[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NF-κB role on tumor proliferation, migration, invasion and immune escape

Abstract

Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial–mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental members of the NF-κB signaling pathway are: fundamental.
Fig. 2: NF-kB signaling Pathways.
Fig. 3: NF-κB has a role in the interaction between immune cells and tumor cells.
Fig. 4: Anti-tumorigenic role of NF-κB.
Fig. 5: NF-κB plays a role in regulating the expression of PD-L1.
Fig. 6: NF-κB pathway regulates tumor microenvironment.

Similar content being viewed by others

References

  1. Sen R, Baltimore D. Inducibility of K immunoglobulin enhancer-binding protein NF-KB by a posttranslational mechanism. Cell. 1986;47:921–8.

    Article  CAS  PubMed  Google Scholar 

  2. Savinova OV, Hoffmann A, Ghosh G. The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol Cell. 2009;34:591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–19.

    Article  CAS  PubMed  Google Scholar 

  4. Gálvez-Rodríguez A, Ferino-Pérez A, Rodríguez-Riera Z, Rodeiro Guerra I, Řeha D, Minofar B, et al. Explaining the interaction of mangiferin with MMP-9 and NF-ƙβ: a computational study. J Mol Model. 2022;28:266.

    Article  PubMed  Google Scholar 

  5. Verma I. Nuclear factor (NF)-κB proteins: therapeutic targets. Ann Rheum Dis. 2004;63:ii57–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramsey KM, Chen W, Marion JD, Bergqvist S, Komives EA. Exclusivity and compensation in NFκB dimer distributions and IκB inhibition. Biochemistry. 2019;58:2555–63.

    Article  CAS  PubMed  Google Scholar 

  7. Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S, Neumann M. RelB forms transcriptionally inactive complexes with RelA/p65. J Biol Chem. 2003;278:19852–60.

    Article  CAS  PubMed  Google Scholar 

  8. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao G, Rabson AB, Young W, Qing G, Qu Z. Alternative pathways of NF-κB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev. 2006;17:281–93.

    Article  CAS  PubMed  Google Scholar 

  10. Marienfeld RB, Palkowitsch L, Ghosh S. Dimerization of the IκB kinase-binding domain of NEMO is required for tumor necrosis factor alpha-induced NF-κB activity. Mol Cell Biol. 2006;26:9209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 1997;388:548–54.

    Article  CAS  PubMed  Google Scholar 

  12. Annemann M, Plaza-Sirvent C, Schuster M, Katsoulis-Dimitriou K, Kliche S, Schraven B, et al. Atypical IκB proteins in immune cell differentiation and function. Immunol Lett. 2016;171:26–35.

    Article  CAS  PubMed  Google Scholar 

  13. Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17:545–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9.

    CAS  Google Scholar 

  15. Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bottex-Gauthier C, Pollet S, Favier A, Vidal D. The Rel/NF-kappa-B transcription factors: complex role in cell regulation. Pathol Biol. 2002;50:204–11.

    Article  CAS  PubMed  Google Scholar 

  17. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6.

    Article  CAS  PubMed  Google Scholar 

  18. Wang DJ, Ratnam NM, Byrd JC, Guttridge DC. NF-κB functions in tumor initiation by suppressing the surveillance of both innate and adaptive immune cells. Cell Rep. 2014;9:90–103.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martins GR, Gelaleti GB, Moschetta MG, Maschio-Signorini LB, Zuccari DAPDC. Proinflammatory and anti-inflammatory cytokines mediated by NF-κB factor as prognostic markers in mammary tumors. Mediators Inflamm. 2016;2016:9512743.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rastogi S, Aldosary S, Saeedan AS, Ansari M, Singh M. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol. 2023;14:1108915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther. 2018;11:2063–73.

    Article  Google Scholar 

  22. Betzler AC, Theodoraki M-N, Schuler PJ, Döscher J, Laban S, Hoffmann TK, et al. NF-κB and its role in checkpoint control. Int J Mol Sci. 2020;21:3949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu C, Klement JD, Smith AD, Yang D, Waller JL, Browning DD, et al. p50 suppresses cytotoxic T lymphocyte effector function to regulate tumor immune escape and response to immunotherapy. J Immunother Cancer. 2020;8:e001365.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bonavia R, Inda M, Vandenberg S, Cheng S, Nagane M, Hadwiger P, et al. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene. 2012;31:4054–66.

    Article  CAS  PubMed  Google Scholar 

  25. Xie T-X, Xia Z, Zhang N, Gong W, Huang S. Constitutive NF-κB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep. 2010;23:725–32.

    CAS  PubMed  Google Scholar 

  26. Manna SK, Ramesh GT. Interleukin-8 induces nuclear transcription factor-κB through a TRAF6-dependent pathway. J Biol Chem. 2005;280:7010–21.

    Article  CAS  PubMed  Google Scholar 

  27. Elliott C, Allport V, Loudon J, Wu G, Bennett P. Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. MHR Basic Sci Reprod Med. 2001;7:787–90.

    Article  CAS  Google Scholar 

  28. Chan L-P, Liu C, Chiang F-Y, Wang L-F, Lee K-W, Chen W-T, et al. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway and reduction of JNK in HNSCC. Oncotarget. 2017;8:56375.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mizuno M, Nakano R, Nose S, Matsumura M, Nii Y, Kurogochi K, et al. Canonical NF-κB p65, but Not p105, contributes to IL-1β-induced IL-8 expression in cardiac fibroblasts. Front Immunol. 2022;13:863309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF‐κB signaling in inflammation and cancer. MedComm. 2021;2:618–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis. 2007;10:149–66.

    Article  PubMed  Google Scholar 

  32. Zhang J, Peng B, Chen X. Expressions of nuclear factor κB, inducible nitric oxide synthase, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res. 2005;11:7334–43.

    Article  CAS  PubMed  Google Scholar 

  33. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig. 2004;114:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    Article  CAS  PubMed  Google Scholar 

  35. Pires BR, Mencalha AL, Ferreira GM, De Souza WF, Morgado-Díaz JA, Maia AM, et al. NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS ONE. 2017;12:e0169622.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 2012;12:121–32.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.

    Article  CAS  PubMed  Google Scholar 

  39. Mukherjee D, Zhao J. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res. 2013;3:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1α (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway–dependent NF-κB activation. Cancer Res. 2005;65:9891–8.

    Article  CAS  PubMed  Google Scholar 

  41. Zhi Y, Lu H, Duan Y, Sun W, Guan G, Dong Q, et al. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α. Int J Mol Med. 2015;35:349–57.

    Article  CAS  PubMed  Google Scholar 

  42. Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gönner U, Wilsberg V, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005;11:1743–50.

    Article  CAS  PubMed  Google Scholar 

  43. Chatterjee S, Azad BB, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilmore, TD. The Rel/NF-κB/IκB signal transduction pathway and cancer. Signal Transduct Cancer. 2004;115:241–65.

  45. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sau A, Lau R, Cabrita MA, Nolan E, Crooks PA, Visvader JE, et al. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell. 2016;19:52–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forlani G, Abdallah R, Accolla RS, Tosi G. The major histocompatibility complex class II transactivator CIITA inhibits the persistent activation of NF-κB by the human T cell lymphotropic virus type 1 Tax-1 oncoprotein. J Virol. 2016;90:3708–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greten FR, Eckmann L, Greten TF, Park JM, Li Z-W, Egan LJ, et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.

    Article  CAS  PubMed  Google Scholar 

  49. Berkovich L, Gerber M, Katzav A, Kidron D, Avital S. NF-kappa B expression in resected specimen of colonic cancer is higher compared to its expression in inflammatory bowel diseases and polyps. Sci Rep. 2022;12:16645.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patel M, Horgan PG, McMillan DC, Edwards J. NF-κB pathways in the development and progression of colorectal cancer. Transl Res. 2018;197:43–56.

    Article  CAS  PubMed  Google Scholar 

  51. Viennois E, Chen F, Merlin D. NF-κB pathway in colitis-associated cancers. Transl Gastrointest Cancer. 2013;2:21.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim S-H, Ezhilarasan R, Phillips E, Gallego-Perez D, Sparks A, Taylor D, et al. Serine/threonine kinase MLK4 determines mesenchymal identity in glioma stem cells in an NF-κB-dependent manner. Cancer Cell. 2016;29:201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kieser A. Pursuing different ‘TRADDes’: TRADD signaling induced by TNF-receptor 1 and the Epstein-Barr virus oncoprotein LMP1. Biol Chem. 2008;389:1261–71.

    Article  CAS  PubMed  Google Scholar 

  54. Takada H, Imadome K-I, Shibayama H, Yoshimori M, Wang L, Saitoh Y, et al. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T-or NK-cells. PLoS ONE. 2017;12:e0174136.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang J, Jia L, Lin W, Yip YL, Lo KW, Lau VMY, et al. Epstein-Barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-κB signaling pathways. J Virol. 2017;91:e02168–16. https://doi.org/10.1128/jvi.02168-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:1–15.

    Article  Google Scholar 

  57. Aggarwal BB, Sung B. NF-κB in cancer: a matter of life and death. Cancer Discov. 2011;1:469–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature. 2003;421:639–43.

    Article  CAS  PubMed  Google Scholar 

  59. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11:119–32.

    Article  CAS  PubMed  Google Scholar 

  60. Sakurai T, He G, Matsuzawa A, Yu G-Y, Maeda S, Hardiman G, et al. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14:156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Köhler UA, Böhm F, Rolfs F, Egger M, Hornemann T, Pasparakis M, et al. NF-κB/RelA and Nrf2 cooperate to maintain hepatocyte integrity and to prevent development of hepatocellular adenoma. J Hepatol. 2016;64:94–102.

    Article  PubMed  Google Scholar 

  62. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF‐kappa B transcription factor and HIV‐1. EMBO J. 1991;10:2247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feng M, Feng J, Chen W, Wang W, Wu X, Zhang J, et al. Lipocalin2 suppresses metastasis of colorectal cancer by attenuating NF-κB-dependent activation of snail and epithelial mesenchymal transition. Mol Cancer. 2016;15:1–18.

    Article  CAS  Google Scholar 

  64. Kaur S, Sharma N, Krishn SR, Lakshmanan I, Rachagani S, Baine MJ, et al. MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-κB signaling in pancreatic cancer. Clin Cancer Res. 2014;20:688–700.

    Article  CAS  PubMed  Google Scholar 

  65. Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q, et al. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020;11:955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duan Y, Tian X, Liu Q, Jin J, Shi J, Hou Y. Role of autophagy on cancer immune escape. Cell Commun Signal. 2021;19:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P, Pardoll DM, et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer. 2019;7:1–12.

    Article  Google Scholar 

  68. Gou Q, Chen H, Chen M, Shi J, Jin J, Liu Q, et al. Inhibition of CK2/ING4 pathway facilitates non-small cell lung cancer immunotherapy. Adv Sci. 2023;10:e2304068.

    Article  Google Scholar 

  69. Khan B, Chen M, Wang H, Khan A, Hussain S, Shi J, et al. GSK0660 enhances antitumor immunotherapy by reducing PD-L1 expression. Eur J Pharmacol. 2024;972:176565.

    Article  CAS  PubMed  Google Scholar 

  70. Gou Q, Che S, Chen M, Chen H, Shi J, Hou Y. PPARgamma inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci. 2023;114:2871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gou Q, Tian X, Dong C, Yan B, Chen M, Shi J, et al. PPARalpha phosphorylation regulates colorectal tumor immune escape. J Biol Chem. 2024;300:107447.

    Article  CAS  PubMed  Google Scholar 

  72. Xu L, Che S, Chen H, Liu Q, Shi J, Jin J, et al. PPARgamma agonist inhibits c-Myc-mediated colorectal cancer tumor immune escape. J Cell Biochem. 2023;124:1145–54.

    Article  CAS  PubMed  Google Scholar 

  73. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170:1096–108.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L, et al. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett. 2017;184:7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Imai D, Yoshizumi T, Okano S, Itoh S, Ikegami T, Harada N, et al. IFN-γ promotes epithelial-mesenchymal transition and the expression of PD-L1 in pancreatic cancer. J Surg Res. 2019;240:115–23.

    Article  CAS  PubMed  Google Scholar 

  77. Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, et al. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem. 2018;293:15483–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rothgiesser KM, Fey M, Hottiger MO. Acetylation of p65 at lysine 314 is important for late NF-κB-dependent gene expression. BMC Genom. 2010;11:1–11.

    Article  Google Scholar 

  79. Farahmand L, Merikhian P, Jalili N, Darvishi B, Majidzadeh-A K. Significant role of MUC1 in development of resistance to currently existing anti-cancer therapeutic agents. Curr Cancer Drug Targets. 2018;18:737–48.

    Article  CAS  PubMed  Google Scholar 

  80. Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R, et al. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene. 2015;34:5187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang Y, Fang W, Zhang Y, Hong S, Kang S, Yan Y, et al. The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget. 2015;6:14209.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang M, Li G, Wang Y, Wang Y, Zhao S, Haihong P, et al. PD-L1 expression in lung cancer and its correlation with driver mutations: a meta-analysis. Sci Rep. 2017;7:10255.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lin K, Cheng J, Yang T, Li Y, Zhu B. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun. 2015;463:95–101.

    Article  CAS  PubMed  Google Scholar 

  84. Lim S-O, Li C-W, Xia W, Cha J-H, Chan L-C, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54–74.

  87. Waters JP, Pober JS, Bradley JR. Tumour necrosis factor and cancer. J Pathol. 2013;230:241–8.

    Article  CAS  PubMed  Google Scholar 

  88. Chang Q, Daly L, Bromberg J. The IL-6 feed-forward loop: a driver of tumorigenesis. Semin Immunol. 2014;26:48–53.

  89. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Voronov E, Apte RN. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer. Cancer Microenviron. 2015;8:187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014;2014:623759.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Meulmeester E, Ten Dijke P. The dynamic roles of TGF‐β in cancer. J Pathol. 2011;223:206–19.

    Article  Google Scholar 

  93. Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X, et al. TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 2013;32:1549–59.

    Article  CAS  PubMed  Google Scholar 

  94. Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 2021;6:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Louault K, Blavier L, Lee M-H, Kennedy RJ, Fernandez GE, Pawel BR, et al. Nuclear factor-κB activation by transforming growth factor-β1 drives tumour microenvironment-mediated drug resistance in neuroblastoma. Br J Cancer. 2024;131:90–100. 1-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ammirante M, Shalapour S, Kang Y, Jamieson CA, Karin M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci USA. 2014;111:14776–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in colon cancer. Gastroenterology. 2017;152:964–79.

    Article  CAS  PubMed  Google Scholar 

  98. Verzella D, Pescatore A, Capece D, Vecchiotti D, Ursini MV, Franzoso G, et al. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis. 2020;11:210.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Atretkhany K-S, Drutskaya M, Nedospasov S, Grivennikov S, Kuprash D. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther. 2016;168:98–112.

    Article  CAS  PubMed  Google Scholar 

  100. Murooka TT, Rahbar R, Fish EN. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochem Biophys Res Commun. 2009;387:381–6.

    Article  CAS  PubMed  Google Scholar 

  101. Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers. 2020;12:1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, et al. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells. 2012;30:2309–19.

    Article  CAS  PubMed  Google Scholar 

  103. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, et al. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 2004;21:491–501.

    Article  CAS  PubMed  Google Scholar 

  104. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  105. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med. 2008;205:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Karyampudi L, Lamichhane P, Krempski J, Kalli KR, Behrens MD, Vargas DM, et al. PD-1 blunts the function of ovarian tumor–infiltrating dendritic cells by inactivating NF-κB. Cancer Res. 2016;76:239–50.

    Article  CAS  PubMed  Google Scholar 

  107. Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol. 2020;11:584626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. TuS B. Over expression of interleukin 1beta induces gastric inflammation and cancer and mobilizes myeloid derived suppressor cells in mice. Cancer Cell. 2008;14:408.

    Article  Google Scholar 

  109. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.

    Article  CAS  PubMed  Google Scholar 

  110. Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol. 2016;130:25–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Evaristo C, Spranger S, Barnes SE, Miller ML, Molinero LL, Locke FL, et al. Cutting edge: engineering active IKKβ in T cells drives tumor rejection. J Immunol. 2016;196:2933–8.

    Article  CAS  PubMed  Google Scholar 

  112. Ruan Q, Kameswaran V, Tone Y, Li L, Liou H-C, Greene MI, et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity. 2009;31:932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ammirante M, Luo J-L, Grivennikov S, Nedospasov S, Karin M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature. 2010;464:302–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Erez N, Truitt M, Olson P, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17:135–47.

    Article  CAS  PubMed  Google Scholar 

  115. Vrábel D, Pour L, Ševčíková S. The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 2019;34:56–66.

    Article  PubMed  Google Scholar 

  116. Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol. 2004;1:343–50.

    CAS  PubMed  Google Scholar 

  117. Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J, Miething C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell. 2007;130:918–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xue W. Response and resistance to NF-kappaB inhibitors in mouse models of lung adenocarcinoma. Cancer Discov. 2011;1:236–47. https://doi.org/10.1158/2159-8290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu Z-H, Shi Y, Tibbetts RS, Miyamoto S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science. 2006;311:1141–6.

    Article  CAS  PubMed  Google Scholar 

  121. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dash AB, Zhang J, Shen L, Li B, Berg D, Lin J, et al. Clinical benefit of ixazomib plus lenalidomide‐dexamethasone in myeloma patients with non‐canonical NF‐κB pathway activation. Eur J Haematol. 2020;105:274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Drilon A, Schoenfeld AJ, Arbour KC, Litvak A, Ni A, Montecalvo J, et al. Exceptional responders with invasive mucinous adenocarcinomas: a phase 2 trial of bortezomib in patients with KRAS G12D-mutant lung cancers. Mol Case Stud. 2019;5:a003665.

    Article  CAS  Google Scholar 

  124. Bahlis NJ, Sutherland H, White D, Sebag M, Lentzsch S, Kotb R, et al. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood J Am Soc Hematol. 2018;132:2546–54.

    CAS  Google Scholar 

  125. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J-I, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51.

    Article  CAS  PubMed  Google Scholar 

  126. Hong D, Henary H, Falchook G, Naing A, Fu S, Moulder S, et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-κΒ and p70s6k, in patients with advanced solid tumors. Investig New Drugs. 2014;32:1204–12.

    Article  CAS  Google Scholar 

  127. Herman SE, Mustafa RZ, Gyamfi JA, Pittaluga S, Chang S, Chang B, et al. Ibrutinib inhibits BCR and NF-κB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood J Am Soc Hematol. 2014;123:3286–95.

    CAS  Google Scholar 

  128. Fahrmann JF, Ballester OF, Ballester G, Witte TR, Salazar AJ, Kordusky B, et al. Inhibition of nuclear factor kappa B activation in early-stage chronic lymphocytic leukemia by omega-3 fatty acids. Cancer Investig. 2013;31:24–38.

    Article  Google Scholar 

  129. Hong DS, Kurzrock R, Supko JG, He X, Naing A, Wheler J, et al. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res. 2012;18:3396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peters S, Danson S, Hasan B, Dafni U, Reinmuth N, Majem M, et al. A randomized open-label phase III trial evaluating the addition of denosumab to standard first-line treatment in advanced NSCLC: the European Thoracic Oncology Platform (ETOP) and European Organisation for Research and Treatment of Cancer (EORTC) SPLENDOUR trial. J Thorac Oncol. 2020;15:1647–56.

    Article  CAS  PubMed  Google Scholar 

  131. Kaufman JL, Gasparetto C, Schjesvold FH, Moreau P, Touzeau C, Facon T, et al. Targeting BCL‐2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma. Am J Hematol. 2021;96:418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82172979).

Author information

Authors and Affiliations

Authors

Contributions

Afrasyab Khan, Yao Zhang, and Ningna Ma wrote the manuscript. Juanjuan Shi and Yongzhong Hou corrected the manuscript.

Corresponding author

Correspondence to Yongzhong Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Zhang, Y., Ma, N. et al. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00811-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00811-6

Search

Quick links