[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a stress-responsive subregion of the basolateral amygdala in male rats

Abstract

The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Novel psychological stressors induce a graded neuroendocrine response.
Fig. 2: Spatial gradients of activation in response to novel aversive and non-aversive stimuli.
Fig. 3: Distinct novel stimuli elicit distinct temporal patterns of activation in the BLA.
Fig. 4: Change in BLA activity is associated with transition in behavioural state.
Fig. 5: Propranolol reduces stress-induced activation of the basolateral amygdala.

Similar content being viewed by others

References

  1. McEwen BS. Stress, adaptation, and disease: allostasis and allostatic load. Ann N. Y Acad Sci. 1998;840:33–44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x

    Article  CAS  PubMed  Google Scholar 

  2. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18:1394–404. https://doi.org/10.1038/nn.4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov. 2013;12:667–87. https://doi.org/10.1038/nrd4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ipser JC, Singh L, Stein DJ. Meta-analysis of functional brain imaging in specific phobia: Imaging meta-analysis of specific phobia. Psychiatry Clin Neurosci. 2013;67:311–22. https://doi.org/10.1111/pcn.12055

    Article  PubMed  Google Scholar 

  5. Reznikov LR, Reagan LP, Fadel JR. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458–72. https://doi.org/10.1002/cne.21687

    Article  PubMed  Google Scholar 

  6. Úbeda-Contreras J, Marín-Blasco I, Nadal R, Armario A. Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity. Brain Struct Funct. 2018;223:2213–27. https://doi.org/10.1007/s00429-018-1624-2

    Article  CAS  PubMed  Google Scholar 

  7. van Marle HJF, Hermans EJ, Qin S, Fernández G. From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biol Psychiatry. 2009;66:649–55. https://doi.org/10.1016/j.biopsych.2009.05.014

    Article  PubMed  Google Scholar 

  8. Masneuf S, Lowery-Gionta E, Colacicco G, Pleil KE, Li C, Crowley N, et al. Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior. Neuropharmacology. 2014;85:190–7. https://doi.org/10.1016/j.neuropharm.2014.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yasmin F, Colangeli R, Morena M, Filipski S, Van Der Stelt M, Pittman QJ, et al. Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala. Proc Natl Acad Sci USA. 2020;117:650–5. https://doi.org/10.1073/pnas.1910322116

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J-Y, Liu T-H, He Y, Pan H-Q, Zhang W-H, Yin X-P, et al. Chronic stress remodels synapses in an amygdala circuit–specific manner. Biol Psychiatry. 2019;85:189–201. https://doi.org/10.1016/j.biopsych.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  11. Blair KS, Otero M, Teng C, Geraci M, Lewis E, Hollon N, et al. Learning from other people’s fear: amygdala-based social reference learning in social anxiety disorder. Psychol Med. 2016;46:2943–53. https://doi.org/10.1017/S0033291716001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engel K, Bandelow B, Gruber O, Wedekind D. Neuroimaging in anxiety disorders. J Neural Transm. 2009;116:703–16. https://doi.org/10.1007/s00702-008-0077-9

    Article  PubMed  Google Scholar 

  13. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. AJP. 2007;164:1476–88. https://doi.org/10.1176/appi.ajp.2007.07030504

    Article  Google Scholar 

  14. Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry. 2000;47:769–76. https://doi.org/10.1016/S0006-3223(00)00828-3

    Article  CAS  PubMed  Google Scholar 

  15. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry. 2002;51:693–707. https://doi.org/10.1016/S0006-3223(02)01314-8

    Article  PubMed  Google Scholar 

  16. Brunetti M, Sepede G, Mingoia G, Catani C, Ferretti A, Merla A, et al. Elevated response of human amygdala to neutral stimuli in mild post traumatic stress disorder: neural correlates of generalized emotional response. Neuroscience. 2010;168:670–9. https://doi.org/10.1016/j.neuroscience.2010.04.024

    Article  CAS  PubMed  Google Scholar 

  17. Hinojosa CA, VanElzakker MB, Hughes KC, Offringa R, Sangermano LM, Spaulding IG, et al. Exaggerated amygdala activation to ambiguous facial expressions is a familial vulnerability factor for posttraumatic stress disorder. J Psychiatr Res. 2022;156:451–9. https://doi.org/10.1016/j.jpsychires.2022.10.049

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhatnagar S, Vining C, Denski K. Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Ann N. Y Acad Sci. 2004;1032:315–9. https://doi.org/10.1196/annals.1314.050

    Article  CAS  PubMed  Google Scholar 

  19. Gray JM, Vecchiarelli HA, Morena M, Lee TTY, Hermanson DJ, Kim AB, et al. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J Neurosci. 2015;35:3879–92. https://doi.org/10.1523/JNEUROSCI.2737-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soltis RP, Cook JC, Gregg AE, Sanders BJ. Interaction of GABA and excitatory amino acids in the basolateral amygdala: role in cardiovascular regulation. J Neurosci. 1997;17:9367–74. https://doi.org/10.1523/JNEUROSCI.17-23-09367.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tye KM, Prakash R, Kim S-Y, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62. https://doi.org/10.1038/nature09820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron. 2013;79:658–64. https://doi.org/10.1016/j.neuron.2013.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paré D. Role of the basolateral amygdala in memory consolidation. Prog Neurobiol. 2003;70:409–20. https://doi.org/10.1016/S0301-0082(03)00104-7

    Article  CAS  PubMed  Google Scholar 

  24. Beyeler A, Chang C-J, Silvestre M, Lévêque C, Namburi P, Wildes CP, et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. 2018;22:905–18. https://doi.org/10.1016/j.celrep.2017.12.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hintiryan H, Bowman I, Johnson DL, Korobkova L, Zhu M, Khanjani N, et al. Connectivity characterization of the mouse basolateral amygdalar complex. Nat Commun. 2021;12:2859. https://doi.org/10.1038/s41467-021-22915-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang L, Chen Y, Jin S, Lin L, Duan S, Si K, et al. Organizational principles of amygdalar input-output neuronal circuits. Mol Psychiatry. 2021;26:7118–29. https://doi.org/10.1038/s41380-021-01262-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. McGarry LM, Carter AG. Prefrontal cortex drives distinct projection neurons in the basolateral amygdala. Cell Rep. 2017;21:1426–33. https://doi.org/10.1016/j.celrep.2017.10.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reppucci CJ, Petrovich GD. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct. 2016;221:2937–62. https://doi.org/10.1007/s00429-015-1081-0

    Article  PubMed  Google Scholar 

  29. Birnie MT, Short AK, De Carvalho GB, Taniguchi L, Gunn BG, Pham AL, et al. Stress-induced plasticity of a CRH/GABA projection disrupts reward behaviors in mice. Nat Commun. 2023;14:1088. https://doi.org/10.1038/s41467-023-36780-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci. 2016;19:1636–46. https://doi.org/10.1038/nn.4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCullough KM, Choi D, Guo J, Zimmerman K, Walton J, Rainnie DG, et al. Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat Commun. 2016;7:13149. https://doi.org/10.1038/ncomms13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Leary TP, Sullivan KE, Wang L, Clements J, Lemire AL, Cembrowski MS. Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. eLife. 2020;9:e59003. https://doi.org/10.7554/eLife.59003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92. https://doi.org/10.1038/nature14188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. In Handbook of Behavioral Neuroscience. Elsevier; 2020. pp. 63–100. https://doi.org/10.1016/B978-0-12-815134-1.00003-9

  35. Piantadosi SC, Zhou ZC, Pizzano C, Pedersen CE, Nguyen TK, Thai S, et al. Holographic stimulation of opposing amygdala ensembles bidirectionally modulates valence-specific behavior via mutual inhibition. Neuron. 2023;112:593–610e5. https://doi.org/10.1016/j.neuron.2023.11.007

  36. Wassum KM, Izquierdo A. The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev. 2015;57:271–83. https://doi.org/10.1016/j.neubiorev.2015.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron. 2016;90:348–61. https://doi.org/10.1016/j.neuron.2016.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jasnow AM, Ehrlich DE, Choi DC, Dabrowska J, Bowers ME, McCullough KM, et al. Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J Neurosci. 2013;33:10396–404. https://doi.org/10.1523/JNEUROSCI.5539-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Kim J, Tonegawa S. Amygdala reward neurons form and store fear extinction memory. Neuron. 2020;105:1077–1093.e7. https://doi.org/10.1016/j.neuron.2019.12.025

    Article  CAS  PubMed  Google Scholar 

  40. Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454:600–6. https://doi.org/10.1038/nature07166

    Article  CAS  PubMed  Google Scholar 

  41. Hochgerner H, Singh S, Tibi M, Lin Z, Skarbianskis N, Admati I, et al. Neuronal types in the mouse amygdala and their transcriptional response to fear conditioning. Nat Neurosci. 2023;26:2237–49. https://doi.org/10.1038/s41593-023-01469-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell. 2015;162:134–45. https://doi.org/10.1016/j.cell.2015.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439:865–70. https://doi.org/10.1038/nature04490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hale MW, Bouwknecht JA, Spiga F, Shekhar A, Lowry CA. Exposure to high- and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific subdivisions of the rat basolateral amygdaloid complex. Brain Res Bull. 2006;71:174–82. https://doi.org/10.1016/j.brainresbull.2006.09.001

    Article  PubMed  Google Scholar 

  45. Ruiz-López CX, Medina AC, Bello-Medina PC, Quirarte GL, Prado-Alcalá RA. Recruitment of neurons in basolateral amygdala after intense training produces a stronger memory trace. Neurobiol Learn Mem. 2021;181:107428. https://doi.org/10.1016/j.nlm.2021.107428

    Article  CAS  PubMed  Google Scholar 

  46. Goosens KA, Maren S. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn Mem. 2001;8:148–55. https://doi.org/10.1101/lm.37601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammack RJ, Fischer VE, Andrade MA, Toney GM. Anterior basolateral amygdala neurons comprise a remote fear memory engram. Front Neural Circuits. 2023;17:1167825. https://doi.org/10.3389/fncir.2023.1167825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilson YM, Murphy M. A discrete population of neurons in the lateral amygdala is specifically activated by contextual fear conditioning. Learn Mem. 2009;16:357–61. https://doi.org/10.1101/lm.1361509

    Article  PubMed  Google Scholar 

  49. Butler CW, Wilson YM, Gunnersen JM, Murphy M. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learn Mem. 2015;22:370–84. https://doi.org/10.1101/lm.037663.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sah P, Faber ESL, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83:803–34. https://doi.org/10.1152/physrev.00002.2003

    Article  CAS  PubMed  Google Scholar 

  51. McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res. 2023;101:1409–32. https://doi.org/10.1002/jnr.25201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCall JG, Siuda ER, Bhatti DL, Lawson LA, McElligott ZA, Stuber GD, et al. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife. 2017;6:e18247. https://doi.org/10.7554/eLife.18247

    Article  PubMed  PubMed Central  Google Scholar 

  53. Galvez R, Mesches MH, Mcgaugh JL. Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiol Learn Mem. 1996;66:253–7. https://doi.org/10.1006/nlme.1996.0067

    Article  CAS  PubMed  Google Scholar 

  54. Qu L-L, Guo N-N, Li B-M. β1- and β2-Adrenoceptors in basolateral nucleus of amygdala and their roles in consolidation of fear memory in rats. Hippocampus. 2008;18:1131–9. https://doi.org/10.1002/hipo.20478

    Article  CAS  PubMed  Google Scholar 

  55. Siuda ER, Al-Hasani R, McCall JG, Bhatti DL, Bruchas MR. Chemogenetic and optogenetic activation of gαs signaling in the basolateral amygdala induces acute and social anxiety-like states. Neuropsychopharmacol. 2016;41:2011–23. https://doi.org/10.1038/npp.2015.371

    Article  CAS  Google Scholar 

  56. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1–28. https://doi.org/10.1146/annurev.neuro.27.070203.144157

    Article  CAS  PubMed  Google Scholar 

  57. McGaugh JL, Introini-Collison IB, Nagahara AH. Memory-enhancing effects of posttraining naloxone: involvement of ß-noradrenergic influences in the amygdaloid complex. Brain Res. 1988;446:37–49. https://doi.org/10.1016/0006-8993(88)91294-2

    Article  CAS  PubMed  Google Scholar 

  58. Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods. 2020;17:1156–66. https://doi.org/10.1038/s41592-020-00981-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron. 2019;102:745–761.e8. https://doi.org/10.1016/j.neuron.2019.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–80. https://doi.org/10.1016/j.yfrne.2003.07.001

    Article  CAS  PubMed  Google Scholar 

  61. Armario A, Montero JL, Balasch J. Sensitivity of corticosterone and some metabolic variables to graded levels of low intensity stresses in adult male rats. Physiol Behav. 1986;37:559–61. https://doi.org/10.1016/0031-9384(86)90285-4

    Article  CAS  PubMed  Google Scholar 

  62. Kant GJ, Mougey EH, Pennington LL, Meyerhoff JL. Graded footshock stress elevates pituitary cyclic AMP and plasma beta-endorphin, beta-LPH corticosterone and prolactin. Life Sci. 1983;33:2657–63. https://doi.org/10.1016/0024-3205(83)90350-8

    Article  CAS  PubMed  Google Scholar 

  63. Morena M, Aukema RJ, Leitl KD, Rashid AJ, Vecchiarelli HA, Josselyn SA, et al. Upregulation of anandamide hydrolysis in the basolateral complex of amygdala reduces fear memory expression and indices of stress and anxiety. J Neurosci. 2019;39:1275–92. https://doi.org/10.1523/JNEUROSCI.2251-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Di S, Itoga CA, Fisher MO, Solomonow J, Roltsch EA, Gilpin NW, et al. Acute stress suppresses synaptic inhibition and increases anxiety via endocannabinoid release in the basolateral amygdala. J Neurosci. 2016;36:8461–70. https://doi.org/10.1523/JNEUROSCI.2279-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masaki T, Nakajima S. Further evidence for conditioned taste aversion induced by forced swimming. Physiol Behav. 2005;84:9–15. https://doi.org/10.1016/j.physbeh.2004.09.022

    Article  CAS  PubMed  Google Scholar 

  66. Whitaker AM, Gilpin NW. Blunted hypothalamo-pituitary adrenal axis response to predator odor predicts high stress reactivity. Physiol Behav. 2015;147:16–22. https://doi.org/10.1016/j.physbeh.2015.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Modlinska K, Stryjek R, Pisula W. Food neophobia in wild and laboratory rats (multi-strain comparison). Behav Process. 2015;113:41–50. https://doi.org/10.1016/j.beproc.2014.12.005

    Article  Google Scholar 

  68. Saraiva LR, Kondoh K, Ye X, Yoon K, Hernandez M, Buck LB. Combinatorial effects of odorants on mouse behavior. Proc Natl Acad Sci USA. 2016;113:E3300–E3306. https://doi.org/10.1073/pnas.1605973113

  69. McReynolds JR, Christianson JP, Blacktop JM, Mantsch JR. What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders. Neurobiol Stress. 2018;9:271–85. https://doi.org/10.1016/j.ynstr.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157:1535–51. https://doi.org/10.1016/j.cell.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mineur YS, Mose TN, Maibom KL, Pittenger ST, Soares AR, Wu H, et al. ACh signaling modulates activity of the GABAergic signaling network in the basolateral amygdala and behavior in stress-relevant paradigms. Mol Psychiatry. 2022;27:4918–27. https://doi.org/10.1038/s41380-022-01749-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kondev V, Najeed M, Yasmin F, Morgan A, Loomba N, Johnson K, et al. Endocannabinoid release at ventral hippocampal-amygdala synapses regulates stress-induced behavioral adaptation. Cell Rep. 2023;42:113027. https://doi.org/10.1016/j.celrep.2023.113027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molendijk ML, De Kloet ER. Coping with the forced swim stressor: Current state-of-the-art. Behav Brain Res. 2019;364:1–10. https://doi.org/10.1016/j.bbr.2019.02.005

    Article  PubMed  Google Scholar 

  74. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84. https://doi.org/10.1146/annurev.neuro.23.1.155

    Article  CAS  PubMed  Google Scholar 

  75. Fadok JP, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature. 2017;542:96–100. https://doi.org/10.1038/nature21047

    Article  CAS  PubMed  Google Scholar 

  76. LaLumiere RT, Buen T-V, McGaugh JL. Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. J Neurosci. 2003;23:6754–8. https://doi.org/10.1523/JNEUROSCI.23-17-06754.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hintiryan H, Dong H-W. Brain networks of connectionally unique basolateral amygdala cell types. J Exp Neurosci. 2022;17:263310552210801. https://doi.org/10.1177/26331055221080175

    Article  Google Scholar 

  78. Lim H, Zhang Y, Peters C, Straub T, Mayer JL, Klein R Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction. BioRxiv. 2023. https://doi.org/10.1101/2023.10.17.562740

  79. Day HEW, Badiani A, Uslaner JM, Oates MM, Vittoz NM, Robinson TE, et al. Environmental novelty differentially affects c- fos mRNA expression induced by amphetamine or cocaine in subregions of the bed nucleus of the stria terminalis and amygdala. J Neurosci. 2001;21:732–40. https://doi.org/10.1523/JNEUROSCI.21-02-00732.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fillinger C, Yalcin I, Barrot M, Veinante P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a′ and 24b′ in the mouse. Brain Struct Funct. 2017;222:1509–32. https://doi.org/10.1007/s00429-016-1290-1

    Article  PubMed  Google Scholar 

  81. Mcdonald AJ. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience. 1991;44:15–33. https://doi.org/10.1016/0306-4522(91)90248-M

    Article  CAS  PubMed  Google Scholar 

  82. Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, et al. Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nat Neurosci. 2021;24:1586–1600. https://doi.org/10.1038/s41593-021-00927-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shen C-J, Zheng D, Li K-X, Yang J-M, Pan H-Q, Yu X-D, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med. 2019;25:337–49. https://doi.org/10.1038/s41591-018-0299-9

    Article  CAS  PubMed  Google Scholar 

  84. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011;475:377–80. https://doi.org/10.1038/nature10194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Folkes OM, Báldi R, Kondev V, Marcus DJ, Hartley ND, Turner BD, et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability. J Clin Invest. 2020;130:1728–42. https://doi.org/10.1172/JCI131752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huff ML, Emmons EB, Narayanan NS, LaLumiere RT. Basolateral amygdala projections to ventral hippocampus modulate the consolidation of footshock, but not contextual, learning in rats. Learn Mem. 2016;23:51–60. https://doi.org/10.1101/lm.039909.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Petrovich GD, Setlow B, Holland PC, Gallagher M. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci. 2002;22:8748–53. https://doi.org/10.1523/JNEUROSCI.22-19-08748.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McDonald AJ, Mascagni F, Guo L. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience. 1996;71:55–75. https://doi.org/10.1016/0306-4522(95)00417-3

    Article  CAS  PubMed  Google Scholar 

  89. McDonald AJ, Mascagni F. Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience. 1997;77:445–59. https://doi.org/10.1016/S0306-4522(96)00478-2

    Article  CAS  PubMed  Google Scholar 

  90. LeDoux J. The amygdala. Curr Biol. 2007;17:R868–74. https://doi.org/10.1016/j.cub.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  91. Do-Monte FH, Quiñones-Laracuente K, Quirk GJ. A temporal shift in the circuits mediating retrieval of fear memory. Nature. 2015;519:460–3. https://doi.org/10.1038/nature14030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacques A, Chaaya N, Hettiarachchi C, Carmody M-L, Beecher K, Belmer A, et al. Microtopography of fear memory consolidation and extinction retrieval within prefrontal cortex and amygdala. Psychopharmacology. 2019;236:383–97. https://doi.org/10.1007/s00213-018-5068-4

    Article  CAS  PubMed  Google Scholar 

  93. Leake J, Zinn R, Corbit LH, Fanselow MS, Vissel B. Engram size varies with learning and reflects memory content and precision. J Neurosci. 2021;41:4120–30. https://doi.org/10.1523/JNEUROSCI.2786-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bonapersona V, Schuler H, Damsteegt R, Adolfs Y, Pasterkamp RJ, Van Den Heuvel MP, et al. The mouse brain after foot shock in four dimensions: Temporal dynamics at a single-cell resolution. Proc Natl Acad Sci USA. 2022;119:e2114002119. https://doi.org/10.1073/pnas.2114002119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cho J-H, Rendall SD, Gray JM. Brain-wide maps of Fos expression during fear learning and recall. Learn Mem. 2017;24:169–81. https://doi.org/10.1101/lm.044446.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Veres JM, Andrasi T, Nagy-Pal P, Hajos N CaMKIIα promoter-controlled circuit manipulations target both pyramidal cells and inhibitory interneurons in cortical networks. eNeuro. 2023;10:ENEURO.0070-23.2023. https://doi.org/10.1523/ENEURO.0070-23.2023

  97. Siuda ER, McCall JG, Al-Hasani R, Shin G, Il Park S, Schmidt MJ, et al. Optodynamic simulation of β-adrenergic receptor signalling. Nat Commun. 2015;6:8480. https://doi.org/10.1038/ncomms9480

    Article  CAS  PubMed  Google Scholar 

  98. Lu L, Gutruf P, Xia L, Bhatti DL, Wang X, Vazquez-Guardado A, et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Natl Acad Sci USA. 2018;115:E1374–83. https://doi.org/10.1073/pnas.1718721115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Buffalari DM, Grace AA. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of α-2 and β receptor activation. J Neurosci. 2007;27:12358–66. https://doi.org/10.1523/JNEUROSCI.2007-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ferry B, Magistretti PJ, Pralong E. Noradrenaline modulates giutamate‐mediated neurotransmission in the rat basolateral amygdala in vitro. Eur J Neurosci. 1997;9:1356–64. https://doi.org/10.1111/j.1460-9568.1997.tb01490.x

    Article  CAS  PubMed  Google Scholar 

  101. Ferry B, Roozendaal B, McGaugh JL. Involvement of α1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur J Pharmacol. 1999;372:9–16. https://doi.org/10.1016/S0014-2999(99)00169-7

    Article  CAS  PubMed  Google Scholar 

  102. Langer SZ. Presynaptic regulation of catecholamine release. Biochem Pharmacol. 1974;23:1793–800. https://doi.org/10.1016/0006-2952(74)90187-7

    Article  CAS  PubMed  Google Scholar 

  103. Ferry B, McGaugh JL. Involvement of basolateral amygdala α 2 -adrenoceptors in modulating consolidation of inhibitory avoidance memory. Learn Mem. 2008;15:238–43. https://doi.org/10.1101/lm.760908

    Article  PubMed  PubMed Central  Google Scholar 

  104. Giustino TF, Ramanathan KR, Totty MS, Miles OW, Maren S. Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. J Neurosci. 2020;40:907–16. https://doi.org/10.1523/JNEUROSCI.1092-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang J, Muller JF, McDonald AJ. Noradrenergic innervation of pyramidal cells in the rat basolateral amygdala. Neuroscience. 2013;228:395–408. https://doi.org/10.1016/j.neuroscience.2012.10.035

    Article  CAS  PubMed  Google Scholar 

  106. Abraham PA, Xing G, Zhang L, Yu EZ, Post R, Gamble EH, et al. β1- and β2-adrenoceptor induced synaptic facilitation in rat basolateral amygdala. Brain Res. 2008;1209:65–73. https://doi.org/10.1016/j.brainres.2008.02.082

    Article  CAS  PubMed  Google Scholar 

  107. Mcintyre CK, Power AE, Roozendaal B, McGaugh JL. Role of the basolateral amygdala in memory consolidation. Ann N. Y Acad Sci. 2003;985:273–93. https://doi.org/10.1111/j.1749-6632.2003.tb07088.x

    Article  CAS  PubMed  Google Scholar 

  108. Nicolas C, Ju A, Wu Y, Eldirdiri H, Delcasso S, Couderc Y, et al. Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nat Commun. 2023;14:5073. https://doi.org/10.1038/s41467-023-40517-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gründemann J, Bitterman Y, Lu T, Krabbe S, Grewe BF, Schnitzer MJ, et al. Amygdala ensembles encode behavioral states. Science. 2019;364:eaav8736. https://doi.org/10.1126/science.aav8736

    Article  CAS  PubMed  Google Scholar 

  110. McCullough KM, Morrison FG, Ressler KJ. Bridging the Gap: towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiol Learn Mem. 2016;135:27–39. https://doi.org/10.1016/j.nlm.2016.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li H, Namburi P, Olson JM, Borio M, Lemieux ME, Beyeler A, et al. Neurotensin orchestrates valence assignment in the amygdala. Nature. 2022;608:586–92. https://doi.org/10.1038/s41586-022-04964-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ressler KJ. Translating across circuits and genetics toward progress in fear- and anxiety-related disorders. Am J Psychiatry. 2020;177:214–22. https://doi.org/10.1176/appi.ajp.2020.20010055

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was performed at the University of Calgary which is located on the unceded traditional territories of the people of the Treaty 7 region in Southern Alberta, which includes the Blackfoot Confederacy (including the Siksika, Piikuni, Kainai First Nations), the Tsuut’ina, and the Stoney Nakoda (including the Chiniki, Bearspaw, and Wesley First Nations). The City of Calgary is also home to Metis Nation of Alberta, Region III. We would like to acknowledge the Hotchkiss Brain Institute optogenetic core facility and the advanced microscopy facility for their technical support, and Min Qiao for her technical lab support. We also acknowledge the University of Calgary Health Sciences Animal Research Centre, specifically Vincent Hanson, Krista Jensen, and Brittany Munro. AAV.CaMKII.GCaMP6s.WPRE.SV40 (Addgene viral prep #107790-AAV9) was a gift from James M. Wilson.

Funding

This research was supported by operating funds to MNH from the Canadian Institutes of Health Research (CIHR). RJA received salary support from the Mathison Centre for Mental Health Research & Education and the Cumming School of Medicine. GNP received salary support from BranchOut Neurological Foundation, CIHR, and the Cumming School of Medicine. Support was also provided by NIH R01MH112355 (to M.R.B.) and NIH F31DA056148 (to A.K.M.). All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

RA designed and conducted experiments, analyzed data, prepared figures, and wrote the manuscript. AM designed and conducted photometry experiments in mice and reviewed the manuscript. GP and MM provided advice in experimental design, conducted experiments, and reviewed the manuscript. SB conducted experiments and reviewed the manuscript. SK, IR, and AN conducted experiments. LM and TF developed optogenetic and photometry analysis tools and reviewed the manuscript. MB provided resources and advice in experimental design and reviewed the manuscript. JB provided advice in experimental design and reviewed the manuscript. MNH provided resources, developed and supervised the project, and contributed to and oversaw all data analyses, figure preparation, and writing and editing of the manuscript.

Corresponding author

Correspondence to Matthew N. Hill.

Ethics declarations

Competing interests

MN Hill is an Associate Editor at Neuropsychopharmacology. The remaining authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aukema, R.J., Petrie, G.N., Matarasso, A.K. et al. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacol. 49, 1989–1999 (2024). https://doi.org/10.1038/s41386-024-01927-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-024-01927-x

Search

Quick links