[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,719)

Search Parameters:
Keywords = bifurcation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7406 KiB  
Article
A Novel Chaos Control Strategy for a Single-Phase Photovoltaic Energy Storage Inverter
by Renxi Gong, Tao Liu, Yan Qin, Jiawei Xu and Zhihuan Wei
Electronics 2024, 13(14), 2854; https://doi.org/10.3390/electronics13142854 - 19 Jul 2024
Viewed by 440
Abstract
The single-phase photovoltaic energy storage inverter represents a pivotal component within photovoltaic energy storage systems. Its operational dynamics are often intricate due to its inherent characteristics and the prevalent usage of nonlinear switching elements, leading to nonlinear characteristic bifurcation such as bifurcation and [...] Read more.
The single-phase photovoltaic energy storage inverter represents a pivotal component within photovoltaic energy storage systems. Its operational dynamics are often intricate due to its inherent characteristics and the prevalent usage of nonlinear switching elements, leading to nonlinear characteristic bifurcation such as bifurcation and chaos. In this paper, a deep investigation of a single-phase H-bridge photovoltaic energy storage inverter under proportional–integral (PI) control is made, and a sinusoidal delayed feedback control (SDFC) strategy to mitigate the nonlinear characteristics is proposed. A frequency domain mapping model of the system is established, then, by analyzing the Jacobian matrix and equilibrium points, the bifurcation diagram is formed, and finally, the stable operational domains are determined under double and triple bifurcation parameters. Through simulation experiments, the efficacy of this strategy is validated. The findings show that through the control strategy, the stable operational envelope of the inverter can be greatly expanded and the nonlinear dynamic phenomena can be notably suppressed. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of photovoltaic energy storage inverter with PI regulator.</p>
Full article ">Figure 2
<p>Operation states of the inverter.</p>
Full article ">Figure 3
<p>Bifurcation diagrams in PI control mode with varying circuit parameters: (<b>a</b>) bifurcation diagram of the variation in inductor current with <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math>; (<b>b</b>) bifurcation diagram of the variation in inductor current with <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>; (<b>c</b>) bifurcation diagram of the variation in inductor current with <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Trajectories of system eigenvalue variation with circuit parameters: (<b>a</b>) trajectories of the variation in the system’s eigenvalues with <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> from 0.1 to 3; (<b>b</b>) trajectories of the variation in the system’s eigenvalues with <span class="html-italic">E</span> from 200 V to 600 V; (<b>c</b>) trajectories of the variation in the system’s eigenvalues with <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math> from 1 mH to 20 mH.</p>
Full article ">Figure 5
<p>Schematic diagram of photovoltaic energy storage inverter with an EDFC PI regulator.</p>
Full article ">Figure 6
<p>Trajectories of system eigenvalue variation with circuit parameters: (<b>a</b>) trajectories of the variation in the system’s eigenvalues with <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> from 0.1 to 2; (<b>b</b>) trajectories of the variation in the system’s eigenvalues with <span class="html-italic">E</span> from 200 V to 600 V; (<b>c</b>) trajectories of the variation in the system’s eigenvalues with <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math> from 1 mH to 20 mH.</p>
Full article ">Figure 7
<p>Schematic diagram of photovoltaic energy storage inverter with SDFC PI regulator.</p>
Full article ">Figure 8
<p>Bifurcation diagrams in SDFC mode with varying circuit parameters: (<b>a</b>) bifurcation diagram of the variation in inductor current with <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math>; (<b>b</b>) bifurcation diagram of the variation in inductor current with <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>; (<b>c</b>) bifurcation diagram of the variation in inductor current with <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Trajectories of system eigenvalue variation with circuit parameters: (<b>a</b>) trajectories of the variation in the system’s eigenvalues with <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> from 0.1 to 5; (<b>b</b>) trajectories of the variation in the system’s eigenvalues with <span class="html-italic">E</span> from 200 V to 1600 V; (<b>c</b>) trajectories of the variation in the system’s eigenvalues with <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math> from 2 mH to 20 mH.</p>
Full article ">Figure 10
<p>Stability boundary: (<b>a</b>) stability boundary for the <span class="html-italic">E</span> and <span class="html-italic">L</span> parameters; (<b>b</b>) stability boundary for the <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> and <span class="html-italic">E</span> parameters; (<b>c</b>) stability boundary for the <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> and <span class="html-italic">L</span> parameters.</p>
Full article ">Figure 11
<p>Stability boundary: (<b>a</b>) stability boundary of PI control; (<b>b</b>) stability boundary of PI control with SDFC.</p>
Full article ">Figure 12
<p>Time-domain waveforms and total harmonic distortion without chaos control under various parameters: (<b>a</b>) the time-domain waveform diagram for <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> = 3.5 without chaos control; (<b>b</b>) total harmonic distortion at <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> = 3.5 without chaos control; (<b>c</b>) the time-domain waveform diagram for E = 800 V without chaos control; (<b>d</b>) total harmonic distortion at E = 800 V without chaos control; (<b>e</b>) the time-domain waveform diagram for <span class="html-italic">L</span> = 5 mH without chaos control; (<b>f</b>) total harmonic distortion at <span class="html-italic">L</span> = 5 mH without chaos control.</p>
Full article ">Figure 13
<p>Time-domain waveforms and total harmonic distortion: (<b>a</b>) the time-domain waveform diagram for <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> = 3.5 under EDFC; (<b>b</b>) total harmonic distortion at <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> = 3.5 under EDFC; (<b>c</b>) the time-domain waveform diagram for <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> = 3.5 under SDFC; (<b>d</b>) total harmonic distortion at <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>p</mi> </mrow> </semantics></math> = 3.5 under SDFC.</p>
Full article ">Figure 14
<p>Time-domain waveforms and total harmonic distortion: (<b>a</b>) the time-domain waveform diagram for <span class="html-italic">L</span> = 5 mH under EDFC; (<b>b</b>) total harmonic distortion at <span class="html-italic">L</span> = 5 mH under EDFC; (<b>c</b>) the time-domain waveform diagram for <span class="html-italic">L</span> = 5 mH under SDFC; (<b>d</b>) total harmonic distortion at <span class="html-italic">L</span> = 5 mH under SDFC.</p>
Full article ">Figure 15
<p>Time-domain waveforms and total harmonic distortion: (<b>a</b>) the time-domain waveform diagram for <span class="html-italic">E</span> = 800 V under EDFC; (<b>b</b>) total harmonic distortion at <span class="html-italic">E</span> = 800 V under EDFC; (<b>c</b>) the time-domain waveform diagram for <span class="html-italic">E</span> = 1200 V under SDFC; (<b>d</b>) total harmonic distortion at <span class="html-italic">E</span> = 1200 V under SDFC.</p>
Full article ">Figure 15 Cont.
<p>Time-domain waveforms and total harmonic distortion: (<b>a</b>) the time-domain waveform diagram for <span class="html-italic">E</span> = 800 V under EDFC; (<b>b</b>) total harmonic distortion at <span class="html-italic">E</span> = 800 V under EDFC; (<b>c</b>) the time-domain waveform diagram for <span class="html-italic">E</span> = 1200 V under SDFC; (<b>d</b>) total harmonic distortion at <span class="html-italic">E</span> = 1200 V under SDFC.</p>
Full article ">Figure 16
<p>Time-domain waveform diagram: (<b>a</b>) the time-domain waveform diagram under time-delay feedback control; (<b>b</b>) the time-domain waveform diagram under filter-based chaos control; (<b>c</b>) the time-domain waveform diagram under EDFC; (<b>d</b>) the time-domain waveform diagram under SDFC.</p>
Full article ">Figure 16 Cont.
<p>Time-domain waveform diagram: (<b>a</b>) the time-domain waveform diagram under time-delay feedback control; (<b>b</b>) the time-domain waveform diagram under filter-based chaos control; (<b>c</b>) the time-domain waveform diagram under EDFC; (<b>d</b>) the time-domain waveform diagram under SDFC.</p>
Full article ">
12 pages, 339 KiB  
Article
Stability Analysis of a Credit Risk Contagion Model with Distributed Delay
by Martin Anokye, Luca Guerrini, Albert L. Sackitey, Samuel E. Assabil and Henry Amankwah
Axioms 2024, 13(7), 483; https://doi.org/10.3390/axioms13070483 - 18 Jul 2024
Viewed by 413
Abstract
This research investigates the stability and occurrence of Hopf bifurcation in a credit risk contagion model, which includes distributed delay, using the chain trick method. The model is a generalized version of those previously examined. The model is an expanded version of those [...] Read more.
This research investigates the stability and occurrence of Hopf bifurcation in a credit risk contagion model, which includes distributed delay, using the chain trick method. The model is a generalized version of those previously examined. The model is an expanded version of those previously studied. Comparative analysis showed that unlike earlier models, which only used the nonlinear resistance coefficient to determine the rate of credit risk infection, the credit risk contagion rate is also affected by the weight given to past behaviors of credit risk participants. Therefore, it is recommended to model the transmission of credit risk contagion using dispersed delays. Full article
Show Figures

Figure 1

Figure 1
<p>Dynamics of credit risk contagion under nonlinear resistance coefficient of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Dynamics of credit risk contagion under nonlinear resistance coefficient of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Nonlinear resistance coefficient influence on credit risk contagion at <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Effects of past credit risk activities on credit risk contagion at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.149</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Effects of past credit risk activities on credit risk contagion at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.079</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Effects of past credit risk activities on credit risk contagion at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.052</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Dynamics of higher weight on contagion rate of credit risk at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.390</mn> </mrow> </semantics></math>.</p>
Full article ">
20 pages, 8936 KiB  
Article
A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries
by Kaleem Iqbal, Eugenia Rossi di Schio, Muhammad Adnan Anwar, Mudassar Razzaq, Hasan Shahzad, Paolo Valdiserri, Giampietro Fabbri and Cesare Biserni
Dynamics 2024, 4(3), 572-591; https://doi.org/10.3390/dynamics4030030 - 18 Jul 2024
Viewed by 611
Abstract
A finite element method is employed to examine the impact of a magnetic field on the development of plaque in an artery with stenotic bifurcation. Consistent with existing literature, blood flow is characterized as a Newtonian fluid that is stable, incompressible, biomagnetic, and [...] Read more.
A finite element method is employed to examine the impact of a magnetic field on the development of plaque in an artery with stenotic bifurcation. Consistent with existing literature, blood flow is characterized as a Newtonian fluid that is stable, incompressible, biomagnetic, and laminar. Additionally, it is assumed that the arterial wall is linearly elastic throughout. The hemodynamic flow within a bifurcated artery, influenced by an asymmetric magnetic field, is described using the arbitrary Lagrangian–Eulerian (ALE) method. This technique incorporates the fluid–structure interaction coupling. The nonlinear system of partial differential equations is discretized using a stable P2P1 finite element pair. To solve the resulting nonlinear algebraic equation system, the Newton-Raphson method is employed. Magnetic fields are numerically modeled, and the resulting displacement, velocity magnitude, pressure, and wall shear stresses are analyzed across a range of Reynolds numbers (Re = 500, 1000, 1500, and 2000). The numerical analysis reveals that the presence of a magnetic field significantly impacts both the displacement magnitude and the flow velocity. In fact, introducing a magnetic field leads to reduced flow separation, an expanded recirculation area near the stenosis, as well as an increase in wall shear stress. Full article
Show Figures

Figure 1

Figure 1
<p>Freedom degree location for the P2P1 element.</p>
Full article ">Figure 2
<p>Sketch of the problem’s domain and of the coarse mesh.</p>
Full article ">Figure 3
<p>Velocity field for Re = 500 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 3 Cont.
<p>Velocity field for Re = 500 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 4
<p>Velocity field for Re = 1000 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 4 Cont.
<p>Velocity field for Re = 1000 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 5
<p>Velocity field for Re = 1500 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 5 Cont.
<p>Velocity field for Re = 1500 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 6
<p>Velocity field for Re = 2000 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 6 Cont.
<p>Velocity field for Re = 2000 and Ha = 0, 8, 10, and 12.</p>
Full article ">Figure 7
<p>Total displacement of the upper wall for different Re.</p>
Full article ">Figure 7 Cont.
<p>Total displacement of the upper wall for different Re.</p>
Full article ">Figure 8
<p>The velocity magnitude profile at locations A (<b>left</b>) and B (<b>right</b>).</p>
Full article ">Figure 9
<p>Pressure values at the center C of the parent artery.</p>
Full article ">Figure 10
<p>Total wall shear stress (WSS) along the upper wall versus Ha.</p>
Full article ">
22 pages, 2496 KiB  
Article
Design and Analysis of a Novel Fractional-Order System with Hidden Dynamics, Hyperchaotic Behavior and Multi-Scroll Attractors
by Fei Yu, Shuai Xu, Yue Lin, Ting He, Chaoran Wu and Hairong Lin
Mathematics 2024, 12(14), 2227; https://doi.org/10.3390/math12142227 - 17 Jul 2024
Viewed by 511
Abstract
The design of chaotic systems with complex dynamic behaviors has always been a key aspect of chaos theory in engineering applications. This study introduces a novel fractional-order system characterized by hidden dynamics, hyperchaotic behavior, and multi-scroll attractors. By employing fractional calculus, the system’s [...] Read more.
The design of chaotic systems with complex dynamic behaviors has always been a key aspect of chaos theory in engineering applications. This study introduces a novel fractional-order system characterized by hidden dynamics, hyperchaotic behavior, and multi-scroll attractors. By employing fractional calculus, the system’s order is extended beyond integer values, providing a richer dynamic behavior. The system’s hidden dynamics are revealed through detailed numerical simulations and theoretical analysis, demonstrating complex attractors and bifurcations. The hyperchaotic nature of the system is verified through Lyapunov exponents and phase portraits, showing multiple positive exponents that indicate a higher degree of unpredictability and complexity. Additionally, the system’s multi-scroll attractors are analyzed, showcasing their potential for secure communication and encryption applications. The fractional-order approach enhances the system’s flexibility and adaptability, making it suitable for a wide range of practical uses, including secure data transmission, image encryption, and complex signal processing. Finally, based on the proposed fractional-order system, we designed a simple and efficient medical image encryption scheme and analyzed its security performance. Experimental results validate the theoretical findings, confirming the system’s robustness and effectiveness in generating complex chaotic behaviors. Full article
(This article belongs to the Special Issue Chaotic Systems and Their Applications, 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>The relationship between function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> and <span class="html-italic">x</span>.</p>
Full article ">Figure 2
<p><math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane diagram of the system.</p>
Full article ">Figure 3
<p><math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> <mi>w</mi> </mrow> </semantics></math> plane diagram of the system.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mrow> <mi>y</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane diagram of the system.</p>
Full article ">Figure 5
<p><math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> <mi>y</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> space diagram of the system.</p>
Full article ">Figure 6
<p>Coexistence of attractors on the <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane of the system. The red line represents the phase diagram of the system under initial conditions of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>, and the blue line represents the phase diagram of the system under initial conditions of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <mn>0.27</mn> <mo>,</mo> <mo> </mo> <mn>0.92</mn> <mo>,</mo> <mo> </mo> <mn>0.56</mn> <mo>,</mo> <mo> </mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Coexistence of attractors on the <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> <mi>y</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> space of the system. The red line represents the phase diagram of the system under initial conditions of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>, and the blue line represents the phase diagram of the system under initial conditions of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <mn>0.27</mn> <mo>,</mo> <mo> </mo> <mn>0.92</mn> <mo>,</mo> <mo> </mo> <mn>0.56</mn> <mo>,</mo> <mo> </mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Lyapunov exponent spectrum of order <span class="html-italic">q</span>.</p>
Full article ">Figure 9
<p>Lyapunov exponent spectrum with a smaller range of <span class="html-italic">q</span> values.</p>
Full article ">Figure 10
<p>The Lyapunov exponent spectrum of the system regarding parameter <span class="html-italic">a</span>.</p>
Full article ">Figure 11
<p>The bifurcation diagram of the system with respect to order <span class="html-italic">q</span>.</p>
Full article ">Figure 12
<p>Bifurcation coexistence of system with respect to order <span class="html-italic">q</span>. The blue line represents the bifurcation diagram with initial values of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <mn>0.27</mn> <mo>,</mo> <mo> </mo> <mn>0.92</mn> <mo>,</mo> <mo> </mo> <mn>0.56</mn> <mo>,</mo> <mo> </mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>, while the red line represents the bifurcation diagram with initial conditions of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <mn>0.27</mn> <mo>,</mo> <mo> </mo> <mn>0.92</mn> <mo>,</mo> <mo> </mo> <mn>0.56</mn> <mo>,</mo> <mo> </mo> <mo>−</mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>The bifurcation diagram of the system regarding parameter <span class="html-italic">a</span>.</p>
Full article ">Figure 14
<p>The <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane phase diagram of the system on the oscilloscope.</p>
Full article ">Figure 15
<p>FPGA experimental equipment.</p>
Full article ">Figure 16
<p>Design of image encryption scheme.</p>
Full article ">Figure 17
<p>Image encryption and decryption results and their histograms: (<b>a</b>) Original image. (<b>b</b>) Encrypted image. (<b>c</b>) Decrypted image. (<b>d</b>) Original image histogram. (<b>e</b>) Encrypted Image histogram. (<b>f</b>) Decrypted image histogram.</p>
Full article ">Figure 18
<p>Correlation analysis between the original image and the encrypted image, (<b>a</b>–<b>d</b>) is the correlation map of the original image, and (<b>e</b>–<b>h</b>) is the correlation coefficient map of the encrypted image: (<b>a</b>) Horizontal. (<b>b</b>) Negative diagonal. (<b>c</b>) Positive diagonal. (<b>d</b>) Vertical. (<b>e</b>) Horizontal. (<b>f</b>) Negative diagonal. (<b>g</b>) Positive diagonal. (<b>h</b>) Vertical.</p>
Full article ">
24 pages, 379 KiB  
Review
Flow Diversion for Endovascular Treatment of Intracranial Aneurysms: Past, Present, and Future Directions
by Michael Gaub, Greg Murtha, Molly Lafuente, Matthew Webb, Anqi Luo, Lee A. Birnbaum, Justin R. Mascitelli and Fadi Al Saiegh
J. Clin. Med. 2024, 13(14), 4167; https://doi.org/10.3390/jcm13144167 - 16 Jul 2024
Viewed by 1089
Abstract
Flow diversion for intracranial aneurysms emerged as an efficacious and durable treatment option over the last two decades. In a paradigm shift from intrasaccular aneurysm embolization to parent vessel remodeling as the mechanism of action, the proliferation of flow-diverting devices has enabled the [...] Read more.
Flow diversion for intracranial aneurysms emerged as an efficacious and durable treatment option over the last two decades. In a paradigm shift from intrasaccular aneurysm embolization to parent vessel remodeling as the mechanism of action, the proliferation of flow-diverting devices has enabled the treatment of many aneurysms previously considered untreatable. In this review, we review the history and development of flow diverters, highlight the pivotal clinical trials leading to their regulatory approval, review current devices including endoluminal and intrasaccular flow diverters, and discuss current and expanding indications for their use. Areas of clinical equipoise, including ruptured aneurysms and wide-neck bifurcation aneurysms, are summarized with a focus on flow diverters for these pathologies. Finally, we discuss future directions in flow diversion technology including bioresorbable flow diverters, transcriptomics and radiogenomics, and machine learning and artificial intelligence. Full article
20 pages, 2860 KiB  
Article
A Secure Image Encryption Scheme Based on a New Hyperchaotic System and 2D Compressed Sensing
by Muou Liu, Chongyang Ning and Congxu Zhu
Entropy 2024, 26(7), 603; https://doi.org/10.3390/e26070603 - 16 Jul 2024
Viewed by 886
Abstract
In insecure communication environments where the communication bandwidth is limited, important image data must be compressed and encrypted for transmission. However, existing image compression and encryption algorithms suffer from poor image reconstruction quality and insufficient image encryption security. To address these problems, this [...] Read more.
In insecure communication environments where the communication bandwidth is limited, important image data must be compressed and encrypted for transmission. However, existing image compression and encryption algorithms suffer from poor image reconstruction quality and insufficient image encryption security. To address these problems, this paper proposes an image-compression and encryption scheme based on a newly designed hyperchaotic system and two-dimensional compressed sensing (2DCS) technique. In this paper, the chaotic performance of this hyperchaotic system is verified by bifurcation diagrams, Lyapunov diagrams, approximate entropy, and permutation entropy, which have certain advantages over the traditional 2D chaotic system. The new 2D chaotic system as a pseudo-random number generator can completely pass all the test items of NIST. Meanwhile, this paper improves on the existing 2D projected gradient (2DPG) algorithm, which improves the quality of image compression and reconstruction, and can effectively reduce the transmission pressure of image data confidential communication. In addition, a new image encryption algorithm is designed for the new 2D chaotic system, and the security of the algorithm is verified by experiments such as key space size analysis and encrypted image information entropy. Full article
Show Figures

Figure 1

Figure 1
<p>The bifurcation diagram of system (1): (<b>a</b>) bifurcation diagram of different parameters a corresponding to variable x; (<b>b</b>) bifurcation diagram of different parameters a corresponding to variable y.</p>
Full article ">Figure 2
<p>Phase diagram of system (<a href="#FD1-entropy-26-00603" class="html-disp-formula">1</a>): (<b>a</b>) 2D attractor when <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.2</mn> <mo>,</mo> <mn>0.3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>b</b>) the relationship between the three iterative sequences <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>; (<b>c</b>) the relationship between the three iterative sequences <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>; (<b>d</b>) the relationship between the three iterative sequences <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graphs of Lyapunov exponents for 3 different 2D chaotic systems: (<b>a</b>) plot of Lyapunov exponent for 2D-CSCM; (<b>b</b>) plot of Lyapunov exponent for 2D-CLII; (<b>c</b>) plot of Lyapunov exponent for the proposed map corresponding to parameter <span class="html-italic">a</span>; (<b>d</b>) plot of Lyapunov exponent for the proposed map corresponding to parameter <span class="html-italic">b</span>.</p>
Full article ">Figure 4
<p>Plot of correlation for system (1): (<b>a</b>) autocorrelation; (<b>b</b>) cross-correlation.</p>
Full article ">Figure 5
<p>Approximate entropy of two different chaotic systems: (<b>a</b>) approximate entropy of the 2D-CLII chaotic system; (<b>b</b>) approximate entropy of the 2D chaotic system proposed in this paper.</p>
Full article ">Figure 6
<p>Permutation entropy of two different chaotic systems: (<b>a</b>) permutation entropy of the 2D-CLII chaotic system; (<b>b</b>) permutation entropy of the 2D chaotic system proposed in this paper.</p>
Full article ">Figure 7
<p>Four classical test images and their compressed sampled and reconstructed images: (<b>a</b>) original image Lena, (<b>b</b>) compressed and encrypted image Lena, (<b>c</b>) reconstructed image Lena, (<b>d</b>) original image Barbara, (<b>e</b>) compressed and encrypted image Barbara, (<b>f</b>) reconstructed image Barbara, (<b>g</b>) original image peppers, (<b>h</b>) compressed and encrypted image peppers, (<b>i</b>) reconstructed image peppers, (<b>j</b>) original image cameraman, (<b>k</b>) compressed and encrypted image cameraman, and (<b>l</b>) reconstructed image cameraman.</p>
Full article ">Figure 8
<p>Histogram of pixel distribution of plaintext image and ciphertext image of two test images. (<b>a</b>) Plaintext image peppers. (<b>b</b>) Histogram of plaintext image peppers. (<b>c</b>) Ciphertext image peppers. (<b>d</b>) Histogram of ciphertext image peppers. (<b>e</b>) Plaintext image cameraman. (<b>f</b>) Histogram of plaintext image cameraman. (<b>g</b>) Ciphertext image cameraman. (<b>h</b>) Histogram of Ciphertext image cameraman.</p>
Full article ">
17 pages, 4991 KiB  
Article
Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection
by Hongcun Mao, Yuling Feng, Xiaoqian Wang, Chao Gao and Zhihai Yao
Fractal Fract. 2024, 8(7), 417; https://doi.org/10.3390/fractalfract8070417 - 16 Jul 2024
Viewed by 520
Abstract
This work investigates a fractional-order multi-wing chaotic system for detecting weak signals. The influence of the order of fractional calculus on chaotic systems’ dynamical behavior is examined using phase diagrams, bifurcation diagrams, and SE complexity diagrams. Then, the principles and methods for determining [...] Read more.
This work investigates a fractional-order multi-wing chaotic system for detecting weak signals. The influence of the order of fractional calculus on chaotic systems’ dynamical behavior is examined using phase diagrams, bifurcation diagrams, and SE complexity diagrams. Then, the principles and methods for determining the frequencies and amplitudes of weak signals are examined utilizing fractional-order multi-wing chaotic systems. The findings indicate that the lowest order at which this kind of fractional-order multi-wing chaotic system appears chaotic is 2.625 at a=4, b=8, and c=1, and that this value decreases as the driving force increases. The four-wing and double-wing change dynamics phenomenon will manifest in a fractional-order chaotic system when the order exceeds the lowest order. This phenomenon can be utilized to detect weak signal amplitudes and frequencies because the system parameters control it. A detection array is built to determine the amplitude using the noise-resistant properties of both four-wing and double-wing chaotic states. Deep learning images are then used to identify the change in the array’s wing count, which can be used to determine the test signal’s amplitude. When frequencies detection is required, the MUSIC method estimates the frequencies using chaotic synchronization to transform the weak signal’s frequencies to the synchronization error’s frequencies. This solution adds to the contact between fractional-order calculus and chaos theory. It offers suggestions for practically implementing the chaotic weak signal detection theory in conjunction with deep learning. Full article
Show Figures

Figure 1

Figure 1
<p>If <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mi>r</mi> <mo>×</mo> </mrow> </semantics></math>sin<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>ω</mi> <mo>×</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mn>1.126</mn> <mo>,</mo> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and the starting value of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mo>[</mo> <mn>0.1</mn> <mo>;</mo> <mn>0.1</mn> <mo>;</mo> <mn>0.1</mn> <mo>]</mo> </mrow> </semantics></math>, then a fractional-order multi-wing chaotic system has four wings in its attractor.</p>
Full article ">Figure 2
<p>Bifurcation diagram and SE complexity diagram of the fractional-order multi-wing chaotic system Equation (<a href="#FD2-fractalfract-08-00417" class="html-disp-formula">2</a>) varying with parameter <span class="html-italic">q</span>, where <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mi>r</mi> <mo> </mo> <mo>×</mo> </mrow> </semantics></math> sin<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>ω</mi> <mo>×</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1.126</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The value range of <span class="html-italic">q</span> is from 0.85 to 1.15.</p>
Full article ">Figure 3
<p>Bifurcation diagram of the fractional-order multi-wing chaotic system Equation (<a href="#FD2-fractalfract-08-00417" class="html-disp-formula">2</a>) varying with parameter <span class="html-italic">r</span>, where <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mi>r</mi> <mo> </mo> <mo>×</mo> </mrow> </semantics></math> sin<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>ω</mi> <mo>×</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> in the left panel, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> in the right panel, and the value range of <span class="html-italic">r</span> is from 0 to 1.4.</p>
Full article ">Figure 4
<p>Using the G-algorithm for the numerical approximation of Riemann–Liouville, the attractor of Equation (<a href="#FD10-fractalfract-08-00417" class="html-disp-formula">10</a>) is projected in the <span class="html-italic">x</span>-<span class="html-italic">y</span> plane, where the parameters are <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>b</mi> <mo>=</mo> <mn>8</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>w</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and the time interval is 0.01; <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1.12939796</mn> </mrow> </semantics></math> on the left, and <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1.12939797</mn> </mrow> </semantics></math> on the right.</p>
Full article ">Figure 5
<p>Chaos oscillator detection array, where the value of <span class="html-italic">r</span> ranges from <math display="inline"><semantics> <mrow> <mn>1.122</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>1.137</mn> </mrow> </semantics></math>, simulation time is 500, and calculation step size is <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Chaos oscillator detection array, where the weak signal added on the left is −0.02sin<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, and on the right it is <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math>sin <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The yellow solid box indicates that users prompt once on one image. This article selects the double-wing part of the four-wing chaotic attractor. Other different color boxes are automatically annotated by T-Rex2 and display other images with similar object patterns to the prompt image. Using the left half of the four-wing attractor as an example, deep learning image recognition results were able to correctly identify both biplane and four-wing attractors.</p>
Full article ">Figure 8
<p>The results of chaotic attractors obtained by adding different levels of noise in deep learning image recognition.</p>
Full article ">Figure 9
<p>The synchronization error of the state variables <span class="html-italic">x</span>, <span class="html-italic">y</span>, and <span class="html-italic">z</span> when the system Equations (<a href="#FD11-fractalfract-08-00417" class="html-disp-formula">11</a>) and (<a href="#FD12-fractalfract-08-00417" class="html-disp-formula">12</a>) are synchronized.</p>
Full article ">Figure 10
<p>After adding <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of different frequencies to system Equation (<a href="#FD16-fractalfract-08-00417" class="html-disp-formula">16</a>), the error between the selected state variables <span class="html-italic">z</span> in the figure show the synchronization error of the chaotic synchronization system, where <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>sin<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>ω</mi> <mo>∗</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, where <math display="inline"><semantics> <mi>ω</mi> </semantics></math> is 1, 5, and 10 rad/s.</p>
Full article ">Figure 11
<p>The result graph of frequencies estimation using the MUSIC algorithm for the stable synchronization error shows three peaks around 1, 5, and 10 rad/s.</p>
Full article ">
17 pages, 17113 KiB  
Article
Complex Dynamical Behavior of Locally Active Discrete Memristor-Coupled Neural Networks with Synaptic Crosstalk: Attractor Coexistence and Reentrant Feigenbaum Trees
by Deheng Liu, Kaihua Wang, Yinghong Cao and Jinshi Lu
Electronics 2024, 13(14), 2776; https://doi.org/10.3390/electronics13142776 - 15 Jul 2024
Viewed by 488
Abstract
In continuous neural modeling, memristor coupling has been investigated widely. Yet, there is little research on discrete neural networks in the field. Discrete models with synaptic crosstalk are even less common. In this paper, two locally active discrete memristors are used to couple [...] Read more.
In continuous neural modeling, memristor coupling has been investigated widely. Yet, there is little research on discrete neural networks in the field. Discrete models with synaptic crosstalk are even less common. In this paper, two locally active discrete memristors are used to couple two discrete Aihara neurons to form a map called DMCAN. Then, the synapse is modeled using a discrete memristor and the DMCAN map with crosstalk is constructed. The DMCAN map is investigated using phase diagram, chaotic sequence, Lyapunov exponent spectrum (LEs) and bifurcation diagrams (BD). Its rich and complex dynamical behavior, which includes attractor coexistence, state transfer, Feigenbaum trees, and complexity, is systematically analyzed. In addition, the DMCAN map is implemented in hardware on a DSP platform. Numerical simulations are further validated for correctness. Numerical and experimental findings show that the synaptic connections of neurons can be modeled by discrete memristor coupling which leads to the construction of more complicated discrete neural networks. Full article
(This article belongs to the Special Issue Recent Advances and Related Technologies in Neuromorphic Computing)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Chaotic sequence; (<b>b</b>–<b>d</b>) the pinch hysteresis loop.</p>
Full article ">Figure 2
<p>(<b>a</b>) DC <span class="html-italic">V</span>-<span class="html-italic">I</span> plot over the region −2 &lt; <span class="html-italic">φ</span> &lt; 2; (<b>b</b>) the memristor POP plot with five balancing points.</p>
Full article ">Figure 3
<p>Dynamical analysis of Aihara neuron simulation plots: (<b>a</b>) phase diagram; (<b>b</b>) BD; (<b>c</b>) chaotic sequence; and (<b>d</b>) LEs.</p>
Full article ">Figure 4
<p>Discrete memristor-coupled Aihara neuron topology.</p>
Full article ">Figure 5
<p>The BD and LEs for different initial values when the crosstalk coefficient <span class="html-italic">b</span><sub>2</sub> changes. (<b>a</b>,<b>b</b>) values are (0.1, 0.1, 0, 0.1, 0, 0); (<b>c</b>,<b>d</b>) values are (0.1, −0.1, 0, −0.1, 0, 0).</p>
Full article ">Figure 6
<p>Phase diagram and chaotic sequences of attractor coexistence. (<b>a</b>,<b>b</b>) <span class="html-italic">b</span><sub>2</sub> = 0.01; (<b>c</b>,<b>d</b>) <span class="html-italic">b</span><sub>2</sub> <span class="html-italic">=</span> 0.456; and (<b>e</b>,<b>f</b>) <span class="html-italic">b</span><sub>2</sub> = 0.779.</p>
Full article ">Figure 7
<p>The BD and LEs for different initial values for variations in the coupling parameter <span class="html-italic">k</span>. (<b>a</b>,<b>b</b>) values are (0.1, 0.1, 0, 0.1, 0, 0); (<b>c</b>,<b>d</b>) values are (0.1, −0.1, 0, −0.1, 0, 0).</p>
Full article ">Figure 8
<p>Phase diagram and chaotic sequences of attractor coexistence. (<b>a</b>,<b>b</b>) <span class="html-italic">k</span> = 0.025; (<b>c</b>,<b>d</b>) <span class="html-italic">k</span> = 0.16; (<b>e</b>,<b>f</b>) <span class="html-italic">k</span> = 0.1149.</p>
Full article ">Figure 9
<p>BD and LEs for different initial values when the coefficient <span class="html-italic">e</span> varies. (<b>a</b>,<b>b</b>) values are (0.2, 0.2, 0.3, 0.3, 0.1, 0.1); (<b>c</b>,<b>d</b>) values are (0.2, 0.2, −0.3, 0.3, 0.1, 0.1).</p>
Full article ">Figure 10
<p>(<b>a</b>) Phase diagram and (<b>b</b>)chaotic sequences of attractor coexistence for <span class="html-italic">e</span> = 0.28.</p>
Full article ">Figure 11
<p>The change of the value of the system parameter <span class="html-italic">a</span>; the BD of <span class="html-italic">e</span> shows the Feigenbaum tree phenomenon. (<b>a</b>) <span class="html-italic">a =</span> 1.145; (<b>b</b>) <span class="html-italic">a =</span> 1.16; (<b>c</b>) <span class="html-italic">a =</span> 1.175; (<b>d</b>) <span class="html-italic">a =</span> 1.18; (<b>e</b>) <span class="html-italic">a =</span> 1.185; and (<b>f</b>) <span class="html-italic">a =</span> 1.19.</p>
Full article ">Figure 12
<p>The state transfer in the DMCAN map. (<b>a</b>) the chaotic sequence map; (<b>b</b>,<b>c</b>) the corresponding attractor phase maps.</p>
Full article ">Figure 13
<p>Three-dimensional SE complexity images of the system, (<b>a</b>) varying with crosstalk coefficients <span class="html-italic">b</span><sub>1</sub>, <span class="html-italic">b</span><sub>2</sub>; (<b>b</b>) varying with initial values <span class="html-italic">x</span><sub>0</sub> and <span class="html-italic">z</span><sub>0</sub>; and (<b>c</b>) varying with initial values <span class="html-italic">x</span><sub>0</sub> and <span class="html-italic">f</span><sub>0</sub>.</p>
Full article ">Figure 14
<p>DSP hardware diagram.</p>
Full article ">Figure 15
<p>(<b>a</b>) phase diagram. (<b>b</b>) corresponding hardware realization results.</p>
Full article ">Figure 16
<p>DSP implementation platform.</p>
Full article ">
25 pages, 9886 KiB  
Article
Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity
by Sidhartha Bhowmick, Laxmi Rani Roy, Feng Xu and Suvash C. Saha
Computation 2024, 12(7), 146; https://doi.org/10.3390/computation12070146 - 14 Jul 2024
Viewed by 587
Abstract
The phenomenon of natural convection is the subject of significant research interest due to its widespread occurrence in both natural and industrial contexts. This study focuses on investigating natural convection phenomena within triangular enclosures, specifically emphasizing a valley-shaped configuration. Our research comprehensively analyses [...] Read more.
The phenomenon of natural convection is the subject of significant research interest due to its widespread occurrence in both natural and industrial contexts. This study focuses on investigating natural convection phenomena within triangular enclosures, specifically emphasizing a valley-shaped configuration. Our research comprehensively analyses unsteady, non-dimensional time-varying convection resulting from natural fluid flow within a valley-shaped cavity, where the inclined walls serve as hot surfaces and the top wall functions as a cold surface. We explore unsteady natural convection flows in this cavity, utilizing air as the operating fluid, considering a range of Rayleigh numbers from Ra = 100 to 108. Additionally, various non-dimensional times τ, spanning from 0 to 5000, are examined, with a fixed Prandtl number (Pr = 0.71) and aspect ratio (A = 0.5). Employing a two-dimensional framework for numerical analysis, our study focuses on identifying unstable flow mechanisms characterized by different non-dimensional times, including symmetric, asymmetric, and unsteady flow patterns. The numerical results reveal that natural convection flows remain steady in the symmetric state for Rayleigh values ranging from 100 to 7 × 103. Asymmetric flow occurs when the Ra surpasses 7 × 103. Under the asymmetric condition, flow arrives in an unsteady stage before stabilizing at the fully formed stage for 7 × 103 < Ra < 107. This study demonstrates that periodic unsteady flows shift into chaotic situations during the transitional stage before transferring to periodic behavior in the developed stage, but the chaotic flow remains predominant in the unsteady regime with larger Rayleigh numbers. Furthermore, we present an analysis of heat transfer within the cavity, discussing and quantifying its dependence on the Rayleigh number. Full article
Show Figures

Figure 1

Figure 1
<p>Physical domain and non-dimensional boundary conditions with the figuring points P<sub>1</sub> (0, 0.825), P<sub>2</sub> (0, 0.46), P<sub>3</sub> (−0.5, 0.5), P<sub>4</sub> (0.5, 0.5), and P<sub>5</sub> (0.5, 0.255), which are applied in the following figures.</p>
Full article ">Figure 2
<p>Flowchart of the SIMPLE method for transient flow.</p>
Full article ">Figure 3
<p>Nusselt numbers time series at the right inclined wall in the valley-shaped cavity for Ra = 10<sup>8</sup> with definite grids and time steps.</p>
Full article ">Figure 4
<p>Comparison of the experimental results of Holtzman (<b>b</b>,<b>d</b>,<b>f</b>) [<a href="#B32-computation-12-00146" class="html-bibr">32</a>] for different Rayleigh numbers with the current study (<b>a</b>,<b>c</b>,<b>e</b>).</p>
Full article ">Figure 5
<p>Streamlines and isotherms at various non-dimensional time intervals, τ, and different small Rayleigh numbers, Ra, for the symmetric steady state.</p>
Full article ">Figure 6
<p>Streamlines and isotherms at various non-dimensional time intervals for the steady-state Rayleigh numbers, Ra = 10<sup>3</sup>, Ra = 7 × 10<sup>3</sup> and Ra = 2 × 10<sup>4</sup>.</p>
Full article ">Figure 7
<p>Times series of the temperature and velocity at three distinct points, P<sub>1</sub> (0, 0.825), P<sub>2</sub> (0, 0.46) and P<sub>5</sub> (0.5, 0.255), for (<b>a</b>,<b>d</b>) when Ra = 10<sup>3</sup>, for (<b>b</b>,<b>e</b>) when Ra = 7 × 10<sup>3</sup>, and for (<b>c</b>,<b>f</b>) when Ra = 2 × 10<sup>4</sup>.</p>
Full article ">Figure 8
<p>Streamlines and isotherms at Ra = 7 × 10<sup>3</sup>, Ra = 10<sup>4</sup>, and Ra = 1.3 × 10<sup>4</sup>.</p>
Full article ">Figure 9
<p>Streamlines and isotherms at various non-dimensional time intervals for Ra = 5 × 10<sup>4</sup>, Ra = 10<sup>5</sup> and Ra = 10<sup>6</sup>.</p>
Full article ">Figure 10
<p>Times series of the temperature and velocity at three distinct points, P<sub>1</sub> (0, 0.825), P<sub>2</sub> (0, 0.46), and P<sub>5</sub> (0.5, 0.255), for (<b>a</b>,<b>d</b>) when Ra = 5 × 10<sup>4</sup>, for (<b>b</b>,<b>e</b>) when Ra = 10<sup>5</sup>, and for (<b>c</b>,<b>f</b>) when Ra = 10<sup>6</sup>.</p>
Full article ">Figure 11
<p>At the fully developed stage, streamlines and isotherms for various Rayleigh numbers.</p>
Full article ">Figure 12
<p>Streamlines and isotherms at various non-dimensional time intervals for distinct higher Rayleigh numbers: Ra = 10<sup>7</sup>, Ra = 5 × 10<sup>7</sup> and Ra = 10<sup>8</sup>.</p>
Full article ">Figure 13
<p>A time series of the temperature at the completely developed stage and the power spectral density at point P<sub>5</sub> (0.5, 0.255) (<b>a</b>) for Ra = 10<sup>7</sup>, (<b>b</b>,<b>c</b>) for Ra = 5 × 10<sup>7</sup>, and (<b>d</b>,<b>e</b>) for Ra = 10<sup>8</sup>.</p>
Full article ">Figure 14
<p>Times series of the temperature and velocity at three distinct points, P<sub>1</sub> (0, 0.825), P<sub>2</sub> (0, 0.46) and P<sub>3</sub> (0.5, 0.255), for (<b>a</b>,<b>d</b>) when Ra = 10<sup>7</sup>, for (<b>b</b>,<b>e</b>) when Ra = 5 × 10<sup>7</sup>, and for (<b>c</b>,<b>f</b>) when Ra = 10<sup>8</sup>.</p>
Full article ">Figure 15
<p>Streamlines and isotherms at Ra = 10<sup>7</sup> and Ra = 2 × 10<sup>7</sup>.</p>
Full article ">Figure 16
<p>The limit point and limit cycle for (<b>a</b>) Ra = 10<sup>7</sup>, and for (<b>b</b>) Ra = 5 × 10<sup>7</sup> on the plane of <span class="html-italic">u</span>-<span class="html-italic">θ</span> at point P<sub>1</sub> (0, 0.825).</p>
Full article ">Figure 17
<p>Streamlines and isotherms at Ra = 5 × 10<sup>7</sup> and Ra = 10<sup>8</sup>.</p>
Full article ">Figure 18
<p>Temperature and x-velocity trajectories in the stage space for the values of Ra = 5 × 10<sup>7</sup> and Ra = 10<sup>8</sup> at the point P<sub>5</sub> (0.5, 0.255).</p>
Full article ">Figure 19
<p>(<b>a</b>) Temperature time series and (<b>b</b>) <span class="html-italic">x</span>-velocity time series for different Rayleigh numbers at point P<sub>1</sub> (0, 0.825).</p>
Full article ">Figure 20
<p>(<b>a</b>) The Nusselt number and (<b>b</b>) the normalized Nusselt number time series for several kinds of Rayleigh numbers.</p>
Full article ">
13 pages, 3098 KiB  
Article
Dynamics of a 3D Piezo-Magneto-Elastic Energy Harvester with Axisymmetric Multi-Stability
by Grzegorz Litak, Mariusz Klimek, Abhijeet M. Giri and Piotr Wolszczak
Micromachines 2024, 15(7), 906; https://doi.org/10.3390/mi15070906 - 12 Jul 2024
Viewed by 533
Abstract
In this investigation, a three-dimensional (3D) axisymmetric potential well-based nonlinear piezoelectric energy harvester is proposed to increase the broadband frequency response under low-strength planar external excitation. Here, a two-dimensional (2D) planar bi-stable Duffing potential is generalized into three dimensions by utilizing axial symmetry. [...] Read more.
In this investigation, a three-dimensional (3D) axisymmetric potential well-based nonlinear piezoelectric energy harvester is proposed to increase the broadband frequency response under low-strength planar external excitation. Here, a two-dimensional (2D) planar bi-stable Duffing potential is generalized into three dimensions by utilizing axial symmetry. The resulting axisymmetric potential well has infinitely many stable equilibria and one unstable equilibria at the highest point of the potential barrier for this cantilevered oscillator. Dynamics of such a 3D piezoelectric harvester with axisymmetric multi-stability are studied under planar circular excitation motion. Bifurcations of average power harvested from the two pairs of piezoelectric patches are presented against the frequency variation. The results show the presence of several branches of large-amplitude cross-well type period-1 and subharmonic solutions. Subharmonics involved in such responses are verified from the Fourier spectra of the solutions. The identified subharmonic solutions perform interesting patterns of curvilinear oscillations, which do not cross the potential barrier through its highest point. These solutions can completely or partially avoid the climbing of the potential barrier, thereby requiring low input excitation energy for barrier crossing. The influence of excitation amplitude on the bifurcations of normalized power is also investigated. Through multiple solution branches of subharmonic solutions, producing comparable power to the period-1 branch, broadband frequency response characteristics of such a 3D axisymmetically multi-stable harvester are highlighted. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Schematic front view of the system under consideration in the <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </semantics></math>-plane. The vertical circular elastic beam (shown in black), tip and base magnets (shown in red and blue), and piezoelectric material patches (shown in green) are shown in the configuration. Stable and unstable equilibrium positions are shown at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, respectively. (<b>b</b>) Schematic top view presents the arrangement of the two pairs of piezoelectric patches, facing <span class="html-italic">x</span>- and <span class="html-italic">y</span>-directions in the <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-plane. External accelerations <math display="inline"><semantics> <msub> <mi>A</mi> <mi>x</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>A</mi> <mi>y</mi> </msub> </semantics></math> are depicted using light blue-colored arrows.</p>
Full article ">Figure 2
<p>Axisymmetric configuration of the potential energy function <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> (in the dimensionless model) is shown with <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. Stable equilibrium positions are shown at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> </mrow> </semantics></math> and along the green-colored circular trajectory, whereas an unstable equilibrium is shown at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> with a red dot.</p>
Full article ">Figure 3
<p>Bifurcations of the average power output <math display="inline"><semantics> <mover> <mi>P</mi> <mo>¯</mo> </mover> </semantics></math> against the excitation frequency are shown here for the (<b>a</b>) low- and (<b>b</b>) high-energy state initial conditions given by Equations (<a href="#FD8-micromachines-15-00906" class="html-disp-formula">8</a>) and (<a href="#FD9-micromachines-15-00906" class="html-disp-formula">9</a>), respectively. Red-colored dots marked in (<b>b</b>) represent the periodic solution trajectories shown in <a href="#micromachines-15-00906-f004" class="html-fig">Figure 4</a>.</p>
Full article ">Figure 4
<p>Trajectories of the curvilinear oscillations of the periodic responses are shown here. These trajectories are observed at the selected frequencies (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.5235</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1.5405</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>2.7985</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>3.121</mn> </mrow> </semantics></math> that are marked by red-colored dots in <a href="#micromachines-15-00906-f003" class="html-fig">Figure 3</a>b.</p>
Full article ">Figure 5
<p>Fourier spectra (FFT) of the four periodic response trajectories shown in <a href="#micromachines-15-00906-f004" class="html-fig">Figure 4</a>a–d are shown here in (<b>a</b>–<b>d</b>), respectively. Red-colored dashed line marks the frequency of excitation. Subharmonic frequency peaks in the FFTs shown in (<b>b</b>–<b>d</b>) confirm the subharmonic nature of the periodic solutions shown in <a href="#micromachines-15-00906-f004" class="html-fig">Figure 4</a>a–d. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.5235</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1.5405</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>2.7985</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>3.121</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Influence of excitation amplitude on the bifurcations of normalized average power are shown here. Low-strength excitation amplitude levels of (<b>a</b>) 0.0183, (<b>b</b>) 0.0549, (<b>c</b>) 0.0915, and (<b>d</b>) 0.1281 are chosen to reveal the influence of low excitation amplitude levels.</p>
Full article ">Figure 7
<p>Influence of excitation amplitude on the bifurcations of normalized average power are shown here. Relatively higher levels of excitation amplitudes with values (<b>a</b>) 0.1647, (<b>b</b>) 0.2013, (<b>c</b>) 0.2379, and (<b>d</b>) 0.2745 are chosen to reveal the influence of high excitation amplitude levels.</p>
Full article ">
19 pages, 8390 KiB  
Article
Analysis of Dynamic Behavior of Gravity Model Using the Techniques of Road Saturation and Hilbert Curve Dimensionality Reduction
by Liumeng Yang, Ruichun He, Jie Wang, Hongxing Zhao and Huo Chai
Sustainability 2024, 16(13), 5721; https://doi.org/10.3390/su16135721 - 4 Jul 2024
Viewed by 604
Abstract
In this study, we investigate the relationship between parameters and the dynamic behavior of traffic flow in road traffic systems, and we propose a segmented cost function to describe the effects of this flow on the dynamic gravity model at different saturation levels. [...] Read more.
In this study, we investigate the relationship between parameters and the dynamic behavior of traffic flow in road traffic systems, and we propose a segmented cost function to describe the effects of this flow on the dynamic gravity model at different saturation levels. We use single-parameter bifurcation analysis, maximum Lyapunov exponent calculation, and three-parameter bifurcation analysis to reveal the effects of parameter variations on the nonlinear dynamical behaviors of the modified gravity model, and we investigate the evolution laws of the traffic system in depth. In order to solve the problems of low efficiency and poor visualization ability in traditional dynamics analysis techniques, this paper proposes the Hilbert curve dimensionality reduction technique, which can completely retain the original data features. The three-dimensional pseudo-Hilbert curve is used to traverse the three-parameter bifurcation data, realizing the transformation of data from three- to one-dimensional. Then, the two-dimensional pseudo-Hilbert curve is used to traverse the reduced one-dimensional data, and the two-dimensional visualization of the three-parameter bifurcation diagram is successfully realized. The dimensionality reduction technique provides a new way of thinking for parameter analysis in the engineering field. By analyzing the two-dimensional bifurcation plan obtained after this reduction, it is found that the modified gravity model is more stable compared with the original model, and this conclusion is also verified by the wavelet transform results. Finally, a new robustness evaluation index is defined based on the dynamics of the model, and the simulation results reveal the intrinsic correlation between the saturation parameter and road congestion, which provides an important basis for promoting sustainable transportation in the road network. Full article
Show Figures

Figure 1

Figure 1
<p>The chaotic attractor of Model 1.</p>
Full article ">Figure 2
<p>The analysis of the dynamic characteristics of Model 2: (<b>a</b>) single-parameter bifurcation diagram; (<b>b</b>) maximum Lyapunov exponent diagram.</p>
Full article ">Figure 3
<p>Single-parameter bifurcation diagram: (<b>a</b>–<b>i</b>) the local bifurcation diagram of Model 2 for <math display="inline"><semantics> <mi>μ</mi> </semantics></math>.</p>
Full article ">Figure 4
<p>The three-parameter bifurcation diagrams: (<b>a</b>) Model 1; (<b>b</b>) Model 2.</p>
Full article ">Figure 5
<p>The cross-sections of the three-parameter bifurcation diagram: (<b>a</b>–<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mtext> </mtext> <mn>2.6</mn> <mo>,</mo> <mtext> </mtext> <mn>2.8</mn> </mrow> </semantics></math> (Model 1); (<b>d</b>–<b>f</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mtext> </mtext> <mn>2.6</mn> <mo>,</mo> <mtext> </mtext> <mn>2.8</mn> </mrow> </semantics></math> (Model 2).</p>
Full article ">Figure 6
<p>Two-dimensional nth-order pseudo-Hilbert curves: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>; (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>; (<b>i</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>; (<b>j</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Three-dimensional 1st-order pseudo-Hilbert primary curves in space state diagrams.</p>
Full article ">Figure 8
<p>Three-dimensional nth-order pseudo-Hilbert curve: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Three-dimensional bifurcation data reduced to one-dimensional data: (<b>a</b>) Model 1; (<b>b</b>) Model 2. The circles represent data.</p>
Full article ">Figure 10
<p>Three-dimensional time–frequency maps of the wavelet transform of one-dimensional bifurcation data: (<b>a</b>) Model 1; (<b>b</b>) Model 2.</p>
Full article ">Figure 11
<p>Time–frequency map of wavelet transform plane of one-dimensional bifurcation data: (<b>a</b>) Model 1; (<b>b</b>) Model 2; (<b>c</b>) localized enlargement of Model 1; (<b>d</b>) localized enlargement of Model 2.</p>
Full article ">Figure 11 Cont.
<p>Time–frequency map of wavelet transform plane of one-dimensional bifurcation data: (<b>a</b>) Model 1; (<b>b</b>) Model 2; (<b>c</b>) localized enlargement of Model 1; (<b>d</b>) localized enlargement of Model 2.</p>
Full article ">Figure 12
<p>Bifurcation diagrams after two-dimensionalization of three-parameter bifurcation data: (<b>a</b>) Model 1; (<b>b</b>) Model 2.</p>
Full article ">Figure 13
<p>The data in <a href="#sustainability-16-05721-t006" class="html-table">Table 6</a> correspond to the time series: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>72</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>162</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>201</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>353</mn> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>356</mn> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>440</mn> </mrow> </semantics></math>; (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>447</mn> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>449</mn> </mrow> </semantics></math>; (<b>i</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>459</mn> </mrow> </semantics></math>. Blue solid points represent data from Model 1 and yellow solid points represent data from Model 2.</p>
Full article ">Figure 13 Cont.
<p>The data in <a href="#sustainability-16-05721-t006" class="html-table">Table 6</a> correspond to the time series: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>72</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>162</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>201</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>353</mn> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>356</mn> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>440</mn> </mrow> </semantics></math>; (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>447</mn> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>449</mn> </mrow> </semantics></math>; (<b>i</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>459</mn> </mrow> </semantics></math>. Blue solid points represent data from Model 1 and yellow solid points represent data from Model 2.</p>
Full article ">Figure 14
<p>The surface graph of the robustness evaluation index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>P</mi> <mo>≥</mo> <mn>200</mn> </mrow> </msub> </mrow> </semantics></math> based on the dynamic stability.</p>
Full article ">Figure 14 Cont.
<p>The surface graph of the robustness evaluation index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>P</mi> <mo>≥</mo> <mn>200</mn> </mrow> </msub> </mrow> </semantics></math> based on the dynamic stability.</p>
Full article ">
14 pages, 4985 KiB  
Article
Bénard–Marangoni Convection in an Open Cavity with Liquids at Low Prandtl Numbers
by Hao Jiang, Wang Liao and Enhui Chen
Symmetry 2024, 16(7), 844; https://doi.org/10.3390/sym16070844 - 4 Jul 2024
Viewed by 492
Abstract
Bénard–Marangoni convection in an open cavity has attracted much attention in the past century. In most of the previous works, liquids with Prandtl numbers larger than unity were used to study in this issue. However, the Bénard–Marangoni convection with liquids at Prandtl numbers [...] Read more.
Bénard–Marangoni convection in an open cavity has attracted much attention in the past century. In most of the previous works, liquids with Prandtl numbers larger than unity were used to study in this issue. However, the Bénard–Marangoni convection with liquids at Prandtl numbers lower than unity is still unclear. In this study, Bénard–Marangoni convection in an open cavity with liquids at Prandtl numbers lower than unity in zero-gravity conditions is investigated to reveal the bifurcations of the flow and quantify the heat and mass transfer. Three-dimensional direct numerical simulation is conducted by the finite-volume method with a SIMPLE scheme for the pressure–velocity coupling. The bottom boundary is nonslip and isothermal heated. The top boundary is assumed to be flat, cooled by air and opposed by the Marangoni stress. Numerical simulation is conducted for a wide range of Marangoni numbers (Ma) from 5.0 × 101 to 4.0 × 104 and different Prandtl numbers (Pr) of 0.011, 0.029, and 0.063. Generally, for small Ma, the liquid metal in the cavity is dominated by conduction, and there is no convection. The critical Marangoni number for liquids with Prandtl numbers lower than unity equals those with Prandtl numbers larger than unity, but the cells are different. As Ma increases further, the cells pattern becomes irregular and the structure of the top surface of the cells becomes finer. The thermal boundary layer becomes thinner, and the column of velocity magnitudes in the middle slice of the fluid is denser, indicating a stronger convection with higher Marangoni numbers. A new scaling is found for the area-weighted mean velocity magnitude at the top boundary of um~Ma Pr−2/3, which means the mass transfer may be enhanced by high Marangoni numbers and low Prandtl numbers. The Nusselt number is approximately constant for Ma ≤ 400 but increases slowly for Ma > 400, indicating that the heat transfer may be enhanced by increasing the Marangoni number. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Experimental Fluid Mechanics)
Show Figures

Figure 1

Figure 1
<p>Schematic of physical model.</p>
Full article ">Figure 2
<p>The temperature and velocity magnitude for cases with <span class="html-italic">Ma</span> &lt;&lt; <span class="html-italic">Ma<sub>c</sub></span>. (<b>a</b>) The temperature field on the top surface. (<b>b</b>) The velocity magnitude on the top surface. (<b>c</b>) The temperature field at the slice of <span class="html-italic">x</span> = 0. (<b>d</b>) The velocity magnitude at the slice of <span class="html-italic">x</span> = 0. Note that the height of slice is stretched for better visualization.</p>
Full article ">Figure 3
<p>The temperature and velocity magnitude for cases with <span class="html-italic">Ma</span> = 80 and <span class="html-italic">Pr</span> = 0.029. (<b>a</b>) The temperature field on the top surface. (<b>b</b>) The velocity magnitude on the top surface. (<b>c</b>) The temperature field at the slice of <span class="html-italic">x</span> = 0. (<b>d</b>) The velocity magnitude at the slice of <span class="html-italic">x</span> = 0. Note that the height of slice is stretched for better visualization.</p>
Full article ">Figure 4
<p>The temperature and velocity magnitude for cases with <span class="html-italic">ε</span> = 0.25 and <span class="html-italic">Pr</span> = 0.029. (<b>a</b>) The temperature field on the top surface. (<b>b</b>) The velocity magnitude on the top surface. (<b>c</b>) The temperature field at the slice of <span class="html-italic">x</span> = 0. (<b>d</b>) The velocity magnitude at the slice of <span class="html-italic">x</span> = 0. Note that the height of slice is stretched for better visualization.</p>
Full article ">Figure 5
<p>The temperature and velocity magnitude for cases with <span class="html-italic">ε</span> = 1.5 and <span class="html-italic">Pr</span> = 0.029. (<b>a</b>) The temperature field on the top surface. (<b>b</b>) The velocity magnitude on the top surface. (<b>c</b>) The temperature field at the slice of <span class="html-italic">x</span> = 0. (<b>d</b>) The velocity magnitude at the slice of <span class="html-italic">x</span> = 0. Note that the height of slice is stretched for better visualization.</p>
Full article ">Figure 6
<p>The temperature and velocity magnitude for cases with <span class="html-italic">ε</span> = 36.5 and <span class="html-italic">Pr</span> = 0.029. (<b>a</b>) The temperature field on the top surface. (<b>b</b>) The velocity magnitude on the top surface. (<b>c</b>) The temperature field at the slice of <span class="html-italic">x</span> = 0. (<b>d</b>) The velocity magnitude at the slice of <span class="html-italic">x</span> = 0. Note that the height of slice is stretched for better visualization.</p>
Full article ">Figure 7
<p>The temperature and velocity magnitude for cases with <span class="html-italic">ε</span> = 499 and <span class="html-italic">Pr</span> = 0.029. (<b>a</b>) The temperature field on the top surface. (<b>b</b>) The velocity magnitude on the top surface. (<b>c</b>) The temperature field at the slice of <span class="html-italic">x</span> = 0. (<b>d</b>) The velocity magnitude at the slice of <span class="html-italic">x</span> = 0. Note that the height of slice is stretched for better visualization.</p>
Full article ">Figure 8
<p>The area-weighted average velocity magnitude of the top boundary.</p>
Full article ">Figure 9
<p>The Nusselt number on the heated bottom boundary.</p>
Full article ">
19 pages, 4631 KiB  
Article
On New Symmetric Fractional Discrete-Time Systems: Chaos, Complexity, and Control
by Ma’mon Abu Hammad, Louiza Diabi, Amer Dababneh, Amjed Zraiqat, Shaher Momani, Adel Ouannas and Amel Hioual
Symmetry 2024, 16(7), 840; https://doi.org/10.3390/sym16070840 - 3 Jul 2024
Viewed by 1037
Abstract
This paper introduces a new symmetric fractional-order discrete system. The dynamics and symmetry of the suggested model are studied under two initial conditions, mainly a comparison of the commensurate order and incommensurate order maps, which highlights their effect on symmetry-breaking bifurcations. In addition, [...] Read more.
This paper introduces a new symmetric fractional-order discrete system. The dynamics and symmetry of the suggested model are studied under two initial conditions, mainly a comparison of the commensurate order and incommensurate order maps, which highlights their effect on symmetry-breaking bifurcations. In addition, a theoretical analysis examines the stability of the zero equilibrium point. It proves that the map generates typical nonlinear features, including chaos, which is confirmed numerically: phase attractors are plotted in a two-dimensional (2D) and three-dimensional (3D) space, bifurcation diagrams are drawn with variations in the derivative fractional values and in the system parameters, and we calculate the Maximum Lyapunov Exponents (MLEs) associated with the bifurcation diagram. Additionally, we use the C0 algorithm and entropy approach to measure the complexity of the chaotic symmetric fractional map. Finally, nonlinear 3D controllers are revealed to stabilize the symmetric fractional order map’s states in commensurate and incommensurate cases. Full article
(This article belongs to the Special Issue Nonlinear Symmetric Systems and Chaotic Systems in Engineering)
Show Figures

Figure 1

Figure 1
<p>Bifurcation of (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) for <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math> with IC1, and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </mrow> </semantics></math> with IC2 for different <math display="inline"><semantics> <mi>δ</mi> </semantics></math> commensurate values.</p>
Full article ">Figure 2
<p>The MLE of (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) associated with <a href="#symmetry-16-00840-f001" class="html-fig">Figure 1</a>.</p>
Full article ">Figure 3
<p>(<b>a</b>) Bifurcation of (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) for <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, with IC1 and IC2. (<b>b</b>) The associated MLE.</p>
Full article ">Figure 4
<p>Time evolution of symmetric commensurate map (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) for <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Phase portraits of (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) for various values of <math display="inline"><semantics> <mi>δ</mi> </semantics></math>.</p>
Full article ">Figure 6
<p>Bifurcation of (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </mrow> </semantics></math> with IC1; <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </mrow> </semantics></math> with IC2 for various <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math> incommensurate values.</p>
Full article ">Figure 7
<p>The MLE of (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) associated with <a href="#symmetry-16-00840-f006" class="html-fig">Figure 6</a>.</p>
Full article ">Figure 8
<p>(<b>a</b>) Bifurcation of symmetric incommensurate map (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>. (<b>b</b>) The associated MLE.</p>
Full article ">Figure 9
<p>(<b>a</b>) Bifurcation of (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) versus <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>. (<b>b</b>) The associated MLE.</p>
Full article ">Figure 10
<p>(<b>a</b>) Bifurcation of (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) versus <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>. (<b>b</b>) The associated MLE.</p>
Full article ">Figure 11
<p>Time evolution of symmetric incommensurate map (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.98</mn> <mo>,</mo> <mn>0.96</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Phase portraits of symmetric incommensurate map (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for different <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math> values.</p>
Full article ">Figure 12 Cont.
<p>Phase portraits of symmetric incommensurate map (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for different <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math> values.</p>
Full article ">Figure 13
<p>The <math display="inline"><semantics> <msub> <mi>C</mi> <mn>0</mn> </msub> </semantics></math> complexity of symmetric fractional maps (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) and (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for different <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math> values.</p>
Full article ">Figure 14
<p>ApEn of symmetric fractional maps (<a href="#FD11-symmetry-16-00840" class="html-disp-formula">11</a>) and (<a href="#FD20-symmetry-16-00840" class="html-disp-formula">20</a>) for different <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math> values.</p>
Full article ">Figure 15
<p>The stabilized states and attractor of the controlled commensurate map (<a href="#FD29-symmetry-16-00840" class="html-disp-formula">29</a>) for <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>The stabilized states and attractor of the controlled incommensurate map (<a href="#FD33-symmetry-16-00840" class="html-disp-formula">33</a>) for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.98</mn> <mo>,</mo> <mn>0.96</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">
21 pages, 11735 KiB  
Article
Dynamical Behaviors and Abundant New Soliton Solutions of Two Nonlinear PDEs via an Efficient Expansion Method in Industrial Engineering
by Ibrahim Alraddadi, M. Akher Chowdhury, M. S. Abbas, K. El-Rashidy, J. R. M. Borhan, M. Mamun Miah and Mohammad Kanan
Mathematics 2024, 12(13), 2053; https://doi.org/10.3390/math12132053 - 30 Jun 2024
Viewed by 695
Abstract
In this study, we discuss the dynamical behaviors and extract new interesting wave soliton solutions of the two significant well-known nonlinear partial differential equations (NPDEs), namely, the Korteweg–de Vries equation (KdVE) and the Jaulent–Miodek hierarchy equation (JMHE). This investigation has applications in pattern [...] Read more.
In this study, we discuss the dynamical behaviors and extract new interesting wave soliton solutions of the two significant well-known nonlinear partial differential equations (NPDEs), namely, the Korteweg–de Vries equation (KdVE) and the Jaulent–Miodek hierarchy equation (JMHE). This investigation has applications in pattern recognition, fluid dynamics, neural networks, mechanical systems, ecological systems, control theory, economic systems, bifurcation analysis, and chaotic phenomena. In addition, bifurcation analysis and the chaotic behavior of the KdVE and JMHE are the main issues of the present research. As a result, in this study, we obtain very effective advanced exact traveling wave solutions with the aid of the proposed mathematical method, and the solutions involve rational functions, hyperbolic functions, and trigonometric functions that play a vital role in illustrating and developing the models involving the KdVE and the JMHE. These new exact wave solutions lead to utilizing real problems and give an advanced explanation of our mentioned mathematical models that we did not yet have. Some of the attained solutions of the two equations are graphically displayed with 3D, 2D, and contour panels of different shapes, like periodic, singular periodic, kink, anti-kink, bell, anti-bell, soliton, and singular soliton wave solutions. The solutions obtained in this study of our considered equations can lead to the acceptance of our proposed method, effectively utilized to investigate the solutions for the mathematical models of various important complex problems in natural science and engineering. Full article
(This article belongs to the Special Issue Exact Solutions and Numerical Solutions of Differential Equations)
Show Figures

Figure 1

Figure 1
<p>Flowchart of our research work.</p>
Full article ">Figure 2
<p>Bifurcation phenomena of the expected dynamical system for various situation of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>W</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>W</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Bifurcation phenomena of the mentioned dynamical system by means of diverse situations of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>W</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The chaotic feature of the stated system has several values of the parameters with <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow> <mrow> <mi>π</mi> </mrow> <mo>/</mo> <mrow> <mn>2</mn> </mrow> </mrow> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>The chaotic feature of the offered system has several values of the parameters with <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The chaotic feature of the reported system has several values of the parameters with <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The chaotic nature of the proposed system with distinct value of the parameter containing <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mrow> <mrow> <mi>π</mi> </mrow> <mo>/</mo> <mrow> <mn>2</mn> </mrow> </mrow> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ξ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ξ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The chaotic nature of the recommended system with distinct value of the parameter containing <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ξ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>The chaotic nature of the suggested system with distinct value of the parameter containing <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math>, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msub> <mrow> <mi>ξ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>The kink-shaped soliton: 3D shape in (<b>a</b>), the contour shape in (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, and 2D surface in (<b>c</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for the solution of Equation (19).</p>
Full article ">Figure 11
<p>The singular periodic soliton: 3D in (<b>a</b>), the contour shape in (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, and 2D surface in (<b>c</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for the solution of Equation (24).</p>
Full article ">Figure 12
<p>The singular bell-shaped soliton: 3D in (<b>a</b>), the contour shape in (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, and 2D surface in (<b>c</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for the solution of Equation (29).</p>
Full article ">Figure 13
<p>The singular soliton: 3D in (<b>a</b>), the contour shape in (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and 2D surface in (<b>c</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for the solution of Equation (41).</p>
Full article ">Figure 14
<p>The periodic kink-shaped soliton: 3D in (<b>a</b>), the contour shape in (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and 2D surface in (<b>c</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for the solution of Equation (50).</p>
Full article ">Figure 15
<p>The singular kink-shaped soliton: 3D in (<b>a</b>), the contour shape in (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and 2D surface in (<b>c</b>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for the solution of Equation (60).</p>
Full article ">
12 pages, 594 KiB  
Article
Edge of Chaos in Integro-Differential Model of Nerve Conduction
by Ravi Agarwal, Alexander Domoshnitsky, Angela Slavova and Ventsislav Ignatov
Mathematics 2024, 12(13), 2046; https://doi.org/10.3390/math12132046 - 30 Jun 2024
Viewed by 448
Abstract
In this paper, we consider an integro-differential model of nerve conduction which presents the propagation of impulses in the nerve’s membranes. First, we approximate the original problem via cellular nonlinear networks (CNNs). The dynamics of the CNN model is investigated by means of [...] Read more.
In this paper, we consider an integro-differential model of nerve conduction which presents the propagation of impulses in the nerve’s membranes. First, we approximate the original problem via cellular nonlinear networks (CNNs). The dynamics of the CNN model is investigated by means of local activity theory. The edge of chaos domain of the parameter set is determined in the low-dimensional case. Computer simulations show the bifurcation diagram of the model and the dynamic behavior in the edge of chaos region. Moreover, stabilizing control is applied in order to stabilize the chaotic behavior of the model under consideration to the solutions related to the original behavior of the system. Full article
(This article belongs to the Section Difference and Differential Equations)
Show Figures

Figure 1

Figure 1
<p>CNN architecture. Two-dimensional grid of cells and their interactions in the nearest neighborhood of the cells.</p>
Full article ">Figure 2
<p>Complex plane representation of the theorem for local activity. The left side shows the <span class="html-italic">s</span>-plane, which is mapped into the closed right side <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>(</mo> <mi>E</mi> <mo>)</mo> </mrow> </semantics></math> plane.</p>
Full article ">Figure 3
<p>Bifurcation diagram of (14) in case (2). The region in blue is a locally passive region; the region in green is a locally active and unstable region; the region in red is the edge of chaos region.</p>
Full article ">Figure 4
<p>Simulation of the two-dimensional CNN model (14) showing chaotic behavior in the edge of chaos region defined by the parameter set of Proposition 1.</p>
Full article ">Figure 5
<p>Spatio-temporal solution of the stabilized RD-CNN model (6) applying the linear feedback control in the edge of chaos region.</p>
Full article ">
Back to TopTop