[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,719)

Search Parameters:
Keywords = bifurcation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2759 KiB  
Article
Stability and Hopf Bifurcation Analysis of a Predator–Prey Model with Weak Allee Effect Delay and Competition Delay
by Yurong Dong, Hua Liu, Yumei Wei, Qibin Zhang and Gang Ma
Mathematics 2024, 12(18), 2853; https://doi.org/10.3390/math12182853 - 13 Sep 2024
Abstract
The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and [...] Read more.
The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and the direction of the Hopf bifurcation are elucidated by applying the normal form theory and the center manifold theorem. To validate the correctness of the theoretical analysis, numerical simulations were conducted. The results suggest that a weak Allee effect delay can promote stability within the model, transitioning it from instability to stability. Nevertheless, the competition delay induces periodic oscillations and chaotic dynamics, ultimately resulting in the population’s collapse. Full article
(This article belongs to the Section Mathematical Biology)
13 pages, 2537 KiB  
Article
Anatomical and Histological Analyses of Rare Pancake Kidney
by Lindsey Koper, Rachell L. Quarles, Janine M. Ziermann-Canabarro, Tashanti Bridgett, Paola Correa-Alfonzo and Sulman J. Rahmat
Anatomia 2024, 3(3), 202-214; https://doi.org/10.3390/anatomia3030016 - 13 Sep 2024
Abstract
During anatomical dissection of a female body donor at the Howard University College of Medicine, a rare renal anomaly was discovered. Detailed anatomical and histological analyses on this anomaly were compared to a normal kidney from another donor and previously published reports from [...] Read more.
During anatomical dissection of a female body donor at the Howard University College of Medicine, a rare renal anomaly was discovered. Detailed anatomical and histological analyses on this anomaly were compared to a normal kidney from another donor and previously published reports from a comprehensive literature review. Anatomical assessment confirmed the condition of pancake kidney, a rare form of completely fused, ectopic kidneys without an isthmus. Due to the lack of symptoms in patients with this condition and the limited number of published case reports, very little information is available regarding the anatomy, development, and histology of pancake kidneys, making it difficult to determine an accurate estimate of the number of individuals who are affected. In the case presented here, a single kidney was located in the pelvis, below the bifurcation of the abdominal aorta into the common iliac arteries. The histological analysis of the pancake kidney revealed focal segmental glomerulosclerosis, dilated renal tubules, and increased interstitial fluid, all common characteristics of renal disease and not present in the normal kidney of the other donor. Future studies are needed to compare the histology of pancake kidneys and typical kidneys in order to help determine potential pathologies. Full article
Show Figures

Figure 1

Figure 1
<p>Overview of the position of the pancake kidney in relation to the posterior abdominal structures. The gastrointestinal organs in the abdominal cavity were removed. Abbreviations: a., artery; v., vein. White square = 1 cm length.</p>
Full article ">Figure 2
<p>Blood supply of the pancake kidney. (<b>A</b>) Anterior view of the kidney showing two separate renal hila circled by the dotted lines and exposed renal pelvises. (<b>B</b>) Posterior view of kidney, with the posterior arterial supply lifted by a metal probe. (<b>C</b>) Anterior view of the superior right portion of the kidney. (<b>D</b>) Left lateral view of the kidney showing the arterial supply to the left half. A metal probe is being used to lift the kidney. Abbreviations: a., artery; AA, abdominal aorta; IVC, inferior vena cava; v., vein. White square = 1 cm length.</p>
Full article ">Figure 3
<p>Example of vasculature measurement. This is a measurement from the termination of the left suprarenal vein into the inferior vena cava to the termination of all the right renal veins into the inferior vena cava. This measurement is not recorded in <a href="#anatomia-03-00016-t002" class="html-table">Table 2</a>.</p>
Full article ">Figure 4
<p>Anatomy of the pancake kidney. (<b>A</b>) Anterior view of the pancake kidney after removal from body cavity. (<b>B</b>) Diagram of estimated time frame between 6 and 9 weeks when fusion of both early-forming kidneys mostly likely occurred (modified from [<a href="#B2-anatomia-03-00016" class="html-bibr">2</a>]). (<b>C</b>) Internal view of the anterior half of the kidney. (<b>D</b>) Internal view of the posterior half of the kidney. White square = 1 cm length.</p>
Full article ">Figure 5
<p>Histology of the normal (<b>A</b>) and abnormal (<b>B</b>) kidneys, with enlarged regions indicated by the yellow boxes. Both were stained with H&amp;E. (<b>B</b>) Almost all structures in the abnormal kidney appear different from the normal kidney. The glomerular capsule appears thinner, and the glomerular capsular (urinary) space is enlarged. The renal tubules are dilated, and their walls appear thinner and do not present with the typical macula densa. The glomerulus (renal corpuscle) appears less dense structurally and abnormally formed. Finally, there is an increased amount of abnormal interstitial fluid (yellow star) between tubules. Scale bar = 100 microns.</p>
Full article ">Figure 6
<p>Histology of the adrenal gland from the pancake kidney donor (H&amp;E-stained Histoplast section). Both adrenal glands were flattened but still appeared to have both cortex (C) and medulla (outlined and labeled with M) present within the histological sectioning. Scale bar = 100 microns.</p>
Full article ">
16 pages, 4720 KiB  
Article
Dynamics of a New Four-Thirds-Degree Sub-Quadratic Lorenz-like System
by Guiyao Ke, Jun Pan, Feiyu Hu and Haijun Wang
Axioms 2024, 13(9), 625; https://doi.org/10.3390/axioms13090625 - 12 Sep 2024
Viewed by 105
Abstract
Aiming to explore the subtle connection between the number of nonlinear terms in Lorenz-like systems and hidden attractors, this paper introduces a new simple sub-quadratic four-thirds-degree Lorenz-like system, where x˙=a(yx), [...] Read more.
Aiming to explore the subtle connection between the number of nonlinear terms in Lorenz-like systems and hidden attractors, this paper introduces a new simple sub-quadratic four-thirds-degree Lorenz-like system, where x˙=a(yx), y˙=cxx3z, z˙=bz+x3y, and uncovers the following property of these systems: decreasing the powers of the nonlinear terms in a quadratic Lorenz-like system where x˙=a(yx), y˙=cxxz, z˙=bz+xy, may narrow, or even eliminate the range of the parameter c for hidden attractors, but enlarge it for self-excited attractors. By combining numerical simulation, stability and bifurcation theory, most of the important dynamics of the Lorenz system family are revealed, including self-excited Lorenz-like attractors, Hopf bifurcation and generic pitchfork bifurcation at the origin, singularly degenerate heteroclinic cycles, degenerate pitchfork bifurcation at non-isolated equilibria, invariant algebraic surface, heteroclinic orbits and so on. The obtained results may verify the generalization of the second part of the celebrated Hilbert’s sixteenth problem to some degree, showing that the number and mutual disposition of attractors and repellers may depend on the degree of chaotic multidimensional dynamical systems. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

Figure 1
<p>For <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>1</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>1</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.13</mn> <mo>,</mo> <mn>1.3</mn> <mo>,</mo> <mn>1.6</mn> <mo>)</mo> </mrow> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics></math>; (<b>a</b>–<b>c</b>) bifurcation diagrams; (<b>d</b>) Lyapunov exponents versus <span class="html-italic">c</span> of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>). In contrast to system (<a href="#FD2-axioms-13-00625" class="html-disp-formula">2</a>) [<a href="#B22-axioms-13-00625" class="html-bibr">22</a>] (Figure 3, p. 363), these figures suggest that the solutions for the system in (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) display stable equilibria and period orbits, rather than the self-excited and hidden attractors shown in the system in (<a href="#FD2-axioms-13-00625" class="html-disp-formula">2</a>).</p>
Full article ">Figure 2
<p>For <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1.5</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>∈</mo> <mo>[</mo> <mn>0.1</mn> <mo>,</mo> <mn>599.1</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.314</mn> <mo>,</mo> <mn>2.236</mn> <mo>,</mo> <mn>4.669</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>a</b>–<b>c</b>) bifurcation diagrams; (<b>d</b>) Lyapunov exponents versus <span class="html-italic">c</span> of system (<a href="#FD2-axioms-13-00625" class="html-disp-formula">2</a>). The subfigures (<b>a</b>–<b>c</b>) are consistent with the subfigure (<b>d</b>), showing that system (<a href="#FD2-axioms-13-00625" class="html-disp-formula">2</a>) mainly experiences periodic behaviors.</p>
Full article ">Figure 3
<p>For <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1.5</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>∈</mo> <mo>[</mo> <mn>0.1</mn> <mo>,</mo> <mn>599.1</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.314</mn> <mo>,</mo> <mn>2.236</mn> <mo>,</mo> <mn>4.669</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>a</b>–<b>c</b>) bifurcation diagrams; (<b>d</b>) Lyapunov exponents versus <span class="html-italic">c</span> of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>). In contrast with <a href="#axioms-13-00625-f002" class="html-fig">Figure 2</a>, the four subfigures show that system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) mainly behaves in a similar way to self-excited attractors, verifying the introduced property, i.e., a decrease in powers of nonlinear terms of the quadratic Lorenz-like system (<a href="#FD2-axioms-13-00625" class="html-disp-formula">2</a>) may narrow or even eliminate the range of the parameter <span class="html-italic">c</span> for hidden attractors, but enlarge it for self-excited attractors.</p>
Full article ">Figure 4
<p>Phase portraits of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>1.5</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.314</mn> <mo>,</mo> <mn>2.236</mn> <mo>,</mo> <mn>4.669</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> illustrating the existence of two-scroll self-excited attractor suggested in <a href="#axioms-13-00625-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 4 Cont.
<p>Phase portraits of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>1.5</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.314</mn> <mo>,</mo> <mn>2.236</mn> <mo>,</mo> <mn>4.669</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> illustrating the existence of two-scroll self-excited attractor suggested in <a href="#axioms-13-00625-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 5
<p>Poincaré cross-sections of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>1.5</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.314</mn> <mo>,</mo> <mn>2.236</mn> <mo>,</mo> <mn>4.669</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> showing the geometrical structure of the Lorenz-like attractor depicted in <a href="#axioms-13-00625-f004" class="html-fig">Figure 4</a>.</p>
Full article ">Figure 6
<p>Phase portraits of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>36</mn> <mo>)</mo> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.07</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>3</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>1.3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>8</mn> </mrow> </msup> <mo>,</mo> <mo>±</mo> <mn>1.3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. Both figures imply that collapsing singularly degenerate heteroclinic cycles in system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) create limited cycles rather than strange attractors.</p>
Full article ">Figure 7
<p>Phase portraits of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>4</mn> <mo>,</mo> <mn>1.8182</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and (<b>a</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>0.13</mn> <mo>,</mo> <mo>±</mo> <mn>1.3</mn> <mo>,</mo> <mn>1.6</mn> <mo>)</mo> </mrow> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>2.4</mn> <mo>,</mo> <mo>±</mo> <mn>2.41</mn> <mo>,</mo> <mn>3.3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>5</mn> <mo>,</mo> <mn>6</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>5</mn> <mo>,</mo> <mn>6</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>2.39</mn> <mo>,</mo> <mo>±</mo> <mn>2.4</mn> <mo>,</mo> <mn>3.32</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>3</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>3</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>2.4</mn> <mo>,</mo> <mn>2.41</mn> <mo>,</mo> <mn>3.3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>5</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>5</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>2.39</mn> <mo>,</mo> <mn>2.4</mn> <mo>,</mo> <mn>3.32</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>−</mo> <mn>2.4</mn> <mo>,</mo> <mo>−</mo> <mn>2.41</mn> <mo>,</mo> <mn>3.3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mn>6</mn> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mn>6</mn> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>−</mo> <mn>2.39</mn> <mo>,</mo> <mo>−</mo> <mn>2.4</mn> <mo>,</mo> <mn>3.32</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, showing at least five limit cycles for system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>) when Hopf bifurcation occurs at <math display="inline"><semantics> <msub> <mi>E</mi> <mo>±</mo> </msub> <mo>,</mo> </semantics></math> i.e., two around <math display="inline"><semantics> <msub> <mi>E</mi> <mo>+</mo> </msub> </semantics></math>, two around <math display="inline"><semantics> <msub> <mi>E</mi> <mo>−</mo> </msub> </semantics></math> and one around <math display="inline"><semantics> <msub> <mi>E</mi> <mo>±</mo> </msub> </semantics></math>.</p>
Full article ">Figure 8
<p>For <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>6</mn> <mo>,</mo> <mn>100</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> <mo>,</mo> <mn>9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow> <mn>0</mn> </mrow> <mn>3</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>0.13</mn> <mo>,</mo> <mo>±</mo> <mn>1.3</mn> <mo>,</mo> <mn>1.6</mn> <mo>)</mo> </mrow> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics></math>, phase portraits of system (<a href="#FD1-axioms-13-00625" class="html-disp-formula">1</a>), verifying the existence of a pair of heteroclinic orbits to unstable <math display="inline"><semantics> <msub> <mi>E</mi> <mn>0</mn> </msub> </semantics></math> and stable <math display="inline"><semantics> <msub> <mi>E</mi> <mo>±</mo> </msub> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>3</mn> <mi>b</mi> <mo>≥</mo> <mn>4</mn> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">
21 pages, 1148 KiB  
Article
Exploring Bifurcation in the Compartmental Mathematical Model of COVID-19 Transmission
by Olena Kiseleva, Sergiy Yakovlev, Dmytro Chumachenko and Oleksandr Kuzenkov
Computation 2024, 12(9), 186; https://doi.org/10.3390/computation12090186 - 11 Sep 2024
Viewed by 266
Abstract
This study proposes and theoretically substantiates a unique mathematical model for predicting the spread of infectious diseases using the example of COVID-19. The model is described by a special system of autonomous differential equations, which has scientific novelty for cases of complex dynamics [...] Read more.
This study proposes and theoretically substantiates a unique mathematical model for predicting the spread of infectious diseases using the example of COVID-19. The model is described by a special system of autonomous differential equations, which has scientific novelty for cases of complex dynamics of disease transmission. The adequacy of the model is confirmed by testing on the example of the spread of COVID-19 in one of the largest regions of Ukraine, both in terms of population and area. The practical novelty emerges through its versatile application in real-world contexts, guiding organizational decisions and public health responses. The model’s capacity to facilitate system functioning evaluation and identify significant parameters underlines its potential for proactive management and effective response in the evolving landscape of infectious diseases. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic representation of the topology of the phase space of system (9) in the vicinity of a singular point: (<b>a</b>)—triaxial unstable node; (<b>b</b>)—triaxial stable assembly; (<b>c</b>)—stable saddle; (<b>d</b>)—unstable saddle; (<b>e</b>)—unstable two-phase-star node; (<b>f</b>)—stable two-phase-star node; (<b>g</b>)—unstable three-phase-star node; (<b>h</b>)—stable three-phase-star node; (<b>i</b>)—unstable two-phase degenerate node; (<b>j</b>)—stable two-phase degenerate node; (<b>k</b>)—unstable three-phase degenerate node; (<b>l</b>)—stable three-phase degenerate node; (<b>m</b>)—divergent unstable focus; (<b>n</b>)—mismatched stable focus; (<b>o</b>)—convergent unstable focus; (<b>p</b>)—coinciding stable focus; (<b>q</b>)—divergent center; (<b>r</b>)—coinciding center.</p>
Full article ">Figure 2
<p>Schematic representation of the topology of the phase space of system (9) in the vicinity of the composed singular point: (<b>a</b>)—single-phase degenerate stable node; (<b>b</b>)—single-phase degenerate unstable node; (<b>c</b>)—degenerate saddle; (<b>d</b>)—an unstable degenerate stellar node; (<b>e</b>)—stable degenerate star node; (<b>f</b>)—unstable congenital cylinder; (<b>g</b>)—stable congenital cylinder; (<b>h</b>)—congenital unstable focus; (<b>i</b>)—congenital stable focus; (<b>j</b>)—congenital center.</p>
Full article ">Figure 3
<p>Schematic representation of the topology of the phase space of system (9) in the vicinity of the composed singular point of codimension 2: (<b>a</b>)—“unstable stationary plane”, (<b>b</b>)—“stable stationary plane”.</p>
Full article ">Figure 4
<p>Phase portrait of system (9) in case of zero characteristic matrix.</p>
Full article ">
16 pages, 2076 KiB  
Article
Optimization of SOX2 Expression for Enhanced Glioblastoma Stem Cell Virotherapy
by Dongwook Kim, Abraham Puig, Faranak Rabiei, Erial J. Hawkins, Talia F. Hernandez and Chang K. Sung
Symmetry 2024, 16(9), 1186; https://doi.org/10.3390/sym16091186 - 10 Sep 2024
Viewed by 280
Abstract
The Zika virus has been shown to infect glioblastoma stem cells via the membrane receptor αvβ5, which is activated by the stem-specific transcription factor SOX2. Since the expression level of SOX2 is an important predictive marker for successful virotherapy, [...] Read more.
The Zika virus has been shown to infect glioblastoma stem cells via the membrane receptor αvβ5, which is activated by the stem-specific transcription factor SOX2. Since the expression level of SOX2 is an important predictive marker for successful virotherapy, it is important to understand the fundamental mechanisms of the role of SOX2 in the dynamics of cancer stem cells and Zika viruses. In this paper, we develop a mathematical ODE model to investigate the effects of SOX2 expression levels on Zika virotherapy against glioblastoma stem cells. Our study aimed to identify the conditions under which SOX2 expression level, viral infection, and replication can reduce or eradicate the glioblastoma stem cells. Analytic work on the existence and stability conditions of equilibrium points with respect to the basic reproduction number are provided. Numerical results were in good agreement with analytic solutions. Our results show that critical threshold levels of both SOX2 and viral replication, which change the stability of equilibrium points through population dynamics such as transcritical and Hopf bifurcations, were observed. These critical thresholds provide the optimal conditions for SOX2 expression levels and viral bursting sizes to enhance therapeutic efficacy of Zika virotherapy against glioblastoma stem cells. This study provides critical insights into optimizing Zika virus-based treatment for glioblastoma by highlighting the essential role of SOX2 in viral infection and replication. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Figure 1
<p>PRCC results for significance of parameters involved in <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The relative population solution of GSCs, infected GSCs, and ZIKV. Population dynamics over time (<b>A</b>) and in phase space (<b>B</b>) when the SOX2 expression level constant <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.3</mn> <mtext> </mtext> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math>, showing the equilibrium point <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1,0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math> is asymptotically stable. (<b>C</b>,<b>D</b>) are the case when <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>&gt;</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> ensuring the equilibrium point <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>v</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> becomes stable. The red circle represents the initial condition, and the black circle indicates the equilibrium point in (<b>B</b>,<b>D</b>). We used parameters <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mo>=</mo> <mn>0.108</mn> <mo>,</mo> <mtext> </mtext> <msub> <mrow> <mi>δ</mi> </mrow> <mrow> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mn>0.3254</mn> <mo>,</mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mtext> </mtext> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>. We also used initial conditions <span class="html-italic">x</span>(0) = 0.5, <span class="html-italic">y</span>(0) = 0, and <span class="html-italic">v</span>(0) = 1.5.</p>
Full article ">Figure 3
<p>Bifurcation diagram of the GSC population with respect to the bifurcation parameter SOX2 expression level constant (<span class="html-italic">s</span>). The figure illustrates two bifurcation thresholds at <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <msubsup> <mrow> <mi>s</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mo>∗</mo> </mrow> </msubsup> <mo>=</mo> <mn>0.17</mn> </mrow> </semantics></math> (green vertical line), where the transcritical bifurcation occurs, and at <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <msubsup> <mrow> <mi>s</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mo>∗</mo> </mrow> </msubsup> <mo>=</mo> <mn>0.93</mn> </mrow> </semantics></math> (red vertical line), where the Hopf bifurcation occurs. We used the parameters <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mo>=</mo> <mn>0.108</mn> <mo>,</mo> <mtext> </mtext> <msub> <mrow> <mi>δ</mi> </mrow> <mrow> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mn>0.3254</mn> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mi>b</mi> <mo>=</mo> <mn>25</mn> </mrow> </semantics></math> with initial conditions <span class="html-italic">x</span>(0) = 0.5, <span class="html-italic">y</span>(0) = 0, and <span class="html-italic">v</span>(0) = 1.5.</p>
Full article ">Figure 4
<p>Two-dimensional bifurcation diagram of GSC population with respect to the bifurcation parameter SOX2 expression level constant (<span class="html-italic">s</span>) with different values of bursting rate. (<b>A</b>–<b>D</b>) Relative GSC populations over SOX2 expression level constant when <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mtext> </mtext> <mn>5</mn> <mo>,</mo> <mtext> </mtext> <mn>15</mn> <mo>,</mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mtext> </mtext> <mn>20</mn> </mrow> </semantics></math>, respectively. We used the parameters <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mo>=</mo> <mn>0.108</mn> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mtext> </mtext> <msub> <mrow> <mi>δ</mi> </mrow> <mrow> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mn>0.3254</mn> </mrow> </semantics></math> with initial conditions <span class="html-italic">x</span>(0) = 0.5, <span class="html-italic">y</span>(0) = 0, and <span class="html-italic">v</span>(0) = 1.5.</p>
Full article ">Figure 5
<p>Stability region of equilibrium points with respect to two parameters (<math display="inline"><semantics> <mrow> <mi>b</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>s</mi> </mrow> </semantics></math>). The equilibrium point <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1,0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math> is asymptotically stable in the blue region, while the equilibrium point <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>y</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>v</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> is asymptotically stable in the green region, and three populations (GSCs, infected GSCs, and ZIKV) oscillate over time in the yellow region. We used the parameters <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mo>=</mo> <mn>0.108</mn> <mo>,</mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mtext> </mtext> <msub> <mrow> <mi>δ</mi> </mrow> <mrow> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mn>0.3254</mn> <mo>,</mo> </mrow> </semantics></math> with initial conditions <span class="html-italic">x</span>(0) = 0.5, <span class="html-italic">y</span>(0) = 0, and <span class="html-italic">v</span>(0) = 1.5.</p>
Full article ">
16 pages, 13570 KiB  
Article
Bifurcation Diagrams of Nonlinear Oscillatory Dynamical Systems: A Brief Review in 1D, 2D and 3D
by Wieslaw Marszalek and Maciej Walczak
Entropy 2024, 26(9), 770; https://doi.org/10.3390/e26090770 - 9 Sep 2024
Viewed by 279
Abstract
We discuss 1D, 2D and 3D bifurcation diagrams of two nonlinear dynamical systems: an electric arc system having both chaotic and periodic steady-state responses and a cytosolic calcium system with both periodic/chaotic and constant steady-state outputs. The diagrams are mostly obtained by using [...] Read more.
We discuss 1D, 2D and 3D bifurcation diagrams of two nonlinear dynamical systems: an electric arc system having both chaotic and periodic steady-state responses and a cytosolic calcium system with both periodic/chaotic and constant steady-state outputs. The diagrams are mostly obtained by using the 0–1 test for chaos, but other types of diagrams are also mentioned; for example, typical 1D diagrams with local maxiumum values of oscillatory responses (periodic and chaotic), the entropy method and the largest Lyapunov exponent approach. Important features and properties of each of the three classes of diagrams with one, two and three varying parameters in the 1D, 2D and 3D cases, respectively, are presented and illustrated via certain diagrams of the K values, 1K1, from the 0–1 test and the sample entropy values SaEn>0. The K values close to 0 indicate periodic and quasi-periodic responses, while those close to 1 are for chaotic ones. The sample entropy 3D diagrams for an electric arc system are also provided to illustrate the variety of possible bifurcation diagrams available. We also provide a comparative study of the diagrams obtained using different methods with the goal of obtaining diagrams that appear similar (or close to each other) for the same dynamical system. Three examples of such comparisons are provided, each in the 1D, 2D and 3D cases. Additionally, this paper serves as a brief review of the many possible types of diagrams one can employ to identify and classify time-series obtained either as numerical solutions of models of nonlinear dynamical systems or recorded in a laboratory environment when a mathematical model is unknown. In the concluding section, we present a brief overview of the advantages and disadvantages of using the 1D, 2D and 3D diagrams. Several illustrative examples are included. Full article
Show Figures

Figure 1

Figure 1
<p>Five different 1D bifurcation diagrams for the <span class="html-italic">RLC</span> electric arc system [<a href="#B19-entropy-26-00770" class="html-bibr">19</a>] for the varying parameter <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>≤</mo> <mi>R</mi> <mo>≤</mo> <mn>25</mn> </mrow> </semantics></math>. The integration fixed step-size in the Runge–Kutta IV method was <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>. (<b>a</b>) Bifurcation diagram with local maximum values of periodic and chaotic responses for the nonlinear electric arc system. (<b>b</b>) Diagram of the LLE corresponding to the diagram in (<b>a</b>). (<b>c</b>) Diagram of the 0–1 test values <span class="html-italic">K</span> corresponding to the diagram in (<b>a</b>). Parameters given in <a href="#app1-entropy-26-00770" class="html-app">Appendix A</a>. (<b>d</b>) Sample entropy values <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>a</mi> <mi>E</mi> <mi>n</mi> </mrow> </semantics></math> corresponding to the diagram in (<b>a</b>). Parameters of the method were <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>10,000</mn> </mrow> </semantics></math> (<a href="#app4-entropy-26-00770" class="html-app">Appendix D</a>). (<b>e</b>) Lyapunov dimension (LD) values corresponding to the diagram in (<b>a</b>). The LD values are greater than but close to 2 for the intervals marked with the red horizontal segments.</p>
Full article ">Figure 2
<p>Two diagrams for the electric arc circuit with varying <span class="html-italic">R</span> and <span class="html-italic">C</span> parameters. (<b>a</b>) Sample entropy diagram with <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>S</mi> <mi>a</mi> <mi>E</mi> <mi>n</mi> <mo>&lt;</mo> <mn>0.076</mn> </mrow> </semantics></math>. (<b>b</b>) The 0–1 test diagram with <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>K</mi> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Two-parameter <math display="inline"><semantics> <mrow> <mn>1000</mn> <mo>×</mo> <mn>1000</mn> </mrow> </semantics></math> diagrams from the 0–1 test, each obtained using the Runge–Kutta IV solver with <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>500</mn> </mrow> </semantics></math> when the solution in the interval <math display="inline"><semantics> <mrow> <mn>300</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>500</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> was used in the 0–1 test. Obtaining each of the above two-parameter diagrams requires solving the nonlinear system in ref. [<a href="#B8-entropy-26-00770" class="html-bibr">8</a>] <math display="inline"><semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics></math> times with additional computations (classification of the type of these solutions). A total of 256 gray levels were used for parameter <span class="html-italic">K</span> (along the vertical bars on the right-hand side of each diagram). (<b>a</b>) Varying <math display="inline"><semantics> <msub> <mi>K</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>c</mi> <mi>h</mi> </mrow> </msub> </semantics></math> (constant <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>). (<b>b</b>) Varying <math display="inline"><semantics> <msub> <mi>K</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> </semantics></math> (constant <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mn>3500</mn> </mrow> </semantics></math>). (<b>c</b>) Varying <math display="inline"><semantics> <msub> <mi>K</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> </semantics></math> (constant <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>). (<b>d</b>) Diagram in area <span class="html-italic">A</span> in (<b>b</b>). (<b>e</b>) Diagram in area <span class="html-italic">B</span> in (<b>c</b>). (<b>f</b>) Diagram in area <span class="html-italic">C</span> in (<b>d</b>).</p>
Full article ">Figure 4
<p>Three-dimensional diagrams of test 0–1 for chaos for the electric arc system. A total of 256 gray levels were used for parameter <span class="html-italic">K</span> (vertical bars). (<b>a</b>) Parameters <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>∈</mo> <mo>(</mo> <mn>3</mn> <mo>;</mo> <mn>40</mn> <mo>)</mo> <mo>,</mo> <mi>C</mi> <mo>∈</mo> <mo>(</mo> <mn>4.05</mn> <mo>;</mo> <mn>4.45</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>∈</mo> <mo>(</mo> <mn>0.2</mn> <mo>;</mo> <mn>1.2</mn> <mo>)</mo> </mrow> </semantics></math>. Computations performed with <math display="inline"><semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics></math> discrete points in the box of size <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mn>100</mn> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math>. (<b>b</b>) Parameters <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>∈</mo> <mo>(</mo> <mn>3</mn> <mo>;</mo> <mn>40</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>∈</mo> <mo>(</mo> <mn>4.05</mn> <mo>;</mo> <mn>4.45</mn> <mo>)</mo> <mo>,</mo> <mi>L</mi> <mo>∈</mo> <mo>(</mo> <mn>0.2</mn> <mo>;</mo> <mn>0.4</mn> <mo>)</mo> </mrow> </semantics></math>. Computations performed with <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math> discrete points in the small green box in (<b>a</b>) (size <math display="inline"><semantics> <mrow> <mn>200</mn> <mo>×</mo> <mn>200</mn> <mo>×</mo> <mn>200</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 5
<p>Three-dimensional bifurcation diagrams for the cytosolic calcium oscillation model. Computations performed with <math display="inline"><semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math> (<b>b</b>,<b>c</b>) discrete points. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>;</mo> <mn>26</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>K</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>3.8</mn> <mo>;</mo> <mn>5.8</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>3500</mn> <mo>;</mo> <mn>5500</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>;</mo> <mn>26</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>K</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>3.8</mn> <mo>;</mo> <mn>5.8</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>3500</mn> <mo>;</mo> <mn>5500</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>;</mo> <mn>21</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>K</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>3.8</mn> <mo>;</mo> <mn>4.8</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>E</mi> <mi>R</mi> <mo>,</mo> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>3500</mn> <mo>;</mo> <mn>4500</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> (the green box in (<b>b</b>)).</p>
Full article ">Figure 6
<p>Three-dimensional diagrams of size <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mn>100</mn> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math> of the 0–1 test for the arc system with parameters <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>∈</mo> <mo>[</mo> <mn>3</mn> <mo>,</mo> <mn>40</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>∈</mo> <mo>[</mo> <mn>4.05</mn> <mo>,</mo> <mn>4.45</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>∈</mo> <mo>[</mo> <mn>0.2</mn> <mo>,</mo> <mn>0.4</mn> <mo>]</mo> </mrow> </semantics></math>. Points representing chaotic responses with <span class="html-italic">K</span> values close to 1 are shown in (<b>a</b>,<b>b</b>). Points representing periodic responses with <span class="html-italic">K</span> values close to 0 are shown in (<b>c</b>,<b>d</b>). (<b>a</b>) Points in the cube with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>∈</mo> <mo>(</mo> <mn>0.9</mn> <mo>;</mo> <mn>1.0</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>b</b>) Points in the cube with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>∈</mo> <mo>(</mo> <mn>0.99</mn> <mo>;</mo> <mn>1.0</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>c</b>) Points in the cube with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>;</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>d</b>) Points in the cube with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>;</mo> <mn>0.01</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Three-dimensional diagrams of the 0–1 test and sample entropy methods for the electric arc system. A total of 256 gray levels were used for the values of sample entropy (vertical gray bars in (<b>b</b>,<b>c</b>). (<b>a</b>) Parameters <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>∈</mo> <mo>(</mo> <mn>15</mn> <mo>;</mo> <mn>16</mn> <mo>)</mo> <mo>,</mo> <mi>C</mi> <mo>∈</mo> <mo>(</mo> <mn>4.36</mn> <mo>;</mo> <mn>4.52</mn> <mo>)</mo> <mo>,</mo> <mi>L</mi> <mo>∈</mo> <mo>(</mo> <mn>0.11</mn> <mo>;</mo> <mn>0.16</mn> <mo>)</mo> </mrow> </semantics></math>. Computations performed with <math display="inline"><semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics></math> points using the 0–1 test method. (<b>b</b>) Parameters as in (<b>a</b>). Computations performed with <math display="inline"><semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics></math> points using the sample entropy method. (<b>c</b>) Parameters as in (<b>a</b>). Computations performed with <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math> points using the sample entropy method.</p>
Full article ">Figure A1
<p>Electric arc circuits. Circuit B is also described by Equation (A6) with a suitable change in variables. (<b>a</b>) Circuit A. (<b>b</b>) Circuit B.</p>
Full article ">
21 pages, 5902 KiB  
Article
Dynamic Effects Analysis in Fractional Memristor-Based Rulkov Neuron Model
by Mahdieh Ghasemi, Zeinab Malek Raeissi, Ali Foroutannia, Masoud Mohammadian and Farshad Shakeriaski
Biomimetics 2024, 9(9), 543; https://doi.org/10.3390/biomimetics9090543 - 8 Sep 2024
Viewed by 359
Abstract
Mathematical models such as Fitzhugh–Nagoma and Hodgkin–Huxley models have been used to understand complex nervous systems. Still, due to their complexity, these models have made it challenging to analyze neural function. The discrete Rulkov model allows the analysis of neural function to facilitate [...] Read more.
Mathematical models such as Fitzhugh–Nagoma and Hodgkin–Huxley models have been used to understand complex nervous systems. Still, due to their complexity, these models have made it challenging to analyze neural function. The discrete Rulkov model allows the analysis of neural function to facilitate the investigation of neuronal dynamics or others. This paper introduces a fractional memristor Rulkov neuron model and analyzes its dynamic effects, investigating how to improve neuron models by combining discrete memristors and fractional derivatives. These improvements include the more accurate generation of heritable properties compared to full-order models, the treatment of dynamic firing activity at multiple time scales for a single neuron, and the better performance of firing frequency responses in fractional designs compared to integer models. Initially, we combined a Rulkov neuron model with a memristor and evaluated all system parameters using bifurcation diagrams and the 0–1 chaos test. Subsequently, we applied a discrete fractional-order approach to the Rulkov memristor map. We investigated the impact of all parameters and the fractional order on the model and observed that the system exhibited various behaviors, including tonic firing, periodic firing, and chaotic firing. We also found that the more I tend towards the correct order, the more chaotic modes in the range of parameters. Following this, we coupled the proposed model with a similar one and assessed how the fractional order influences synchronization. Our results demonstrated that the fractional order significantly improves synchronization. The results of this research emphasize that the combination of memristor and discrete neurons provides an effective tool for modeling and estimating biophysical effects in neurons and artificial neural networks. Full article
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>Time series and phase plane representation of neuronal firing patterns produced by Rulkov neuron model with a constant value of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> in (<b>a</b>) tonic firing mode for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>3.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, (<b>b</b>) periodic firing mode for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>6.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and (<b>c</b>) chaotic firing mode for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(<b>a</b>–<b>c</b>) Bifurcation diagrams of <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>φ</mi> </mrow> </semantics></math>, and a chaotic zero-one test diagram based on the change of induced power <span class="html-italic">k</span> for random initial conditions in the interval [−1, 1]; (<b>d</b>) chaotic zero-one test diagram in random condition; (<b>e</b>–<b>g</b>) Neural firing patterns in <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>φ</mi> </mrow> </semantics></math> for tonic spike behavior, periodic firing, chaotic firing.</p>
Full article ">Figure 3
<p>(<b>a</b>–<b>c</b>) Bifurcation diagrams of <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>φ</mi> </mrow> </semantics></math> based on the change of the control parameter <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math> with the (<b>d</b>) chaotic zero-one test diagram per random condition.</p>
Full article ">Figure 4
<p>(<b>a</b>–<b>c</b>) The <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>φ</mi> </mrow> </semantics></math> bifurcation diagrams are based on changing the control parameter <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math> with (<b>d</b>) chaotic zero-one test diagram per random condition.</p>
Full article ">Figure 5
<p>(<b>a</b>–<b>c</b>) Bifurcation diagrams of <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>φ</mi> </mrow> </semantics></math> based on the change of the externally imposed effect parameter <math display="inline"><semantics> <mrow> <mi>σ</mi> </mrow> </semantics></math> with (<b>d</b>) chaotic zero-one test diagram per random condition.</p>
Full article ">Figure 6
<p>Chaotic and periodic behavior of m-Rulkov model in two-dimensional parameter planes (<b>a</b>) for two parameters <math display="inline"><semantics> <mrow> <mi>k</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math>, (<b>b</b>) for two parameters <math display="inline"><semantics> <mrow> <mi>k</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math>, (<b>c</b>) for two parameters <math display="inline"><semantics> <mrow> <mi>k</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> </mrow> </semantics></math>, (<b>d</b>) for two parameters <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math>, (<b>e</b>) for two parameters <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> </mrow> </semantics></math>, (<b>f</b>) for two parameters <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> </mrow> </semantics></math>, where the value of the parameters is set at <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.46</mn> </mrow> </semantics></math> with random initial conditions.</p>
Full article ">Figure 7
<p>Time series and phase plane representation of neural firing patterns generated by m-Rulkov fractional-order model with constant <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.875</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.46</mn> </mrow> </semantics></math> in (<b>a</b>) tonic firing mode for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>3.41</mn> </mrow> </semantics></math>, (<b>b</b>) periodic firing mode for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>4.63</mn> </mrow> </semantics></math>, and (<b>c</b>) chaotic firing mode for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>It shows the bifurcation diagram of the variables <math display="inline"><semantics> <mrow> <mi>x</mi> <mfenced separators="|"> <mrow> <mi>n</mi> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mfenced separators="|"> <mrow> <mi>n</mi> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>φ</mi> <mfenced separators="|"> <mrow> <mi>n</mi> </mrow> </mfenced> </mrow> </semantics></math> according to the order of the fraction (<math display="inline"><semantics> <mrow> <mi>q</mi> </mrow> </semantics></math>) for the variables (<b>a</b>–<b>c</b>) <span class="html-italic">K</span> = [−0.2, 0.7], (<b>d</b>–<b>f</b>) <span class="html-italic">α</span> = [−0.2, 0.7], (<b>g</b>–<b>i</b>) <span class="html-italic">ε</span> = [−0.2, 0.7], (<b>j</b>–<b>l</b>) <span class="html-italic">σ</span> = [−0.2, 0.7] with random initial conditions.</p>
Full article ">Figure 9
<p>Bifurcations diagram of model parameters for variables <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics></math> according to the system parameter for different fractional order <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>∈</mo> <mo>[</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>, (<b>a</b>–<b>c</b>) for variable values <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mn>0.025</mn> <mo>,</mo> <mo> </mo> <mn>0.25</mn> <mo>,</mo> <mo> </mo> <mn>0.475</mn> <mo>,</mo> <mo> </mo> <mn>0.7</mn> </mrow> </semantics></math>, (<b>d</b>–<b>f</b>) for values of variable <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>7.5</mn> <mo>,</mo> <mo> </mo> <mn>10</mn> </mrow> </semantics></math>, (<b>g</b>–<b>i</b>) for values of variable <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mo>−</mo> <mn>0.05</mn> <mo>,</mo> <mo> </mo> <mn>0.0125</mn> <mo>,</mo> <mo> </mo> <mn>0.075</mn> <mo>,</mo> <mo> </mo> <mn>0.1375</mn> <mo>,</mo> <mo> </mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>j</b>–<b>l</b>) for values of variable <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>0.8125</mn> <mo>,</mo> <mo> </mo> <mn>1.125</mn> <mo>,</mo> <mo> </mo> <mn>1.4375</mn> <mo>,</mo> <mo> </mo> <mn>1.75</mn> </mrow> </semantics></math> are shown.</p>
Full article ">Figure 10
<p>Synchronization error of two discrete fractional-order models of the m-Rulkov neuron model with the change of coupling strength in the interval <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>d</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>d</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>]</mo> </mrow> </semantics></math> for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>.</p>
Full article ">
13 pages, 1987 KiB  
Article
Endovascular Repair of Ruptured Abdominal Aortic Aneurysms Using the Endurant™ Endograft
by Petroula Nana, George Volakakis, Konstantinos Spanos, George Kouvelos, Metaxia Bareka, Eleni Arnaoutoglou, Athanasios Giannoukas and Miltiadis Matsagkas
J. Clin. Med. 2024, 13(17), 5282; https://doi.org/10.3390/jcm13175282 - 6 Sep 2024
Viewed by 370
Abstract
Background: Endovascular aortic aneurysm repair (EVAR) represents a valid treatment modality for ruptured abdominal aortic aneurysms (rAAAs). This study aimed to present rAAA outcomes treated by EVAR using the Endurant endograft. Methods: A single-center retrospective analysis of consecutive patients treated with standard EVAR [...] Read more.
Background: Endovascular aortic aneurysm repair (EVAR) represents a valid treatment modality for ruptured abdominal aortic aneurysms (rAAAs). This study aimed to present rAAA outcomes treated by EVAR using the Endurant endograft. Methods: A single-center retrospective analysis of consecutive patients treated with standard EVAR (sEVAR) or parallel graft (PG)-EVAR for infra- or juxta/para-renal rAAA using the Endurant endograft (1 January 2008–31 December 2023) was undertaken. The primary outcomes were technical success, mortality, and reintervention. Follow-up outcomes, including survival and freedom from reintervention, were assessed using Kaplan–Meier estimates. Results: Eighty-eight patients were included (87.5% sEVAR and 12.5% PG-EVAR). The mean aneurysm diameter was 73.3 ± 19.3 mm (71.4 ± 22.2 mm sEVAR and 81.7 ± 33.0 mm PG-EVAR). Among 77 patients receiving sEVAR, 26 (33.8%) received an aorto-uni-iliac device. All PG-EVAR patients were managed with bifurcated devices, one receiving a single PG, seven double PGS, and three triple PGs. Technical success was 98.8% (100.0% sEVAR and 90.9% PG-EVAR). The 30-day mortality was 47.2% (50.7% sEVAR and 27.3% PG-EVAR), with nine (10.2%) deaths recorded on the table. The mean time of follow-up was 13 ± 9 months. After excluding 30-day deaths, the estimated survival was 75.5% (standard error (SE) 6.9%) at 24 months. The estimated freedom from reintervention was 89.7% (SE 5.7%) at 24 months. Only one endoleak type Ia event was recorded during follow-up. Conclusions: Endurant showed high technical success rates and low rates of endoleak type Ia events and reinterventions, despite the emergent setting of repair. rAAA is still a highly fatal condition within 30 days, with an acceptable mid-term survival of 30-day survivors at 75.5%. Full article
(This article belongs to the Special Issue Vascular Surgery: Recent Developments and Emerging Trends)
Show Figures

Figure 1

Figure 1
<p>PG-EVAR for ruptured AAA after previous EVAR. Eleven patients were managed with PG-EVAR. Among them, a patient with an 80 mm juxta-renal aneurysm after previous EVAR was treated with a single parallel graft targeting the preservation of the left renal artery (<b>A</b>,<b>B</b>). The short infrarenal neck did not permit the application of standard EVAR ((<b>B</b>); yellow arrow). The 36-month CTA confirmed the favorable technical outcome with no endoleak and a patent target vessel (<b>C</b>).</p>
Full article ">Figure 2
<p>The estimated survival after endovascular aortic aneurysm repair for a ruptured abdominal aortic aneurysm among survivors after 30 days.</p>
Full article ">Figure 3
<p>Freedom from reintervention after endovascular aortic aneurysm repair for a ruptured abdominal aortic aneurysm among survivors after 30 days.</p>
Full article ">
16 pages, 3838 KiB  
Article
The Generation and Evolution of High-Order Wheel Polygonal Wear from the Effects of Wheelset Rotation
by Yahong Dong and Shuqian Cao
Lubricants 2024, 12(9), 313; https://doi.org/10.3390/lubricants12090313 - 4 Sep 2024
Viewed by 392
Abstract
Polygonal wear affects driving safety and drastically shortens a wheel’s life. This work establishes a wheel–rail coupled system’s rotor dynamics model and a wheel polygonal wear model, taking into account the wheelset’s flexibility, the effect of the wheelset rotation, and the initial wheel [...] Read more.
Polygonal wear affects driving safety and drastically shortens a wheel’s life. This work establishes a wheel–rail coupled system’s rotor dynamics model and a wheel polygonal wear model, taking into account the wheelset’s flexibility, the effect of the wheelset rotation, and the initial wheel polygon. The energy approach is applied to study the stability of the self-excited vibration of a wheel–rail coupled system. The wheel polygonal wear generation and evolution mechanism is revealed, along with the impact of vehicle and rail characteristics on a wheel’s high-order polygon. The findings demonstrate that wheel polygonal wear must occur in order for the wheel–rail system to experience self-excited vibration, which is brought on by a feedback mechanism dominated by creepage velocity. Additionally, the Hopf bifurcation characteristic is displayed by the wheel–rail system’s self-excited vibration. Wheel polygonal wear is characterized by “fixed frequency and integer division”, and the wheelset flexibility largely determines the fixed frequency of high-order polygonal wear, which is mostly unaffected by the suspension characteristics of the vehicle. By decreasing the tire load, increasing the wheelset’s damping, and choosing a variable running speed, the progression of polygonal wear on wheels can be prevented. Future investigations on the suppression of wheel polygonal wear evolution can be guided by the results. Full article
Show Figures

Figure 1

Figure 1
<p>Rotor dynamic model of wheel–rail coupled system.</p>
Full article ">Figure 2
<p>Wheel lateral vibration model.</p>
Full article ">Figure 3
<p>A critical curve and vibration phase diagram of system stability: (<b>a</b>) <span class="html-italic">P</span><sub>0</sub>−<span class="html-italic">β</span> critical curve; (<b>b</b>) <span class="html-italic">ξ</span>−<span class="html-italic">β</span> critical curve; and (<b>c</b>) <span class="html-italic">P</span><sub>0</sub> = 80 kN, the phase diagram under different <span class="html-italic">β</span>.</p>
Full article ">Figure 4
<p>The influence of running speed: (<b>a</b>) the bifurcation diagram; (<b>b</b>) the frequency component; and (<b>c</b>) wear characteristics.</p>
Full article ">Figure 5
<p>The influence of lateral damping of the wheelset: (<b>a</b>) the bifurcation diagram; (<b>b</b>) the frequency component; and (<b>c</b>) wear characteristics.</p>
Full article ">Figure 6
<p>The influence of lateral stiffness of the wheelset: (<b>a</b>) the bifurcation diagram; (<b>b</b>) the frequency component; and (<b>c</b>) wear characteristics.</p>
Full article ">Figure 7
<p>Influence of primary suspension parameter: (<b>a</b>) effect of <span class="html-italic">k</span><sub>1</sub> on frequency composition; (<b>b</b>) effect of <span class="html-italic">k</span><sub>1</sub> on wear characteristics; (<b>c</b>) effect of <span class="html-italic">c</span><sub>1</sub> on frequency composition; and (<b>d</b>) effect of <span class="html-italic">c</span><sub>1</sub> on wear characteristics.</p>
Full article ">Figure 8
<p>Effect of rail characteristics:(<b>a</b>) effect of <span class="html-italic">k<sub>R</sub></span> on frequency composition; (<b>b</b>) effect of <span class="html-italic">k<sub>R</sub></span> on wear characteristics; (<b>c</b>) effect of <span class="html-italic">c<sub>R</sub></span> on frequency composition; (<b>d</b>) effect of <span class="html-italic">c<sub>R</sub></span> on wear characteristics.</p>
Full article ">Figure 9
<p>Cumulative wear characteristics of wheel polygon at constant running velocity.</p>
Full article ">Figure 10
<p>The influence of variable running speed operations on the polygonal wear of wheels: (<b>a</b>) the first-stage wear characteristics; (<b>b</b>) the second-stage wear characteristics down to a non-integer multiple; and (<b>c</b>) the second-stage wear characteristics down to an integer multiple.</p>
Full article ">
34 pages, 13933 KiB  
Article
LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency
by Michael V. Zaragoza, Thuy-Anh Bui, Halida P. Widyastuti, Mehrsa Mehrabi, Zixuan Cang, Yutong Sha, Anna Grosberg and Qing Nie
Cells 2024, 13(17), 1479; https://doi.org/10.3390/cells13171479 - 3 Sep 2024
Viewed by 404
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins [...] Read more.
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p><b>Study design.</b> (<b>A</b>) iPSC differentiation into cardiomyocytes. Using standard protocols, Protocol-A and Protocol-B, we differentiated three iPSC lines (CA1-A, CA1-B, PA1) and collected 12 cell samples (8 from CA1 and 4 from PA1), across seven time points, for scRNA-seq. Using Protocol-A, we differentiated six iPSC lines (CA1-B, U2, CA3, PA1, PA2, PA3) and collected six cell samples (3 from controls and 3 from patients) at Day 19 for Western blot analysis. (<b>B</b>) scRNA-seq bioinformatics workflow. We used standard pipelines and software packages for data processing and analyses. Three main steps were involved: I. data processing for initial read processing/mapping and sequential quality control processing of raw data sets; II. data analysis for identification of main cell types and possible cell subtypes by unsupervised clustering, annotation, and subset analyses; III. data combining and comparative analyses of samples (Patient vs. Control) for cell type and lineage differentially expressed genes (DEGs) and gene set enrichment.</p>
Full article ">Figure 2
<p><b>Complex heterogeneity: main cell types and shared subtypes.</b> Our scRNA-seq bioinformatics workflow included analyses of combined data: merged data (<b>top panel</b>) and integrated data (<b>bottom panel</b>). Each panel consists of four UMAP plots from left to right, with clusters marked and colored by time point, pre-annotation cluster number, main cell type or shared subtype, and imbalance score. To summarize results from our individual analyses, we created merged (non-integrated) data (<b>top panel</b>) by combining processed single-sample data for all 12 samples (110,521 total cells) across all seven time points: D00, D02, D04, D09A/B, D16, D19, and D30 (<b>first plot</b>). To compare Patient and Control samples, we created integrated data (<b>bottom panel</b>) by combining processed subset data for six pairs of ‘balanced’ cell types/subtypes (75,330 total cells) at four time points: D00, D09B, D16, and D19 (<b>1st plot</b>). Unsupervised clustering (<b>2nd plots</b>) found 49 clusters in merged data and 17 clusters in integrated data. Using known markers (<b>3rd plots</b>), we identified 10 major cell types: pluripotent cells (PP), mesendoderm (ME), cardiogenic mesoderm (CMESO), endoderm (ENDO), ectoderm (ECTO), endothelium (ENDOTH), cardiac progenitors (CPs), cardiomyocytes (CMs), epicardium-derived cells (EPDCs), and unknown (UNK) cells in merged data, as well as multiple possible shared subtypes in integrated data. Using condiments [<a href="#B51-cells-13-01479" class="html-bibr">51</a>], we calculated the “Imbalance Score” of each cell to assess if nearby cells had the same condition (<b>last plots</b>). We defined ‘balanced’ cell types/subtypes, as shared cells with low imbalance scores, which were then selected for comparative analyses between Patient and Control cells.</p>
Full article ">Figure 3
<p><b>Cell type-specific differentially expressed genes (cell type DEGs): top DEGs.</b> Our comparative analyses (Patient vs. Control cells) included cell type-specific differential expression and enrichment using integrated data at four time points: D00, D09B, D16, and D19. We identified cell type DEGs in six pairs of ‘balanced’ cell types/subtypes, with 75,330 total cells. Left panel: heat map for top DEGs in main cell types for 38,150 (51%) Control cells and 37,180 (49%) Patient cells. Top DEGs included <span class="html-italic">LMNA</span>, 11 X-linked (XL) genes, and six imprinted genes. Right panel: violin plots with boxplot by sample, day, and cell type for <span class="html-italic">LMNA</span>, XL genes, <span class="html-italic">XIST</span> and <span class="html-italic">GPC3</span>, and imprinted genes, <span class="html-italic">SNRPN</span> and <span class="html-italic">MEG3</span>. Overall, these results show Patient compared to Control cells had <span class="html-italic">LMNA</span> underexpressed in both CMs and EPDCs at Day 19, limited <span class="html-italic">XIST</span> expression for all time points and shared cell types, XL gene <span class="html-italic">GPC3</span> overexpressed in CM/CP and EPDCs, <span class="html-italic">SNRPN</span> underexpressed for all time points and most shared cell types, and <span class="html-italic">MEG3</span> overexpressed in PPs and EPDCs.</p>
Full article ">Figure 4
<p><b>Cell type-specific differentially expressed genes (cell type DEGs): enrichment.</b> Our comparative analyses (Patient vs. Control cells) included cell type-specific differential expression and enrichment using integrated data at four time points: D00, D09B, D16, and D19. We identified cell type DEGs in 14 pairs of ‘balanced’ cell types/subtypes, with 71,541 total cells. (<b>A</b>) Day 16 enrichment. Shown are GSEA [<a href="#B61-cells-13-01479" class="html-bibr">61</a>] results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>top panel</b>) for 8639 CM-A1A2 cells and 3133 EPDC, with numbers of DEG and enriched MSigDB Hallmark gene sets, dot plots with the normalized enrichment score (NES) and adjusted <span class="html-italic">p</span>-values, and GSEA enrichment plots. We used module scoring in Seurat (<b>bottom panel</b>) to compare the expression patterns of key DEGs in enriched gene sets for Subset-A data (12,700 CM) and Subset-B data (3133 EPDC). For each gene set, shown are UMAP plots with cell subtype and module scores, as well as violin plots with boxplot by cell subtype, condition, and cell subtype–condition. Overall, these results at Day 16 support the dysregulation of TGF Beta signaling, EMT developmental pathway, OXPHOS and glycolysis metabolism, and cell proliferation (via MYC target genes) in Patient CMs and mTORC1 signaling in Patient EPDCs. (<b>B</b>) Day 19 enrichment. Shown are cell type DEG results using Seurat and EnhancedVolcano [<a href="#B63-cells-13-01479" class="html-bibr">63</a>] (<b>top panels</b>) and ORA [<a href="#B64-cells-13-01479" class="html-bibr">64</a>] results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>bottom panels</b>) for 9978 CM-A1 cells and 2258 EPDC with the UMAP plot of cell subtypes, number of threshold DEGs, and volcano plot [<a href="#B63-cells-13-01479" class="html-bibr">63</a>] with top ten DEGs labeled, number of under/overexpressed DEGs and enriched GO biological processes gene sets, dot plots with gene ratio and adjusted <span class="html-italic">p</span>-values, and enrichment maps. Overall, these results at Day 19 support the dysregulation of cardiogenesis, with both underexpressed DEGs, including <span class="html-italic">LMNA</span>, and overexpressed DEGs, including sarcomere genes, in Patient CMs, as well as epigenetic/heterochromatin dysregulation, with underexpression of <span class="html-italic">XIST</span>, <span class="html-italic">NDN</span>, and <span class="html-italic">LMNA</span>, in Patient EPDCs.</p>
Full article ">Figure 4 Cont.
<p><b>Cell type-specific differentially expressed genes (cell type DEGs): enrichment.</b> Our comparative analyses (Patient vs. Control cells) included cell type-specific differential expression and enrichment using integrated data at four time points: D00, D09B, D16, and D19. We identified cell type DEGs in 14 pairs of ‘balanced’ cell types/subtypes, with 71,541 total cells. (<b>A</b>) Day 16 enrichment. Shown are GSEA [<a href="#B61-cells-13-01479" class="html-bibr">61</a>] results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>top panel</b>) for 8639 CM-A1A2 cells and 3133 EPDC, with numbers of DEG and enriched MSigDB Hallmark gene sets, dot plots with the normalized enrichment score (NES) and adjusted <span class="html-italic">p</span>-values, and GSEA enrichment plots. We used module scoring in Seurat (<b>bottom panel</b>) to compare the expression patterns of key DEGs in enriched gene sets for Subset-A data (12,700 CM) and Subset-B data (3133 EPDC). For each gene set, shown are UMAP plots with cell subtype and module scores, as well as violin plots with boxplot by cell subtype, condition, and cell subtype–condition. Overall, these results at Day 16 support the dysregulation of TGF Beta signaling, EMT developmental pathway, OXPHOS and glycolysis metabolism, and cell proliferation (via MYC target genes) in Patient CMs and mTORC1 signaling in Patient EPDCs. (<b>B</b>) Day 19 enrichment. Shown are cell type DEG results using Seurat and EnhancedVolcano [<a href="#B63-cells-13-01479" class="html-bibr">63</a>] (<b>top panels</b>) and ORA [<a href="#B64-cells-13-01479" class="html-bibr">64</a>] results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>bottom panels</b>) for 9978 CM-A1 cells and 2258 EPDC with the UMAP plot of cell subtypes, number of threshold DEGs, and volcano plot [<a href="#B63-cells-13-01479" class="html-bibr">63</a>] with top ten DEGs labeled, number of under/overexpressed DEGs and enriched GO biological processes gene sets, dot plots with gene ratio and adjusted <span class="html-italic">p</span>-values, and enrichment maps. Overall, these results at Day 19 support the dysregulation of cardiogenesis, with both underexpressed DEGs, including <span class="html-italic">LMNA</span>, and overexpressed DEGs, including sarcomere genes, in Patient CMs, as well as epigenetic/heterochromatin dysregulation, with underexpression of <span class="html-italic">XIST</span>, <span class="html-italic">NDN</span>, and <span class="html-italic">LMNA</span>, in Patient EPDCs.</p>
Full article ">Figure 5
<p><b>Lineage-specific differentially expressed genes (lineage DEGs): top DEGs and enrichment for pluripotent lineage.</b> Our comparative analyses (Patient vs. Control) included lineage-specific differential expression and enrichment using integrated data of 18 shared subtypes (62,488 total cells). This included D00 pluripotent (PP) subtypes for the PP lineage (19,346 total cells), a single trajectory from PP-A to PP-B. Shown are UMAP plots with trajectory and principal curves using Slingshot [<a href="#B65-cells-13-01479" class="html-bibr">65</a>] (<b>top left</b>), a heat map by condition, along pseudotime points using pheatmap and condiments [<a href="#B51-cells-13-01479" class="html-bibr">51</a>] (<b>top right</b>), and smoother plots and gene count plots using TradeSeq [<a href="#B66-cells-13-01479" class="html-bibr">66</a>] (<b>bottom</b>). (<b>A</b>) PP Lineage: top DEGs in 19,346 total cells. We identified 97 conditional test DEGs that clustered into two groups: A (74 genes) and B (23 genes). Top DEGs included <span class="html-italic">XIST</span> (#1), underexpressed, and the imprinted gene <span class="html-italic">MEG8</span>, overexpressed in Patient PPs, along all pseudotime points. <span class="html-italic">LMNA</span> was not found as a lineage DEGs; however, <span class="html-italic">LMNA</span> expression was lower in Patient compared to Control PPs at all pseudotime points. (<b>B</b>) PP lineage: enrichment. Shown are ORA enrichment results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>left panel</b>) with DEG numbers by group and enriched GO BP gene sets (GSs), top GSs, key DEGs, and enrichment maps. To compare expression of key DEGs in enriched GSs, we used Seurat Module Scoring (<b>right panel</b>) and violin plots with boxplots. Results support dysregulation of metal homeostasis, with overexpression of 5 to 11 genes from DEG Group-A, including four metallothionein protein (<span class="html-italic">MT</span>) genes and RNA pol II transcription, with underexpression of 12 DEGs from DEG Group-B, including 10 Zinc-finger protein (<span class="html-italic">ZNF</span>) genes in Patient PPs.</p>
Full article ">Figure 5 Cont.
<p><b>Lineage-specific differentially expressed genes (lineage DEGs): top DEGs and enrichment for pluripotent lineage.</b> Our comparative analyses (Patient vs. Control) included lineage-specific differential expression and enrichment using integrated data of 18 shared subtypes (62,488 total cells). This included D00 pluripotent (PP) subtypes for the PP lineage (19,346 total cells), a single trajectory from PP-A to PP-B. Shown are UMAP plots with trajectory and principal curves using Slingshot [<a href="#B65-cells-13-01479" class="html-bibr">65</a>] (<b>top left</b>), a heat map by condition, along pseudotime points using pheatmap and condiments [<a href="#B51-cells-13-01479" class="html-bibr">51</a>] (<b>top right</b>), and smoother plots and gene count plots using TradeSeq [<a href="#B66-cells-13-01479" class="html-bibr">66</a>] (<b>bottom</b>). (<b>A</b>) PP Lineage: top DEGs in 19,346 total cells. We identified 97 conditional test DEGs that clustered into two groups: A (74 genes) and B (23 genes). Top DEGs included <span class="html-italic">XIST</span> (#1), underexpressed, and the imprinted gene <span class="html-italic">MEG8</span>, overexpressed in Patient PPs, along all pseudotime points. <span class="html-italic">LMNA</span> was not found as a lineage DEGs; however, <span class="html-italic">LMNA</span> expression was lower in Patient compared to Control PPs at all pseudotime points. (<b>B</b>) PP lineage: enrichment. Shown are ORA enrichment results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>left panel</b>) with DEG numbers by group and enriched GO BP gene sets (GSs), top GSs, key DEGs, and enrichment maps. To compare expression of key DEGs in enriched GSs, we used Seurat Module Scoring (<b>right panel</b>) and violin plots with boxplots. Results support dysregulation of metal homeostasis, with overexpression of 5 to 11 genes from DEG Group-A, including four metallothionein protein (<span class="html-italic">MT</span>) genes and RNA pol II transcription, with underexpression of 12 DEGs from DEG Group-B, including 10 Zinc-finger protein (<span class="html-italic">ZNF</span>) genes in Patient PPs.</p>
Full article ">Figure 6
<p><b>Lineage-specific differentially expressed genes (lineage DEGs): cardiac progenitor lineages—top DEGs.</b> Our comparative analyses (Patient vs. Control cells) included lineage-specific differential expression and enrichment using integrated data of 18 shared subtypes (62,488 total cells). This included D09B, D16, and D19 cardiac progenitor (CP), CM, and EPDC subtypes for the CP lineages (43,142 total cells), a bifurcating trajectory starting at CP-1 and ending at CM-2 (Lineage-1: CPs to CMs) and EPDCs (Lineage-2: CPs to EPDCs). Shown are UMAP plots with trajectory and principal curves using Slingshot [<a href="#B65-cells-13-01479" class="html-bibr">65</a>] (<b>top left</b>), heat map by condition, along pseudotime points, using pheatmap and condiments [<a href="#B51-cells-13-01479" class="html-bibr">51</a>] (<b>top right</b>), and smoother plots and gene count plots, using TradeSeq [<a href="#B66-cells-13-01479" class="html-bibr">66</a>] (<b>bottom</b>). (<b>A</b>) CP Lineage-1: CPs to CMs—Top DEG. We identified 391 total conditional test DEGs, with the top 100 DEGs clustered into four groups: A (10 genes), B (10 genes), C (59 genes), and D (21 genes). The top DEGs included <span class="html-italic">XIST</span> (#1), underexpressed, and <span class="html-italic">GPC1</span> (#2), overexpressed in Patient cells, along all pseudotime points. (<b>B</b>) CP Lineage-2: CPs to EPDCs—top DEGs. We identified 25 total conditional test DEGs that clustered into three groups: A (19 genes), B (3 genes), and C (3 genes). Top DEGs included XL <span class="html-italic">DIAPH2</span>, overexpressed, and <span class="html-italic">ZNF208</span>, underexpressed in Patient cells, along all pseudotime points and cell cycle gene <span class="html-italic">CCNB2</span>, overexpressed in Patient CP cells. Similar to the PP lineage, <span class="html-italic">LMNA</span> was not identified as a DEG in both CP lineages with lower expression in Patient compared to Control cells at all pseudotime points.</p>
Full article ">Figure 6 Cont.
<p><b>Lineage-specific differentially expressed genes (lineage DEGs): cardiac progenitor lineages—top DEGs.</b> Our comparative analyses (Patient vs. Control cells) included lineage-specific differential expression and enrichment using integrated data of 18 shared subtypes (62,488 total cells). This included D09B, D16, and D19 cardiac progenitor (CP), CM, and EPDC subtypes for the CP lineages (43,142 total cells), a bifurcating trajectory starting at CP-1 and ending at CM-2 (Lineage-1: CPs to CMs) and EPDCs (Lineage-2: CPs to EPDCs). Shown are UMAP plots with trajectory and principal curves using Slingshot [<a href="#B65-cells-13-01479" class="html-bibr">65</a>] (<b>top left</b>), heat map by condition, along pseudotime points, using pheatmap and condiments [<a href="#B51-cells-13-01479" class="html-bibr">51</a>] (<b>top right</b>), and smoother plots and gene count plots, using TradeSeq [<a href="#B66-cells-13-01479" class="html-bibr">66</a>] (<b>bottom</b>). (<b>A</b>) CP Lineage-1: CPs to CMs—Top DEG. We identified 391 total conditional test DEGs, with the top 100 DEGs clustered into four groups: A (10 genes), B (10 genes), C (59 genes), and D (21 genes). The top DEGs included <span class="html-italic">XIST</span> (#1), underexpressed, and <span class="html-italic">GPC1</span> (#2), overexpressed in Patient cells, along all pseudotime points. (<b>B</b>) CP Lineage-2: CPs to EPDCs—top DEGs. We identified 25 total conditional test DEGs that clustered into three groups: A (19 genes), B (3 genes), and C (3 genes). Top DEGs included XL <span class="html-italic">DIAPH2</span>, overexpressed, and <span class="html-italic">ZNF208</span>, underexpressed in Patient cells, along all pseudotime points and cell cycle gene <span class="html-italic">CCNB2</span>, overexpressed in Patient CP cells. Similar to the PP lineage, <span class="html-italic">LMNA</span> was not identified as a DEG in both CP lineages with lower expression in Patient compared to Control cells at all pseudotime points.</p>
Full article ">Figure 7
<p><b>Lineage-specific differentially expressed genes (lineage DEGs): cardiac progenitor lineage-enrichment.</b> For Lineage-1: CP into CM, shown are ORA enrichment results using Cluster Profiler [<a href="#B62-cells-13-01479" class="html-bibr">62</a>] (<b>left panel</b>) with numbers of DEGs by group and enriched GO BP gene sets (GSs), top GSs, key DEGs, and enrichment maps. To compare the expression of key DEGs in enriched GSs, we used Module Scoring in Seurat (<b>right panel</b>) and violin plots with boxplots. For Lineage-1: CPs into CMs, these results support dysregulation of Growth Factor (GF) Response with overexpression of seven Group-C DEGs, including <span class="html-italic">GPC1</span> and <span class="html-italic">MT3</span>, metal homeostasis with overexpression of three Group-C DEGs, including two metallothionein proteins (<span class="html-italic">MT1X</span> and <span class="html-italic">MT3</span>) genes, and BMP signaling pathway, with overexpression of four Group-D DEGs: <span class="html-italic">BMP4</span>, XL <span class="html-italic">GPC3</span>, <span class="html-italic">FST</span>, and <span class="html-italic">LRP2</span>.</p>
Full article ">Figure 8
<p><b>Lamin A/C protein levels at Day 19.</b> (<b>A</b>) Western blot (WB). We performed immunoblotting on lysates from differentiated cells with three biological replicates (BRs) at Day 19 for Patient (PA1, PA2, and PA3) and Control (CA1-B, U2, and CA3) iPSC lines. The image (Blot 3) shown was taken using the Azure c600 imaging system with fluorescent detection in red for Lamin A (74 kDa) and Lamin C (62 kDa) and in green for Beta-Actin (42 kDa) from Control fibroblast (CA1) (lane 1, positive control) and the three age- and sex-matched pairs: CA1 and PA1 (lane 2 and 3), CA3 and PA3 (lane 4 and 5), and U2 and PA2 (lane 6 and 7). Positions and sizes of molecular weight (MW) marker proteins are given on the left margin. (<b>B</b>) Lamin A/C quantification: Controls vs. Patients. We measured the band volume (BV) for Lamin A, Lamin C, and Beta-Actin using AzureSpot software (v2.2.167) and calculated normalized ratio (NR = lamin BV/Beta-Actin BV) of each sample (CA1-B, PA1, U2, PA2, CA3, and PA3) for three WB experiments (Blot 1–3) as technical replicates (TRs). Comparison of the Control (n = 3 BRs: CA1-B, U2, CA3) vs. Patient (n = 3 BRs: PA1, PA2, PA3) data showed a decrease in mean protein levels for Lamin A, Lamin C, Lamin A + C in the Patient, compared to Control cells; these differences were not statistically significant (<span class="html-italic">p</span> &gt; 0.05). Error bars denote SD of the mean protein levels of BRs. (<b>C</b>) Pairwise comparisons: fold change of total lamin A/C. For each matched pair, we calculated fold change for Lamin A + C by dividing the Control and Patient protein levels by the Control protein level. Each chart shows the fold change from three TRs (Blot 1–3) as individual data points and mean fold change shown as column. Statistical analysis of the fold change revealed a significant decreases in protein level for Lamin A + C of PA1 (**** <span class="html-italic">p</span> &lt; 0.0001) and PA2 (*** <span class="html-italic">p</span> &lt; 0.001) but no significant difference for PA3 (<span class="html-italic">p</span> = 0.98) compared to matched Control.</p>
Full article ">
12 pages, 950 KiB  
Article
Analysis of a Bifurcation and Stability of Equilibrium Points for Jeffrey Fluid Flow through a Non-Uniform Channel
by Mary G. Thoubaan, Dheia G. Salih Al-Khafajy, Abbas Kareem Wanas, Daniel Breaz and Luminiţa-Ioana Cotîrlă
Symmetry 2024, 16(9), 1144; https://doi.org/10.3390/sym16091144 - 3 Sep 2024
Viewed by 403
Abstract
This study aims to analyze how the parameter flow rate and amplitude of walling waves affect the peristaltic flow of Jeffrey’s fluid through an irregular channel. The movement of the fluid is described by a set of non-linear partial differential equations that consider [...] Read more.
This study aims to analyze how the parameter flow rate and amplitude of walling waves affect the peristaltic flow of Jeffrey’s fluid through an irregular channel. The movement of the fluid is described by a set of non-linear partial differential equations that consider the influential parameters. These equations are transformed into non-dimensional forms with appropriate boundary conditions. The study also utilizes dynamic systems theory to analyze the effects of the parameters on the streamline and to investigate the position of critical points and their local and global bifurcation of flow. The research presents numerical and analytical methods to illustrate the impact of flow rate and amplitude changes on fluid transport. It identifies three types of streamline patterns that occur: backwards, trapping, and augmented flow resulting from changes in the value of flow rate parameters. Full article
Show Figures

Figure 1

Figure 1
<p>The graphical representation of the geometry of a wall surface.</p>
Full article ">Figure 2
<p>A streamline pattern is shown for system (<a href="#FD18-symmetry-16-01144" class="html-disp-formula">18</a>) with different value flow rates <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>1.9</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> with constant amplitude <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. Panel (<b>A<sub>1</sub></b>) shows the backward flow of fluid with <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and there are just saddle points. The Panels (<b>A<sub>2</sub></b>,<b>A<sub>3</sub></b>) display two significant changes physically and dynamically with <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.089</mn> <mo>,</mo> <mo> </mo> <mn>1.3</mn> </mrow> </semantics></math> birth red/black critical points refer to center and saddle points, respectively. Also, the appearance of a trapping zone is inside the heteroclinic connection that is created between two different saddle points. The last panel, (<b>A<sub>4</sub></b>), illustrates augmented flow where <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.7</mn> </mrow> </semantics></math> and changes the number of saddle points with a new formation heteroclinic connection.</p>
Full article ">Figure 3
<p>(The description is as for <a href="#symmetry-16-01144-f002" class="html-fig">Figure 2</a>, except for the change in the value of the parameter <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>). Streamline patterns for different value flow rates <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>1</mn> </msub> </semantics></math> with constant amplitude <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>. Panel (<b>B<sub>1</sub></b>) shows the backward flow of fluid with <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, and there are just saddle points. Panels (<b>B<sub>2</sub></b>,<b>B<sub>3</sub></b>) display two significant changes physically and dynamically with <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1.3</mn> </mrow> </semantics></math> birth red/black critical points refer to center and saddle points, respectively. In addition, there is an appearance of a trapping zone inside the heteroclinic connection that is created between two different saddle points. The last panel, (<b>B<sub>4</sub></b>), illustrates augmented flow where <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> and changes the number of saddle points with a new formation heteroclinic connection.</p>
Full article ">Figure 4
<p>This figure shows the bifurcation diagram with <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>1</mn> </msub> </semantics></math> against <math display="inline"><semantics> <msub> <mi>u</mi> <mn>2</mn> </msub> </semantics></math> for Equation (<a href="#FD18-symmetry-16-01144" class="html-disp-formula">18</a>) with the various values of parameters <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>0.7</mn> <mo>,</mo> <mo> </mo> <mn>0.9</mn> </mrow> </semantics></math> in the panels (<b>A</b>, <b>B</b> and <b>C</b>), respectively. Red/black lines refer to stable/unstable points, green indicates periodic orbit, and a single saddle node is represented by a blue line. At (<b>E</b>), there are two branch lines of saddle-node bifurcation (dash–circle lines) and three regions have a light color (blue, yellow, green) that indicate the existence of three complicated behaviors (backward, trapping, augment), respectively. The symbols I, III, and IV are the number of critical points in every zone.</p>
Full article ">
16 pages, 1329 KiB  
Review
Current Challenges in Coronary Bifurcation Interventions
by Panayot Panayotov, Niya Mileva and Dobrin Vassilev
Medicina 2024, 60(9), 1439; https://doi.org/10.3390/medicina60091439 - 3 Sep 2024
Viewed by 362
Abstract
Coronary bifurcation lesions account for a significant proportion of all percutaneous coronary interventions (PCIs). Interventional treatment of coronary bifurcations is related to significant technical challenges, high complication rates, and worse angiographic and long-term clinical outcomes. This review covers the specific features and structure [...] Read more.
Coronary bifurcation lesions account for a significant proportion of all percutaneous coronary interventions (PCIs). Interventional treatment of coronary bifurcations is related to significant technical challenges, high complication rates, and worse angiographic and long-term clinical outcomes. This review covers the specific features and structure of coronary bifurcation and explores the main challenges in the interventional treatment of these lesions. This review evaluates various methodologies designed to address these lesions, considering factors such as plaque distribution and bifurcation geometry. It also emphasizes the limitations associated with current techniques. A novel combined optimization approach applied in the interventional treatment of coronary bifurcation may offer superior procedural and long-term outcomes. This combined technique could potentially address the drawbacks of each method, providing a more effective solution for optimizing stent placement in bifurcation lesions. Refining and evaluating these combined techniques is essential for improving clinical outcomes in patients with bifurcation lesions. Full article
(This article belongs to the Special Issue Early Diagnosis and Management of Coronary Artery Disease)
Show Figures

Figure 1

Figure 1
<p>Coronary bifurcation structure: D<sub>1</sub>—main vessel diameter; D<sub>2</sub>—main branch diameter; D<sub>3</sub>—side branch diameter.</p>
Full article ">Figure 2
<p>Kissing balloon inflation (KBI) technique. MV—main vessel; SB—side branch.</p>
Full article ">Figure 3
<p>Proximal optimization technique (POT). The grey arrow annotates the ballon for optimization. Black arrows annotate stent strut apposition.</p>
Full article ">
25 pages, 577 KiB  
Article
Invariant Sets, Global Dynamics, and the Neimark–Sacker Bifurcation in the Evolutionary Ricker Model
by Rafael Luís and Brian Ryals
Symmetry 2024, 16(9), 1139; https://doi.org/10.3390/sym16091139 - 2 Sep 2024
Viewed by 364
Abstract
In this paper, we study the local, global, and bifurcation properties of a planar nonlinear asymmetric discrete model of Ricker type that is derived from a Darwinian evolution strategy based on evolutionary game theory. We make a change of variables to both reduce [...] Read more.
In this paper, we study the local, global, and bifurcation properties of a planar nonlinear asymmetric discrete model of Ricker type that is derived from a Darwinian evolution strategy based on evolutionary game theory. We make a change of variables to both reduce the number of parameters as well as bring symmetry to the isoclines of the mapping. With this new model, we demonstrate the existence of a forward invariant and globally attracting set where all the dynamics occur. In this set, the model possesses two symmetric fixed points: the origin, which is always a saddle fixed point, and an interior fixed point that may be globally asymptotically stable. Moreover, we observe the presence of a supercritical Neimark–Sacker bifurcation, a phenomenon that is not present in the original non-evolutionary model. Full article
(This article belongs to the Special Issue Symmetry in Mathematical Models)
Show Figures

Figure 1

Figure 1
<p>The graph of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>C</mi> </mrow> </semantics></math> separates the plane into two distinct regions. All points in the interior of the shaded region have two distinct preimages. Points in the unshaded region have no preimage.</p>
Full article ">Figure 2
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <msub> <mi>C</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mi>F</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>L</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, and a line <span class="html-italic">L</span> with slope <math display="inline"><semantics> <mrow> <mo>−</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mstyle> </mrow> </semantics></math> and its image under <span class="html-italic">F</span> are shown. The image of the line is symmetric about the point on <math display="inline"><semantics> <mrow> <mi>L</mi> <msub> <mi>C</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, where each point to the lower right of <math display="inline"><semantics> <mrow> <mi>L</mi> <msub> <mi>C</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> may be identified with a point to the upper left, as they have the same dynamics. To illustrate this, four points <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mrow> </semantics></math> are shown on <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> </semantics></math>, with their preimages under <span class="html-italic">F</span> marked on <span class="html-italic">L</span>. For instance, the two points marked <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> both map to <span class="html-italic">A</span> and share the same future thereafter. The values used in this graph are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math>. Lemmas 1, 2, and Theorem 2 have shown that this depiction is typical for all lines with this slope for any <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The region <span class="html-italic">U</span> bounded by <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and the curve <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>C</mi> </mrow> </semantics></math>, where the parameters values are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math>. This region is forward invariant, globally attracting, and the restriction of <span class="html-italic">F</span> to <span class="html-italic">U</span> is injective, as proved in Theorem 3. Lemma 2 shows that the general shape of region <span class="html-italic">U</span> is typical.</p>
Full article ">Figure 4
<p>The figure depicts a generic representation of the regions <math display="inline"><semantics> <msub> <mi>R</mi> <mi>i</mi> </msub> </semantics></math> as determined by the isoclines and the curve <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>C</mi> </mrow> </semantics></math>. In the plot shown, the parameter values are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>, though Lemma 2, and the equations for the isoclines show that this plot is typical for all <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>A prototype of the stability region in the parameter space of the interior fixed point <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>)</mo> </mrow> </semantics></math> of Model (<a href="#FD3-symmetry-16-01139" class="html-disp-formula">3</a>).</p>
Full article ">Figure 6
<p>Numerically computed the unstable manifolds of the origin for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>. The <math display="inline"><semantics> <mi>β</mi> </semantics></math> values in the four plots are <math display="inline"><semantics> <mrow> <mn>0.1</mn> </mrow> </semantics></math>, 1, 20, and 100, respectively. The fixed point <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math> is locally asymptotically stable for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>&lt;</mo> <mn>65</mn> </mrow> </semantics></math>. In the first three images, <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>)</mo> </mrow> </semantics></math> is locally asymptotically stable and the unstable manifold <math display="inline"><semantics> <mrow> <msup> <mi>W</mi> <mi>u</mi> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> is asymptotic to the fixed point <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>)</mo> </mrow> </semantics></math>. For small <math display="inline"><semantics> <mi>β</mi> </semantics></math>, it converges directly to it, while for larger <math display="inline"><semantics> <mi>β</mi> </semantics></math> it spirals into it. In the last image, these spirals converge to an invariant curve instead of to the unstable fixed point.</p>
Full article ">Figure 7
<p>Numerically computed unstable manifold <math display="inline"><semantics> <mrow> <msup> <mi>W</mi> <mi>u</mi> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>, along with lines parallel to the eigenvectors at <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>∗</mo> </msup> <mo>)</mo> </mrow> </semantics></math> (shown as dotted lines). The isoclines are also shown.</p>
Full article ">
10 pages, 256 KiB  
Article
Coexistence of Algebraic Limit Cycles and Small Limit Cycles of Two Classes of Near-Hamiltonian Systems with a Nilpotent Singular Point
by Huimei Liu, Meilan Cai and Feng Li
Axioms 2024, 13(9), 593; https://doi.org/10.3390/axioms13090593 - 30 Aug 2024
Viewed by 291
Abstract
In this paper, two classes of near-Hamiltonian systems with a nilpotent center are considered: the coexistence of algebraic limit cycles and small limit cycles. For the first class of systems, there exist 2n+1 limit cycles, which include an algebraic limit [...] Read more.
In this paper, two classes of near-Hamiltonian systems with a nilpotent center are considered: the coexistence of algebraic limit cycles and small limit cycles. For the first class of systems, there exist 2n+1 limit cycles, which include an algebraic limit cycle and 2n small limit cycles. For the second class of systems, there exist n2+3n+22 limit cycles, including an algebraic limit cycle and n2+3n2 small limit cycles. Full article
(This article belongs to the Special Issue Differential Equations and Its Application)
14 pages, 652 KiB  
Article
The Transmission and Textual Transformation of the Shisong lü 十誦律 from the 6th to 13th Centuries
by Limei Chi
Religions 2024, 15(9), 1057; https://doi.org/10.3390/rel15091057 - 30 Aug 2024
Viewed by 370
Abstract
The Shisong lü 十誦律, translated in the early 5th century, remains the only complete version of this Buddhist Vinaya text preserved to date and represents the first Vinaya text translated into Chinese. This Vinaya text introduced standardized terminology that significantly influenced subsequent translations [...] Read more.
The Shisong lü 十誦律, translated in the early 5th century, remains the only complete version of this Buddhist Vinaya text preserved to date and represents the first Vinaya text translated into Chinese. This Vinaya text introduced standardized terminology that significantly influenced subsequent translations of Vinaya texts and profoundly impacted Chinese Buddhism during the Six Dynasties period. Due to its complex translation history, the text is bifurcated into two lineages: the Northern lineage, featuring an initial 58-scroll version (without a preface), and the Southern lineage, with an expanded 61-scroll version (including a preface). This study examines the two oldest extant manuscripts of the Lüxu 律序 (Preface to the Shisong lü) from the Southern lineage—one from the Dunhuang collection currently preserved in Japan and the other from the Nara Japan. Through intensive comparisons with woodblock editions, these manuscripts from Dunhuang, and ancient Japanese manuscript Buddhist canons, this study not only traces the textual evolution of the Southern lineage of the Shisong lü from the 6th to the 13th centuries but also offers new insights into both the historical development and the relationship between these two lineages of the text. Methodologically, this paper provides inspiration for textual criticism of the Vinaya in particular and Buddhist studies in general. Full article
Back to TopTop