presented in Table 2 and Supplementary Data 1. Abundance measurements for individual absorption features in these stars are provided in Supplementary Data 2. We report short-exposure MIKE and MagE metallicities and carbon abundances in Extended Data Table 2. The stellar spectra of these stars are available from the corresponding author upon request. The proper motions of these stars are available from the Gaia data archive (https://gea.esac.esa.int/archive/). The data tables will be posted in machine-readable format at Zenodo https://doi.org/10.5281/zenodo.10032360 upon publication91. Source data are provided with this paper.

Code availability

The stellar synthesis code MOOG that was used to analyse these data can be retrieved from https://github.com/alexji/moog17scat. The analysis package SMHR that wraps around MOOG can be retrieved from https://github.com/andycasey/smhr. The orbit integration code that includes the Milky Way, LMC and Sagittarius can be retrieved from ref. 20. The Payne4MIKE code used to analyse the short-exposure MIKE spectra can be retrieved from https://github.com/tingyuansen/Payne4MIKE. The chemical abundance analysis of the two MagE spectra was performed using the authors’ implementations of published techniques, which are straightforward to reproduce from the publications, but are available from the corresponding author upon request.

References

  1. Shipp, N. et al. Measuring the mass of the Large Magellanic Cloud with stellar streams observed by S5. Astrophys. J. 923, 149 (2021).

    ADS  Google Scholar 

  2. Koposov, S. E. et al. S5: probing the Milky Way and Magellanic Clouds potentials with the 6-D map of the Orphan-Chenab stream. Mon. Not. R. Astron. Soc. 521, 4936–4962 (2023).

    ADS  Google Scholar 

  3. Besla, G. et al. Are the Magellanic Clouds on their first passage about the Milky Way? Astrophys. J. 668, 949–967 (2007).

    ADS  Google Scholar 

  4. Conroy, C. et al. All-sky dynamical response of the Galactic halo to the Large Magellanic Cloud. Nature 592, 534–536 (2021).

    ADS  Google Scholar 

  5. Frebel, A. & Norris, J. E. Near-field cosmology with extremely metal-poor stars. Annu. Rev. Astron. Astrophys. 53, 631–688 (2015).

    ADS  Google Scholar 

  6. Cayrel, R. et al. First stars. V. Abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 416, 1117–1138 (2004).

    ADS  Google Scholar 

  7. Ji, A. P., Frebel, A. & Bromm, V. Preserving chemical signatures of primordial star formation in the first low-mass stars. Mon. Not. R. Astron. Soc. 454, 659–674 (2015).

    ADS  Google Scholar 

  8. The Gaia Collaboration. Gaia Data Release 3: summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Google Scholar 

  9. Nidever, D. L. et al. The lazy giants: APOGEE abundances reveal low star formation efficiencies in the Magellanic Clouds. Astrophys. J. 895, 88 (2020).

    ADS  Google Scholar 

  10. The Gaia Collaboration. Gaia Early Data Release 3: structure and properties of the Magellanic Clouds. Astron. Astrophys. 649, A7 (2021).

    Google Scholar 

  11. Starkenburg, E. et al. The Pristine survey. I. Mining the Galaxy for the most metal-poor stars. Mon. Not. R. Astron. Soc. 471, 2587–2604 (2017).

    ADS  Google Scholar 

  12. Keller, S. C. et al. The SkyMapper Telescope and the Southern Sky Survey. Publ. Astron. Soc. Aust. 24, 1–12 (2007).

    ADS  Google Scholar 

  13. The Gaia Collaboration. Gaia Data Release 3: the Galaxy in your preferred colours. Synthetic photometry from Gaia low-resolution spectra. Astron. Astrophys. 674, A33 (2023).

    Google Scholar 

  14. Chiti, A., Frebel, A., Jerjen, H., Kim, D. & Norris, J. E. Stellar metallicities from SkyMapper photometry. I. A study of the Tucana II ultra-faint dwarf galaxy. Astrophys. J. 891, 8–31 (2020).

    ADS  Google Scholar 

  15. Reggiani, H., Schlaufman, K. C., Casey, A. R., Simon, J. D. & Ji, A. P. The most metal-poor stars in the Magellanic Clouds are r-process enhanced. Astron. J. 162, 229 (2021).

    ADS  Google Scholar 

  16. Oh, W. S., Nordlander, T., Da Costa, G. S., Bessell, M. S. & Mackey, A. D. The SkyMapper search for extremely metal-poor stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 524, 577–582 (2023).

    ADS  Google Scholar 

  17. Oh, W. S., Nordlander, T., Da Costa, G. S., Bessell, M. S. & Mackey, A. D. High-resolution spectroscopic study of extremely metal-poor stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 528, 1065–1080 (2024).

    ADS  Google Scholar 

  18. Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S. & Athey, A. E. MIKE: a double echelle spectrograph for the Magellan telescopes at Las Campanas Observatory. Proc. SPIE 4841, 1694–1704 (2003).

    ADS  Google Scholar 

  19. Frebel, A., Casey, A. R., Jacobson, H. R. & Yu, Q. Deriving stellar effective temperatures of metal-poor stars with the excitation potential method. Astrophys. J. 769, 57 (2013).

    ADS  Google Scholar 

  20. Vasiliev, E., Belokurov, V. & Erkal, D. Tango for three: Sagittarius, LMC, and the Milky Way. Mon. Not. R. Astron. Soc. 501, 2279–2304 (2021).

    ADS  Google Scholar 

  21. Skuladottir, A., Vanni, I., Salvadori, S. & Lucchesi, R. Tracing pop III supernovae with extreme energies through the Sculptor dwarf spheroidal galaxy. Astron. Astrophys. 681, A44 (2024).

    ADS  Google Scholar 

  22. Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  23. Heger, A. & Woosley, S. E. Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010).

    ADS  Google Scholar 

  24. Placco, V. M. et al. SPLUS J210428.01-004934.2: an ultra metal-poor star identified from narrowband photometry. Astrophys. J. 912, L32 (2021).

    ADS  Google Scholar 

  25. Jeon, M., Besla, G. & Bromm, V. Connecting the first galaxies with ultrafaint dwarfs in the Local Group: chemical signatures of population III stars. Astrophys. J. 848, 85 (2017).

    ADS  Google Scholar 

  26. Howes, L. M. et al. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way. Nature 527, 484–487 (2015).

    ADS  Google Scholar 

  27. Arentsen, A. et al. The Pristine Inner Galaxy Survey (PIGS) III: carbon-enhanced metal-poor stars in the bulge. Mon. Not. R. Astron. Soc. 505, 1239–1253 (2021).

    ADS  Google Scholar 

  28. Mardini, M. K. et al. The Atari disk, a metal-poor stellar population in the disk system of the Milky Way. Astrophys. J. 936, 78 (2022).

    ADS  Google Scholar 

  29. Caffau, E. et al. An extremely primitive star in the Galactic halo. Nature 477, 67–69 (2011).

    ADS  Google Scholar 

  30. Mardini, M. K. et al. The chemical abundance pattern of the extremely metal-poor thin disc star 2MASS J1808-5104 and its origins. Mon. Not. R. Astron. Soc. 517, 3993–4004 (2022).

    ADS  Google Scholar 

  31. Placco, V. M., Frebel, A., Beers, T. C. & Stancliffe, R. J. Carbon-enhanced metal-poor star frequencies in the Galaxy: corrections for the effect of evolutionary status on carbon abundances. Astrophys. J. 797, 21 (2014).

    ADS  Google Scholar 

  32. Tominaga, N., Umeda, H. & Nomoto, K. Supernova nucleosynthesis in population III 13–50 M stars and abundance patterns of extremely metal-poor stars. Astrophys. J. 660, 516–540 (2007).

    ADS  Google Scholar 

  33. Maeder, A., Meynet, G. & Chiappini, C. The first stars: CEMP-no stars and signatures of spinstars. Astron. Astrophys. 576, A56 (2015).

    ADS  Google Scholar 

  34. Matteucci, F. & Greggio, L. Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. Astron. Astrophys. 154, 279–287 (1986).

    ADS  Google Scholar 

  35. Reichert, M. et al. Neutron-capture elements in dwarf galaxies. III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies. Astron. Astrophys. 641, A127 (2020).

    Google Scholar 

  36. Hill, V. et al. VLT/FLAMES high-resolution chemical abundances in Sculptor: a textbook dwarf spheroidal galaxy. Astron. Astrophys. 626, A15 (2019).

    Google Scholar 

  37. Mucciarelli, A. et al. A relic from a past merger event in the Large Magellanic Cloud. Nat. Astron. 5, 1247–1254 (2021).

    ADS  Google Scholar 

  38. Olsen, K. A. G., Zaritsky, D., Blum, R. D., Boyer, M. L. & Gordon, K. D. A population of accreted Small Magellanic Cloud stars in the Large Magellanic Cloud. Astrophys. J. 737, 29 (2011).

    ADS  Google Scholar 

  39. Armstrong, B. & Bekki, K. Formation of a counter-rotating stellar population in the Large Magellanic Cloud: a Magellanic triplet system? Mon. Not. R. Astron. Soc. 480, L141–L145 (2018).

    ADS  Google Scholar 

  40. Ji, A. P., Simon, J. D., Frebel, A., Venn, K. A. & Hansen, T. T. Chemical abundances in the ultra-faint dwarf galaxies Grus I and Triangulum II: neutron-capture elements as a defining feature of the faintest dwarfs. Astrophys. J. 870, 83 (2019).

    ADS  Google Scholar 

  41. Da Costa, G. S. et al. The SkyMapper DR1.1 search for extremely metal-poor stars. Mon. Not. R. Astron. Soc. 489, 5900–5918 (2019).

    ADS  Google Scholar 

  42. Chiti, A. et al. Stellar metallicities from SkyMapper Photometry. II. Precise photometric metallicities of ~280,000 giant stars with [Fe/H] < −0.75 in the Milky Way. Astrophys. J. Suppl. Ser. 254, 31 (2021).

    ADS  Google Scholar 

  43. Alvarez, R. & Plez, B. Near-infrared narrow-band photometry of M-giant and Mira stars: models meet observations. Astron. Astrophys. 330, 1109–1119 (1998).

    ADS  Google Scholar 

  44. Plez, B. Turbospectrum: Code for spectral synthesis. Astrophysics Source Code Library ascl:1205.004 (2012).

  45. Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W. & Jeffery, C. S. VALD: The Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 112, 525 (1995).

    ADS  Google Scholar 

  46. Brooke, J. S. A., Bernath, P. F., Schmidt, T. W. & Bacskay, G. B. Line strengths and updated molecular constants for the C2 Swan system. J. Quant. Spectrosc. Radiat. Transf. 124, 11–20 (2013).

    ADS  Google Scholar 

  47. Brooke, J. S. A. et al. Einstein A coefficients and oscillator strengths for the A2ΠX2Σ+ (red) and B2Σ+X2Σ+ (violet) systems and rovibrational transitions in the X2Σ+ state of CN. Astrophys. J. Suppl. Ser. 210, 23 (2014).

    ADS  Google Scholar 

  48. Masseron, T. et al. CH in stellar atmospheres: an extensive linelist. Astron. Astrophys. 571, A47 (2014).

    Google Scholar 

  49. Sneden, C., Lucatello, S., Ram, R. S., Brooke, J. S. A. & Bernath, P. Line lists for the A2ΠX2Σ+ (red) and B2Σ+X2Σ+ (violet) systems of CN, 13C14N, and 12C15N, and application to astronomical spectra. Astrophys. J. Suppl. Ser. 214, 26 (2014).

    ADS  Google Scholar 

  50. Ram, R. S., Brooke, J. S. A., Bernath, P. F., Sneden, C. & Lucatello, S. Improved line data for the Swan system 12C13C isotopologue. Astrophys. J. Suppl. Ser. 211, 5 (2014).

    ADS  Google Scholar 

  51. Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    ADS  Google Scholar 

  52. Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    ADS  Google Scholar 

  53. Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    ADS  Google Scholar 

  54. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).

    ADS  Google Scholar 

  55. Alves, D. R. A review of the distance and structure of the Large Magellanic Cloud. New Astron. Rev. 48, 659–665 (2004).

    ADS  Google Scholar 

  56. Marshall, J. L. et al. The MagE spectrograph. Proc. SPIE Int. Soc. Opt. Eng. 7014, 54–63 (2008).

    Google Scholar 

  57. Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. Model. Stellar Atmos. 210, A20 (2003).

    Google Scholar 

  58. Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Harvard Univ. (1973).

  59. Sobeck, J. S. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175 (2011).

    ADS  Google Scholar 

  60. Ji, A. P. et al. The Southern Stellar Stream Spectroscopic Survey (S5): chemical abundances of seven stellar streams. Astron. J. 160, 181 (2020).

    ADS  Google Scholar 

  61. Casey, A. R. A Tale of Tidal Tails in the Milky Way. Preprint at arxiv.org/abs/1405.5968 (2014).

  62. Chiti, A. et al. Detailed chemical abundances of stars in the outskirts of the Tucana II ultrafaint dwarf galaxy. Astron. J. 165, 55 (2023).

    ADS  Google Scholar 

  63. Kenney, J. F. Mathematics of Statistics, 3rd edn (Van Nostrand, 1962).

  64. Hansen, T. T. et al. The R-process Alliance: first release from the southern search for r-process-enhanced stars in the Galactic halo. Astrophys. J. 858, 92 (2018).

    ADS  Google Scholar 

  65. Sakari, C. M. et al. The R-Process Alliance: first release from the northern search for r-process-enhanced metal-poor stars in the Galactic halo. Astrophys. J. 868, 110 (2018).

    ADS  Google Scholar 

  66. Ezzeddine, R. et al. The R-Process Alliance: first Magellan/MIKE release from the Southern search for r-process-enhanced stars. Astrophys. J. 898, 150 (2020).

    ADS  Google Scholar 

  67. Holmbeck, E. M. et al. The R-Process Alliance: fourth data release from the search for R-process-enhanced stars in the Galactic halo. Astrophys. J. Suppl. Ser. 249, 30 (2020).

    ADS  Google Scholar 

  68. Beers, T. C., Rossi, S., Norris, J. E., Ryan, S. G. & Shefler, T. Estimation of stellar metal abundance. II. A recalibration of the Ca ii K technique, and the autocorrelation function method. Astron. J. 117, 981–1009 (1999).

    ADS  Google Scholar 

  69. Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the Galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005).

    ADS  Google Scholar 

  70. Chiti, A. et al. Detection of a population of carbon-enhanced metal-poor stars in the Sculptor dwarf spheroidal galaxy. Astrophys. J. 856, 142 (2018).

    ADS  Google Scholar 

  71. Chiti, A., Hansen, K. Y. & Frebel, A. Discovery of 18 stars with −3.10 < [Fe/H] < −1.45 in the Sagittarius dwarf galaxy. Astrophys. J. 901, 164 (2020).

    ADS  Google Scholar 

  72. Griffen, B. F. et al. The Caterpillar Project: a large suite of Milky Way sized halos. Astrophys. J. 818, 10 (2016).

    ADS  Google Scholar 

  73. Brauer, K. et al. The origin of r-process enhanced metal-poor halo stars In now-destroyed ultra-faint dwarf galaxies. Astrophys. J. 871, 247 (2019).

    ADS  Google Scholar 

  74. Pakmor, R. et al. Formation and fate of low-metallicity stars in TNG50. Mon. Not. R. Astron. Soc. 512, 3602–3615 (2022).

    ADS  Google Scholar 

  75. Smith, B. D., Wise, J. H., O’Shea, B. W., Norman, M. L. & Khochfar, S. The first population II stars formed in externally enriched mini-haloes. Mon. Not. R. Astron. Soc. 452, 2822–2836 (2015).

    ADS  Google Scholar 

  76. Vasiliev, E. Dear Magellanic Clouds, welcome back! Mon. Not. R. Astron. Soc. 527, 437–456 (2024).

    ADS  Google Scholar 

  77. Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J. & Alcock, C. Third-epoch Magellanic Cloud proper motions. I. Hubble Space Telescope/WFC3 data and orbit implications. Astrophys. J. 764, 161 (2013).

    ADS  Google Scholar 

  78. Griffen, B. F. et al. Tracing the first stars and galaxies of the Milky Way. Mon. Not. R. Astron. Soc. 474, 443–459 (2018).

    ADS  Google Scholar 

  79. Magg, M. et al. Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies. Mon. Not. R. Astron. Soc. 473, 5308–5323 (2018).

    ADS  Google Scholar 

  80. Ji, A. P. et al. Detailed abundances in the ultra-faint Magellanic satellites Carina II and III. Astrophys. J. 889, 27 (2020).

    ADS  Google Scholar 

  81. Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C. & Maeda, K. Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424–458 (2007).

    ADS  Google Scholar 

  82. Maoz, D. & Graur, O. Star formation, supernovae, iron, and α: consistent cosmic and Galactic histories. Astrophys. J. 848, 25 (2017).

    ADS  Google Scholar 

  83. Tinsley, B. M. Stellar lifetimes and abundance ratios in chemical evolution. Astrophys. J. 229, 1046–1056 (1979).

    ADS  Google Scholar 

  84. Cohen, J. G. & Huang, W. The chemical evolution of the Ursa Minor dwarf spheroidal galaxy. Astrophys. J. 719, 931 (2010).

    ADS  Google Scholar 

  85. Abdurro’uf et al. The Seventeenth Data Release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 Data. Astrophys. J. Suppl. Ser. 259, 35 (2022).

    ADS  Google Scholar 

  86. Suda, T. et al. Stellar Abundances for the Galactic Archeology (SAGA) Database—compilation of the characteristics of known extremely metal-poor stars. Publ. Astron. Soc. Jpn 60, 1159–1171 (2008).

    ADS  Google Scholar 

  87. Arentsen, A. et al. On the inconsistency of [C/Fe] abundances and the fractions of carbon-enhanced metal-poor stars among various stellar surveys. Mon. Not. R. Astron. Soc. 515, 4082–4098 (2022).

    ADS  Google Scholar 

  88. Hayes, C. R. et al. GHOST commissioning science results: identifying a new chemically peculiar star in Reticulum II. Astrophys. J. 955, 17 (2023).

    ADS  Google Scholar 

  89. Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).

    ADS  Google Scholar 

  90. Yoon, J. et al. Observational constraints on first-stars nucleosynthesis. I. Evidence for multiple progenitors of CEMP-no stars. Astrophys. J. 833, 20 (2016).

    ADS  Google Scholar 

  91. Chiti, A. et al. Data tables for enrichment by extragalactic first stars in the Large Magellanic Cloud. Zenodo https://doi.org/10.5281/zenodo.10032360 (2024).

  92. Van der Swaelmen, M., Hill, V., Primas, F. & Cole, A. A. Chemical abundances in LMC stellar populations. II. The bar sample. Astron. Astrophys. 560, A44 (2013).

    Google Scholar 

Download references

Acknowledgements

Our data were gathered using the 6.5 m Magellan Baade telescope at Las Campanas Observatory, Chile. A.C. thanks A. Drlica-Wagner, K. Olsen, D. Nidever, G. Stringfellow, W. Cerny, K. Venn, A. Arentsen, V. Placco, I. Roederer, P. Sharda and A. Kravtsov for helpful discussions, and R. Prasad for their support. A.C. also thanks V. Placco for providing a compilation of corrected carbon abundances of metal-poor Milky Way stars. This work benefited from the KICP/UChicago Gaia DR3 sprint and made use of NASAʼs Astrophysics Data System Bibliographic Services, the SIMBAD database (operated at the Strasbourg Astronomical Data Centre, Strasbourg, France) and the open-source Python libraries numpy, scipy, matplotlib and astropy. A.C. is supported by a Brinson Prize Fellowship at the Kavli Institute for Cosmological Physics, University of Chicago. G.L. acknowledges support from the São Paulo Research Foundation (Grant Nos. 2021/10429-0 and 2022/07301-5). A.P.J. acknowledges support from the US National Science Foundation (NSF; Grant Nos. AST-2206264 and AST-2307599). T.S.L. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2022-04794). K.B. is supported by an NSF astronomy and astrophysics postdoctoral fellowship (Award No. AST-2303858). H.D.A. acknowledges support from the Undergraduate Research Opportunities Program at the Massachusetts Institute of Technology. This work has made use of data from the European Space Agency’s mission Gaia (https://www.cosmos.esa.int/gaia) that has been processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. The national facility capability for SkyMapper has been funded through the Linkage Infrastructure, Equipment and Facilities scheme of the Australian Research Council (Grant No. LE130100104), which was awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University and the Australian Astronomical Observatory. SkyMapper is owned and operated by the Australian National University’s Research School of Astronomy and Astrophysics.

Author information

Authors and Affiliations

Authors

Contributions

A.C. designed the technique for generating the Gaia XP metallicity catalogue used in this work, selected candidates for the observations and led the MIKE observations, analysis, interpretation, and paper writing. M.M. generated the Gaia XP metallicity catalogue and assisted with making the MIKE observations and their analysis and interpretation. A.P.J. and G.L. assisted with the analysis, interpretation and paper writing. A.F. assisted with the MIKE observations, interpretation and paper writing. H.R. provided existing MIKE observations of LMC stars and assisted with the interpretation. P.F. generated the catalogue of synthetic Gaia XP photometry. K.B. and H.D.A. led the analysis of the distance of the LMC from the Milky Way when it was producing low-metallicity stars. T.S.L. and J.D.S. led and assisted with the MagE observations. All authors provided feedback on the paper before submission.

Corresponding author

Correspondence to Anirudh Chiti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Orbit and proper motion analyses of metal-poor LMC stars in this study.

a. The orbit of the LMC and stars observed in this study in Galactocentric X and Z coordinates, when integrated backwards in a potential that includes the Milky Way and the LMC20. The LMC is shown as a thick dashed line, and stars in Table 1 are overplotted. Note that the stars remain bound to the LMC, indicating that they are gravitationally bound members. b. Proper motion vectors with respect to the center of mass motion of the LMC. The proper motions of the stars observed in our study are shown as colored arrows, with the color scheme corresponding to panel (a). The black arrows indicate the average proper motion vector of LMC stars within 0.5° of their spatial location. Note that two of the LMC low metallicity stars are counter-rotating on the plane of the sky with respect to the bulk motion of LMC members, in the center-of-mass frame of the LMC. The center of the LMC is marked by a black cross.

Extended Data Table 1 Summary of our observations of stars in the Large Magellanic Cloud
Extended Data Table 2 Properties of low metallicity LMC stars observed for short-durations on MIKE and MagE to solely derive metallicities and carbon abundances

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Supplementary Data 1

Complete elemental abundances and associated uncertainties from long-exposure, high-resolution Magellan/MIKE spectra. Columns are as follows: the star name; the atomic number and ionization state of the element; the number of features used (N); the solar abundance (Solar); the absolute abundance (Logeps); the chemical abundance scaled by the solar abundance relative to hydrogen ([X/H]); the ratio with respect to the iron abundance ([X/Fe]); the random uncertainty ([X/H]_err) and an upper-limit flag (ul); errors from propagating the uncertainties in each stellar parameter ([X/H]_errteff, [X/H]_errlogg, [X/H]_errvt); the cumulative uncertainty from stellar parameters ([X/H]_errsys); and the total uncertainty ([X/H]_errtot). Following this are the same columns but with respect to iron ([X/Fe]_errteff, [X/Fe]_errlogg, [X/Fe]_errvt, [X/Fe]_errsys, [X/Fe]_errtot).

Supplementary Data 2

Chemical abundances from individual absorption lines and molecular bands for LMC stars from long-exposure, high-resolution Magellan/MIKE spectra. The name of the star is followed by the atomic number and ionization of the element measured from the feature. This is followed by the wavelength (in angstroms), the excitation potential, oscillator strength (log gf), equivalent width, derived abundance and a flag to indicate whether the measurement is an upper limit. Abundances derived from syntheses of features are denoted by nan entries for the equivalent width in the table, and abundances of the CH molecular band are indicated by the number 106.0 in the second column.

Source data

Source Data for Fig. 1

Source data for selected stars in Fig. 1.

Source Data for Fig. 2

Source data for Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiti, A., Mardini, M., Limberg, G. et al. Enrichment by extragalactic first stars in the Large Magellanic Cloud. Nat Astron 8, 637–647 (2024). https://doi.org/10.1038/s41550-024-02223-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02223-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing