[go: up one dir, main page]

 
 

Microwave Imaging and Applications

A special issue of Electronics (ISSN 2079-9292). This special issue belongs to the section "Microwave and Wireless Communications".

Deadline for manuscript submissions: closed (15 November 2024) | Viewed by 1147

Special Issue Editors


E-Mail Website
Guest Editor
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Interests: inverse synthetic aperture radar (ISAR) imaging; radar waveform design and optimization; radar automatic target recognition

E-Mail Website
Guest Editor
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Interests: SAR image processing; radar automatic target recognition; machine learning

Special Issue Information

Dear Colleagues,

Microwave imaging is an all-day, all-weather imaging technique that uses actively radiated electromagnetic waves as information carriers. Microwave imaging techniques, such as Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR), can effectively enhance the radar's ability to classify and recognize targets.

The objective of this Special Issue is to explore recent advances that address fundamental and practical challenges related to microwave imaging, target recognition, and other applications. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • New system/new concept on SAR imaging;
  • New system/new concept on ISAR imaging;
  • 3D reconstruction of radar images and attitude estimation;
  • Feature extraction of radar scattering characteristics;
  • Radar image interpretation;
  • HRRP recognition;
  • SAR target recognition;
  • ISAR target recognition;
  • Radar target recognition based on deep learning.

We look forward to receiving your contributions. 

Dr. Biao Tian
Dr. Wei Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • SAR imaging
  • ISAR imaging
  • 3D reconstruction
  • HRRP recognition
  • SAR target recognition
  • ISAR target recognition
  • deep learning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 8434 KiB  
Article
A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles
by Jiongming Chen, Pengju Yang, Rong Zhang and Rui Wu
Electronics 2024, 13(15), 3062; https://doi.org/10.3390/electronics13153062 - 2 Aug 2024
Viewed by 757
Abstract
Inverse synthetic aperture radar (ISAR) imaging techniques are frequently used in target classification and recognition applications, due to its capability to produce high-resolution images for moving targets. In order to meet the demand of ISAR imaging for electromagnetic calculation with high efficiency and [...] Read more.
Inverse synthetic aperture radar (ISAR) imaging techniques are frequently used in target classification and recognition applications, due to its capability to produce high-resolution images for moving targets. In order to meet the demand of ISAR imaging for electromagnetic calculation with high efficiency and accuracy, a novel accelerated shooting and bouncing ray (SBR) method is presented by combining a Graphics Processing Unit (GPU) and Bounding Volume Hierarchies (BVH) tree structure. To overcome the problem of unfocused images by a Fourier-based ISAR procedure under wide-angle and wide-bandwidth conditions, an efficient parallel back projection (BP) imaging algorithm is developed by utilizing the GPU acceleration technique. The presented GPU-accelerated SBR is validated by comparison with the RL-GO method in commercial software FEKO v2020. For ISAR images, it is clearly indicated that strong scattering centers as well as target profiles can be observed under large observation azimuth angles, Δφ=90°, and wide bandwidths, 3 GHz. It is also indicated that ISAR imaging is heavily sensitive to observation angles. In addition, obvious sidelobes can be observed, due to the phase history of the electromagnetic wave being distorted resulting from multipole scattering. Simulation results confirm the feasibility and efficiency of our scheme by combining GPU-accelerated SBR with the BP algorithm for fast ISAR imaging simulation under wide-angle and wide-bandwidth conditions. Full article
(This article belongs to the Special Issue Microwave Imaging and Applications)
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of the multiple scattering.</p>
Full article ">Figure 2
<p>Schematic diagram of beam reflectance. The shape of the ray tube changes after each reflection, which is determined by the divergence factor <math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <mi>D</mi> <mi>F</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mi>m</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The parallel calculation process of C++AMP using the Direct Compute API to send parallel instructions to the device (GPU).</p>
Full article ">Figure 4
<p>The structure of programming model for the GPU acceleration process.</p>
Full article ">Figure 5
<p>BVH tree structure accounting for multiple scattering between triangular surface patches.</p>
Full article ">Figure 6
<p>Segmentation process of scenario tuples.</p>
Full article ">Figure 7
<p>Mapping of triangular surface elements into <math display="inline"><semantics> <mrow> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> </mrow> </semantics></math> plane. (<b>a</b>) The case before mapping; (<b>b</b>) The case corresponding to Equation (11); (<b>c</b>) The intersection of the ray with the unit triangular surface element after mapping.</p>
Full article ">Figure 8
<p>Overlap diagram of child nodes’ bounding boxes.</p>
Full article ">Figure 9
<p>Schematic diagram of backward projection for ISAR imaging.</p>
Full article ">Figure 10
<p>Parallel calculation process of the BP algorithm for ISAR imaging using CUDA acceleration.</p>
Full article ">Figure 11
<p>Flow chart of GPU-accelerated BP algorithm.</p>
Full article ">Figure 12
<p>CAD model of full-scale F-22 fighter.</p>
Full article ">Figure 13
<p>RCS angular distribution of a full-scale F-22 fighter: (<b>a</b>) incidence angle <math display="inline"><semantics> <mrow> <mrow> <mi>θ</mi> <mo>=</mo> </mrow> <mrow> <mn>90</mn> </mrow> <mo>°</mo> </mrow> </semantics></math>, azimuth angle <math display="inline"><semantics> <mrow> <mrow> <mi>φ</mi> <mo>=</mo> </mrow> <mn>0</mn> <mo>°</mo> <mrow> <mo>~</mo> <mn>36</mn> </mrow> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>, VV polarization; (<b>b</b>) incidence angle <math display="inline"><semantics> <mrow> <mrow> <mi>θ</mi> <mo>=</mo> </mrow> <mn>0</mn> <mo>°</mo> <mrow> <mo>~</mo> <mn>36</mn> </mrow> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>, azimuth angle <math display="inline"><semantics> <mrow> <mrow> <mi>φ</mi> <mo>=</mo> </mrow> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>, HH polarization.</p>
Full article ">Figure 14
<p>Computer-aided design (CAD) model and dimensions of a scaled A380 aircraft model.</p>
Full article ">Figure 15
<p>Three typical observation configurations with different azimuth angles under fixed incidence angle <math display="inline"><semantics> <mrow> <mrow> <mi>θ</mi> <mo>=</mo> </mrow> <mn>60</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>135</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>135</mn> <mo>°</mo> <mo>~</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>ISAR imaging results using GPU-accelerated BP imaging algorithm under fixed incidence angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>60</mn> <mo>°</mo> </mrow> </semantics></math>. In (<b>a</b>–<b>c</b>), the backscattering fields are calculated by our GPU-accelerated SBR method with a ray density of <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>; in (<b>d</b>–<b>f</b>), the backscattering fields are obtained by FEKO’s RL-GO method with a ray density of <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>; in (<b>g</b>–<b>i</b>), the backscattering fields are obtained by RL-GO with a ray density of <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>100</mn> </mrow> </semantics></math>. (<b>a</b>,<b>d</b>,<b>g</b>) are results for azimuth angle <math display="inline"><semantics> <mrow> <mrow> <mi>φ</mi> <mo>=</mo> </mrow> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>135</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>b</b>,<b>e</b>,<b>h</b>) are results for azimuth angle <math display="inline"><semantics> <mrow> <mrow> <mi>φ</mi> <mo>=</mo> </mrow> <mo>−</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>c</b>,<b>f</b>,<b>i</b>) are results for azimuth angle <math display="inline"><semantics> <mrow> <mrow> <mi>φ</mi> <mo>=</mo> </mrow> <mo>−</mo> <mn>135</mn> <mo>°</mo> <mo>~</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Three typical observation configurations with different azimuth angles under fixed incidence angle <math display="inline"><semantics> <mrow> <mrow> <mi>θ</mi> <mo>=</mo> </mrow> <mn>120</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>135</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>135</mn> <mo>°</mo> <mo>~</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Similar to <a href="#electronics-13-03062-f016" class="html-fig">Figure 16</a> but with incidence angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>120</mn> <mo>°</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>CAD model of an electrically large aircraft.</p>
Full article ">Figure 20
<p>Three typical observation configurations with different azimuth angles under fixed incidence angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>60</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>135</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>135</mn> <mo>°</mo> <mo>~</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>ISAR imaging results using GPU-accelerated BP imaging algorithm under fixed incidence angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>60</mn> <mo>°</mo> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>), the backscattering fields are calculated by our GPU-accelerated SBR method; in (<b>d</b>–<b>f</b>), backscattering fields are obtained by FEKO’s RL-GO method at a ray density of <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>; (<b>a</b>,<b>d</b>) are results for azimuth <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>135</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>b</b>,<b>e</b>) are results for azimuth <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> <mo>~</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>; (<b>c</b>,<b>f</b>) are results for azimuth <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>135</mn> <mo>°</mo> <mo>~</mo> <mo>−</mo> <mn>45</mn> <mo>°</mo> </mrow> </semantics></math>, VV polarization.</p>
Full article ">
Back to TopTop