[go: up one dir, main page]

 
 

Origins and Natures of Inflation, Dark Matter and Dark Energy, 2nd Edition

A special issue of Universe (ISSN 2218-1997). This special issue belongs to the section "Cosmology".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 2152

Special Issue Editor

Special Issue Information

Dear Colleagues,

Exploring the origins of inflation, dark matter, and dark energy is one of the most important problems in modern physics and cosmology. It is strongly expected that primordial gravitational waves will be detected in the near future, revealing the energy scale of inflation of the early universe.

Regarding the origin of dark matter, there are two main possibilities: The first is new particles in particle theory models beyond the standard model. The second is astrophysical objects. On the other hand, two representative approaches exist to investigate the properties of dark energy components leading to late-time cosmic acceleration. One is the introduction of unknown matter, called dark energy, with the negative pressure in general relativity. The other is the extension of gravity on large scales, known as geometrical dark energy.

The main subject of this Special Issue is to understand the origins and true nature of inflation, dark matter, and dark energy. We can consider not only phenomenological approaches but also more fundamental physics, such as higher-dimensional gravity theories, quantum gravity, quantum cosmology, physics in the early universe, quantum field theories and gauge field theories in curved spacetime, string theories, brane world models, and the holographic principle. It is our pleasure to invite submissions to this Special Issue on inflation, dark matter, dark energy, and related foundations of physics.

Dr. Kazuharu Bamba
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Universe is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inflation
  • dark matter
  • dark energy
  • alternative theory of gravity
  • cosmology
  • physics in the early universe
  • cosmological perturbation theory
  • cosmic microwave background radiation
  • gravitational waves
  • large-scale structure of the universe

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

6 pages, 226 KiB  
Communication
The de Sitter Swampland Conjectures in the Context of Chaplygin-Inspired Inflation
by Orfeu Bertolami, Robertus Potting and Paulo M. Sá
Universe 2024, 10(7), 271; https://doi.org/10.3390/universe10070271 - 23 Jun 2024
Viewed by 490
Abstract
In this work, we discuss the de Sitter swampland conjectures in the context of the generalized Chaplygin-inspired inflationary model. We demonstrate that these conjectures can be satisfied, but only in the region of the parameter space far away from the General Relativity limit. [...] Read more.
In this work, we discuss the de Sitter swampland conjectures in the context of the generalized Chaplygin-inspired inflationary model. We demonstrate that these conjectures can be satisfied, but only in the region of the parameter space far away from the General Relativity limit. The cosmic microwave background data had already been found to restrict the allowed inflationary potentials of this model. Our results impose a further limitation on the possible potentials. Full article
10 pages, 263 KiB  
Article
Cosmic Strings from Thermal Inflation
by Robert Brandenberger and Aline Favero
Universe 2024, 10(6), 253; https://doi.org/10.3390/universe10060253 - 4 Jun 2024
Viewed by 597
Abstract
Thermal inflation was proposed as a mechanism to dilute the density of cosmological moduli. Thermal inflation is driven by a complex scalar field possessing a large vacuum expectation value and a very flat potential, called a “flaton”. Such a model admits cosmic string [...] Read more.
Thermal inflation was proposed as a mechanism to dilute the density of cosmological moduli. Thermal inflation is driven by a complex scalar field possessing a large vacuum expectation value and a very flat potential, called a “flaton”. Such a model admits cosmic string solutions, and a network of such strings will inevitably form in the symmetry breaking phase transition at the end of the period of thermal inflation. We discuss the differences of these strings compared to the strings which form in the Abelian Higgs model. Specifically, we find that the upper bound on the symmetry breaking scale is parametrically lower than in the case of Abelian Higgs strings, and that the lower cutoff on the string loop distribution is determined by cusp annihilation rather than by gravitational radiation (for the value of the transition temperature proposed in the original work on thermal inflation). Full article
21 pages, 370 KiB  
Article
The Equation of State of Novel Double-Field Pure K-Essence for Inflation, Dark Matter and Dark Energy
by Changjun Gao
Universe 2024, 10(6), 235; https://doi.org/10.3390/universe10060235 - 24 May 2024
Cited by 1 | Viewed by 582
Abstract
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, [...] Read more.
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, i.e., the corresponding Lagrangian is the function of covariant derivatives of double scalar fields without a dependency on scalar fields themselves. This is why we call it double-field pure K-essence. The novelty of this K-essence is that its Lagrangian contains the quotient term of the kinetic energies from the two scalar fields. This results in the presence of many interesting features; for example, the equation of state can be arbitrarily small and arbitrarily large. In comparison, the range of the equation of state for quintessence is 1 to +1. Interestingly, this novel K-essence can play the role of an inflation field, dark matter, or dark energy by appropriately selecting the expressions of Lagrangian. Full article
Show Figures

Figure 1

Figure 1
<p>The evolution of EOS for K-essence with respect to the scale factor when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.17</mn> <mo>,</mo> <mspace width="4pt"/> <mn>0.25</mn> <mo>,</mo> <mspace width="4pt"/> <mn>0.5</mn> <mo>,</mo> <mspace width="4pt"/> <mn>2</mn> </mrow> </semantics></math> from down to top, respectively, for the lower half of the graph. For the upper half of the graph, we put <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>−</mo> <mn>0.14</mn> <mo>,</mo> <mspace width="4pt"/> <mo>−</mo> <mn>0.18</mn> <mo>,</mo> <mspace width="4pt"/> <mo>−</mo> <mn>0.25</mn> <mo>,</mo> <mspace width="4pt"/> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="4pt"/> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math> from up to down. We assume <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The evolution of EOS for K-essence with respect to the scale factor when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>−</mo> <mn>5</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>4</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>3</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>3</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>4</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>5</mn> </mrow> </semantics></math> from down to top, respectively. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The evolution of for the log-ratio <math display="inline"><semantics> <mi>η</mi> </semantics></math> of K-essence density to its present-day value with respect to the scale factor. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>·</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>n</mi> <mo>=</mo> <mn>170</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The evolution of EOS for K-essence with respect to the natural logarithm of scale factor. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>·</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>n</mi> <mo>=</mo> <mn>170</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>The evolution of EOS for K-essence being a part of <a href="#universe-10-00235-f004" class="html-fig">Figure 4</a> with respect to the natural logarithm of scale factor.</p>
Full article ">Figure 6
<p>The evolution of for the log-ratio <math display="inline"><semantics> <mi>η</mi> </semantics></math> of K-essence density to its present-day value with respect to the natural logarithm of scale factor. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mi>n</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The evolution of EOS for K-essence with respect to the natural logarithm of scale factor. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mi>n</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The evolution of EOS for K-essence being a part of <a href="#universe-10-00235-f007" class="html-fig">Figure 7</a>, with respect to the natural logarithm of scale factor.</p>
Full article ">Figure 9
<p>The evolution of for the Log-ratio <math display="inline"><semantics> <mi>η</mi> </semantics></math> of K-essence density to its present-day value with respect to the natural logarithm of scale factor. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>277</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mi>n</mi> <mo>=</mo> <mo>−</mo> <mn>277</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>The evolution of EOS for K-essence with respect to the natural logarithm of scale factor. We have put <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>277</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>93</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mi>n</mi> <mo>=</mo> <mo>−</mo> <mn>277</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>The evolution of EOS for K-essence being a part of <a href="#universe-10-00235-f010" class="html-fig">Figure 10</a> with respect to the natural logarithm of scale factor.</p>
Full article ">Figure 12
<p>The evolution of EOS for K-essence with respect to the scale factor when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mspace width="0.277778em"/> <mo>,</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mspace width="0.277778em"/> <mo>,</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>5</mn> <mspace width="0.277778em"/> <mo>,</mo> <mn>100</mn> </mrow> </semantics></math> from bottom to top. We set <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>The evolution of EOS for K-essence with respect to the scale factor when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>20</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>60</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>200</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>800</mn> </mrow> </semantics></math> from bottom to top. We set <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>The evolution of EOS for K-essence with respect to the scale factor when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>8</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>60</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>400</mn> <mspace width="0.277778em"/> <mo>,</mo> <mo>−</mo> <mn>1800</mn> </mrow> </semantics></math> from bottom to top. We set <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>The evolution of EOS for K-essence with respect to the natural logarithm of scale factor when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>125</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>The evolution of EOS for K-essence with respect to the cosmological redshift when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>125</mn> </mrow> </msup> </mrow> </semantics></math>. The circled line is for the <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Λ</mi> <mrow> <mi>C</mi> <mi>D</mi> <mi>M</mi> </mrow> </mrow> </semantics></math> paradigm.</p>
Full article ">Figure 17
<p>The evolution of EOS for the log-ratio <math display="inline"><semantics> <mi>η</mi> </semantics></math> of K-essence density to its present-day value with respect to the natural logarithm of scale factor when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mspace width="0.277778em"/> <mo>,</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>125</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">
Back to TopTop