Lymphocytic Myocarditis in Children with Parvovirus B19 Infection: Pathological and Molecular Insights
<p>Detection of viral DNA/RNA in children with histological evidence of myocarditis. (<b>A</b>) PCR results from the heart tissue of 306 patients with histologically proven acute myocarditis. (<b>B</b>) PCR results from the heart tissue of 1060 patients with chronic myocarditis. (<b>C</b>) Comparison of viral copy numbers in the heart, buffy coat (BC), and plasma of all children with acute and chronic myocarditis. (<b>D</b>) Comparison of viral copy numbers in heart samples from two age groups (0–2 years and 3–16 years) with acute and chronic myocarditis. B19V viral load is presented as the number of copies per µg of DNA (heart or BC) and per ml of plasma. Data are presented as mean ± SEM; ns, not significant; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 2
<p>Correlation of CD3+ T cell infiltration and B19V DNA copies in children with acute and chronic myocarditis. (<b>A</b>) Comparison of CD3+ cell count in acute myocarditis without infection, other virus infections, and B19V infection between two age groups (0–2 years and 3–16 years). (<b>B</b>) Comparison of CD3+ cell count in chronic myocarditis without infection, other virus infections, and B19V infection between two age groups (0–2 years and 3–16 years). (<b>C</b>) Correlation of CD3+ T cell infiltration with viral DNA load in the myocardium (blue) and BC (red). (<b>D</b>) Correlation of CD3+ T cell infiltration with viral load in the myocardium (blue) and plasma (red). CD3+ cell count is presented as the number of cells per mm<sup>2</sup>. B19V DNA load is given as the number of copies per µg of DNA (heart or BC) and per ml of plasma. Data are presented as mean ± SEM; ns, not significant; * <span class="html-italic">p</span> < 0.05, and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Histological/immunohistological presentation of fatal myocarditis in a 12-month-old patient (<b>A</b>) with cardiac B19V infection. (<b>A</b>,<b>B</b>) HE staining of heart tissue shows acute myocarditis characterized by myocyte necrosis and extensive inflammatory infiltrate. (<b>C</b>–<b>F</b>) Immunohistochemical staining (brown cells) reveals the presence of many CD3+ T cells (<b>C</b>), some CD20+ B cells (<b>D</b>), and numerous CD68+ macrophages (<b>E</b>), with many of them expressing MHCII (<b>F</b>). (<b>G</b>,<b>H</b>) Detection of B19V DNA (black signals) via radioactive ISH in endothelial cells of cardiac vessels.</p> "> Figure 4
<p>Morphological presentation of fatal myocarditis in a 17-month-old patient B after cardiac B19V infection. (<b>A</b>) Masson’s trichrome staining of heart tissue shows acute myocarditis with myocyte necrosis, many CD3+ T cells (<b>B</b>) and CD68+ macrophages (<b>C</b>) comparable to findings in patient A. (<b>D</b>) Detection of B19V DNA (black signals) via radioactive ISH in the endothelium of a cardiac vessel.</p> "> Figure 5
<p>Visualization of B19V DNA (black) via radioactive ISH in different organs of patient B. (<b>A</b>) Localization of B19V DNA within kidney glomeruli and (<b>B</b>) arterioles of liver tissue. (<b>C</b>,<b>D</b>) B19V-positive immune cells and arterioles in the lung. (<b>E</b>) B19V DNA is present in numerous immune cells of lymph nodes and endothelial cells, with a close-up shown in (<b>F</b>). (<b>G</b>) B19V DNA-positive follicles and vessels in splenic tissue, with a close-up shown in (<b>H</b>).</p> "> Figure 6
<p>B19V replication in B cells of the spleen. Splenic tissue from patient B was immunohistochemically stained for CD20+ B lymphocytes (<b>A</b>,<b>C</b>,<b>E</b>) and CD3+ T lymphocytes (<b>B</b>,<b>D</b>,<b>F</b>) (visualized in brown). Consecutive radioactive ISH clearly shows the localization of B19V DNA in B cells (black signal) at different magnifications (<b>A</b>–<b>E</b>).</p> "> Figure 7
<p>B19V DNA/mRNA is present in the germinal centres of secondary lymph follicles and in endothelial cells of small cardiac vessels. (<b>A</b>,<b>B</b>) B19V nucleic acids are detected in lymphatic tissue using sense (B19V sense) and anti-sense (B19V anti-sense) probes in consecutive tissue sections (red signals). (<b>C</b>,<b>D</b>) Corresponding localization of B19V nucleic acids in endothelial cells of small vessels using sense and anti-sense probes in consecutive heart tissue sections (red).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Histology and Immunohistochemistry in EMB
2.3. PCR
2.4. Quantification of B19V DNA via PCR
2.5. In Situ Hybridization (ISH)
2.6. Statistical Analyses
2.7. Ethic Statement
3. Results
3.1. B19V DNA Is Detected in EMB from Children with Acute or Chronic Lymphocytic Myocarditis
3.2. Correlation of Immune Cell Infiltrates in Myocardium with B19V Infection in the Heart and Blood
3.3. High Viral Load in Multiple Organs in Children with Acute B19V Infection
3.4. Localization of B19V DNA in Various Organs via ISH
3.5. Identification of B19V-Infected Splenic Immune Cells via Double Labeling
3.6. Detection of Virus Replication Using Sense and Antisense B19V DNA Probes via Non-Radioactive ISH
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bock, C.T.; Klingel, K.; Kandolf, R. Human Parvovirus B19-Associated Myocarditis. N. Engl. J. Med. 2010, 362, 1248–1249. [Google Scholar] [CrossRef] [PubMed]
- Broliden, K.; Tolfvenstam, T.; Norbeck, O. Clinical Aspects of Parvovirus B19 Infection. J. Intern. Med. 2006, 260, 285–304. [Google Scholar] [CrossRef] [PubMed]
- Young, N.S.; Brown, K.E. Parvovirus B19. N. Engl. J. Med. 2004, 350, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Klingel, K.; Sauter, M.; Bock, C.T.; Szalay, G.; Schnorr, J.J.; Kandolf, R. Molecular Pathology of Inflammatory Cardiomyopathy. Med. Microbiol. Immunol. 2004, 193, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bultmann, B.D.; Klingel, K.; Sotlar, K.; Bock, C.T.; Baba, H.A.; Sauter, M.; Kandolf, R. Fatal Parvovirus B19-Associated Myocarditis Clinically Mimicking Ischemic Heart Disease: An Endothelial Cell-Mediated Disease. Hum. Pathol. 2003, 34, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Esmel-Vilomara, R.; Dolader, P.; Izquierdo-Blasco, J.; Balcells, J.; Sorli, M.; Escudero, F.; Vera, E.; Gran, F. Parvovirus B19 Myocarditis in Children: A Diagnostic and Therapeutic Approach. Eur. J. Pediatr. 2022, 181, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.E.; Storch, G.A.; Lee, C.K.; Ward, K.E.; Danon, S.; Simon, C.M.; Delaney, J.; Tong, A.; Canter, C.E. High Frequency of Detection by PCR of Viral Nucleic Acid in the Blood of Infants Presenting with Clinical Myocarditis. Pediatr. Cardiol. 2016, 37, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Soderlund-Venermo, M.; Hokynar, K.; Nieminen, J.; Rautakorpi, H.; Hedman, K. Persistence of Human Parvovirus B19 in Human Tissues. Pathol. Biol. 2002, 50, 307–316. [Google Scholar] [CrossRef]
- Kuhl, U.; Pauschinger, M.; Seeberg, B.; Lassner, D.; Noutsias, D.; Poller, W.; Schultheiss, H.P. Viral Persistence in the Myocardium is Associated with Progressive Cardiac Dysfunction. Circulation 2005, 112, 1965–1970. [Google Scholar] [CrossRef]
- Tschope, C.; Bock, C.T.; Kasner, M.; Noutsias, M.; Westermann, D.; Schwimmbeck, P.L.; Pauschinger, M.; Poller, W.C.; Kuhl, U.; Kandolf, R.; et al. High Prevalence of Cardiac Parvovirus B19 Infection in Patients with Isolated Left Ventricular Diastolic Dysfunction. Circulation 2005, 111, 879–886. [Google Scholar] [CrossRef]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Helio, T.; Heymans, S.; Jahns, R.; et al. Current State of Knowledge on Aetiology, Diagnosis, Management, and Therapy of Myocarditis: A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.T.; Peischard, S.; Strutz-Seebohm, N.; Seebohm, G. Virus-Host Interactions of Enteroviruses and Parvovirus B19 in Myocarditis. Cell. Physiol. Biochem. 2021, 55, 679–703. [Google Scholar] [PubMed]
- Brown, K.E.; Young, N.S. Parvovirus B19 Infection and Hematopoiesis. Blood. Rev. 1995, 9, 176–182. [Google Scholar] [CrossRef]
- Aretz, H.T. Myocarditis: The Dallas Criteria. Hum. Pathol. 1987, 18, 619–624. [Google Scholar] [CrossRef]
- Greulich, S.; Kindermann, I.; Schumm, J.; Perne, A.; Birkmeier, S.; Grun, S.; Ong, P.; Schaufele, T.; Klingel, K.; Schneider, S.; et al. Predictors of Outcome in Patients with Parvovirus B19 Positive Endomyocardial Biopsy. Clin. Res. Cardiol. 2016, 105, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Klingel, K.; Stephan, S.; Sauter, M.; Zell, R.; McManus, B.M.; Bultmann, B.; Kandolf, R. Pathogenesis of Murine Enterovirus Myocarditis: Virus Dissemination and Immune Cell Targets. J. Virol. 1996, 70, 8888–8895. [Google Scholar] [CrossRef]
- Molina, K.M.; Garcia, X.; Denfield, S.W.; Fan, Y.; Morrow, W.R.; Towbin, J.A.; Frazier, E.A.; Nelson, D.P. Parvovirus B19 Myocarditis Causes Significant Morbidity and Mortality in Children. Pediatr. Cardiol. 2013, 34, 390–397. [Google Scholar] [CrossRef]
- Nigro, G.; Bastianon, V.; Colloridi, V.; Ventriglia, F.; Gallo, P.; D’Amati, G.; Koch, W.C.; Adler, S.P. Human Parvovirus B19 Infection in Infancy Associated with Acute and Chronic Lymphocytic Myocarditis and High Cytokine Levels: Report of 3 Cases and Review. Clin. Infect. Dis. 2000, 31, 65–69. [Google Scholar] [CrossRef]
- Beck, R.; Exler, S.; Enders, M. Parvovirus B19-Infektion und Schwangerschaft. Epidemiol. Bull. 2024, 24, 1–10. [Google Scholar]
- Adkins, B.; Leclerc, C.; Marshall-Clarke, S. Neonatal Adaptive Immunity Comes of Age. Nat. Rev. Immunol. 2004, 4, 553–564. [Google Scholar] [CrossRef]
- Sharma, S.K.; Pichichero, M.E. Deficiencies in the Cd4(+) T-Helper Cell Arm of the Immune System of Neonates and Young Children. Pediatr. Allergy Immunol. Pulmonol. 2013, 26, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Reen, D.J. Reduced Primary Antigen-Specific T-Cell Precursor Frequencies in Neonates is Associated with Deficient Interleukin-2 Production. Immunology 1996, 87, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Zaghouani, H.; Hoeman, C.M.; Adkins, B. Neonatal Immunity: Faulty T-Helpers and the Shortcomings of Dendritic Cells. Trends Immunol. 2009, 30, 585–591. [Google Scholar] [CrossRef]
- Desombere, I.; Van Houtte, F.; Farhoudi, A.; Verhoye, L.; Buysschaert, C.; Gijbels, Y.; Couvent, S.; Swinnen, W.; Van Vlierberghe, H.; Elewaut, A.; et al. A Role for B Cells to Transmit Hepatitis C Virus Infection. Front. Immunol. 2021, 12, 775098. [Google Scholar] [CrossRef]
- Silva, J.M.; Alves, C.E.C.; Pontes, G.S. Epstein-Barr Virus: The Mastermind of Immune Chaos. Front. Immunol. 2024, 15, 1297994. [Google Scholar] [CrossRef] [PubMed]
- Pyoria, L.; Toppinen, M.; Mantyla, E.; Hedman, L.; Aaltonen, L.M.; Vihinen-Ranta, M.; Ilmarinen, T.; Soderlund-Venermo, M.; Hedman, K.; Perdomo, M.F. Extinct Type of Human Parvovirus B19 Persists in Tonsillar B Cells. Nat. Commun. 2017, 8, 14930. [Google Scholar] [CrossRef]
- von Kietzell, K.; Pozzuto, T.; Heilbronn, R.; Grossl, T.; Fechner, H.; Weger, S. Antibody-Mediated Enhancement of Parvovirus B19 Uptake into Endothelial Cells Mediated by a Receptor for Complement Factor C1q. J. Virol. 2014, 88, 8102–8115. [Google Scholar] [CrossRef]
- Immanuel, J.; Yun, S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023, 12, 1640. [Google Scholar] [CrossRef]
- Paik, D.T.; Tian, L.; Williams, I.M.; Rhee, S.; Zhang, H.; Liu, C.; Mishra, R.; Wu, S.M.; Red-Horse, K.; Wu, J.C. Single-Cell Rna Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation 2020, 142, 1848–1862. [Google Scholar] [CrossRef]
- Wang, W.; Jia, H.; Hua, X.; Song, J. New Insights Gained from Cellular Landscape Changes in Myocarditis and Inflammatory Cardiomyopathy. Heart Fail. Rev. 2024, 29, 883–907. [Google Scholar] [CrossRef]
- Munakata, Y.; Saito-Ito, T.; Kumura-Ishii, K.; Huang, J.; Kodera, T.; Ishii, T.; Hirabayashi, Y.; Koyanagi, Y.; Sasaki, T. Ku80 Autoantigen as a Cellular Coreceptor for Human Parvovirus B19 Infection. Blood 2005, 106, 3449–3456. [Google Scholar] [CrossRef]
- Mrugacz, M.; Bryl, A.; Falkowski, M.; Zorena, K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells 2021, 10, 1703. [Google Scholar] [CrossRef] [PubMed]
- Steiger, K.; Quigley, N.G.; Groll, T.; Richter, F.; Zierke, M.A.; Beer, A.J.; Weichert, W.; Schwaiger, M.; Kossatz, S.; Notni, J. There is a World Beyond Alphavbeta3-Integrin: Multimeric Ligands for Imaging of the Integrin Subtypes Alphavbeta6, Alphavbeta8, Alphavbeta3, and Alpha5beta1 by Positron Emission Tomography. EJNMMI Res. 2021, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.A.; Shalhoub, J.; Lim, C.S.; Gohel, M.S.; Davies, A.H. The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression. J. Vasc. Res. 2012, 49, 463–478. [Google Scholar] [CrossRef]
- Sol, N.; Le Junter, J.; Vassias, I.; Freyssinier, J.M.; Thomas, A.; Prigent, A.F.; Rudkin, B.B.; Fichelson, S.; Morinet, F. Possible Interactions between the Ns-1 Protein and Tumor Necrosis Factor Alpha Pathways in Erythroid Cell Apoptosis Induced by Human Parvovirus B19. J. Virol. 1999, 73, 8762–8770. [Google Scholar] [CrossRef] [PubMed]
- Gwechenberger, M.; Mendoza, L.H.; Youker, K.A.; Frangogiannis, N.G.; Smith, C.W.; Michael, L.H.; Entman, M.L. Cardiac Myocytes Produce Interleukin-6 in Culture and in Viable Border Zone of Reperfused Infarctions. Circulation 1999, 99, 546–551. [Google Scholar] [CrossRef]
- Poole, B.D.; Kivovich, V.; Gilbert, L.; Naides, S.J. Parvovirus B19 Nonstructural Protein-Induced Damage of Cellular DNA and Resultant Apoptosis. Int. J. Med. Sci. 2011, 8, 88–96. [Google Scholar] [CrossRef]
- Hsu, T.C.; Wu, W.J.; Chen, M.C.; Tsay, G.J. Human Parvovirus B19 Non-Structural Protein (Ns1) Induces Apoptosis through Mitochondria Cell Death Pathway in Cos-7 Cells. Scand. J. Infect. Dis. 2004, 36, 570–577. [Google Scholar] [CrossRef]
- Pankuweit, S.; Klingel, K. Viral Myocarditis: From Experimental Models to Molecular Diagnosis in Patients. Heart Fail. Rev. 2013, 18, 683–702. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Z.; Xiong, M.; Zou, W.; Deng, X.; Ganaie, S.S.; Kleiboeker, S.; Peng, J.; Liu, K.; Wang, S.; et al. Parvovirus B19 Ns1 Protein Induces Cell Cycle Arrest at G2-Phase by Activating the Atr-Cdc25c-Cdk1 Pathway. PLoS Pathog. 2017, 13, e1006266. [Google Scholar] [CrossRef]
- Bock, C.T.; Duchting, A.; Utta, F.; Brunner, E.; Sy, B.T.; Klingel, K.; Lang, F.; Gawaz, M.; Felix, S.B.; Kandolf, R. Molecular Phenotypes of Human Parvovirus B19 in Patients with Myocarditis. World. J. Cardiol. 2014, 6, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Tzang, B.S.; Chiu, C.C.; Tsai, C.C.; Lee, Y.J.; Lu, I.J.; Shi, J.Y.; Hsu, T.C. Effects of Human Parvovirus B19 Vp1 Unique Region Protein on Macrophage Responses. J. Biomed. Sci. 2009, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Butin, M.; Mekki, Y.; Phan, A.; Billaud, G.; Di Filippo, S.; Javouhey, E.; Cochat, P.; Belot, A. Successful Immunotherapy in Life-Threatening Parvovirus B19 Infection in a Child. Pediatr. Infect. Dis. J. 2013, 32, 789–792. [Google Scholar] [CrossRef] [PubMed]
Patient A | Patient B | |
---|---|---|
Heart | 58,800 | 7250 |
Brain | 3490 | n.a. |
Lung | 31,000 | 8000 |
Lymph node | 439,250 | 475,000 |
Spleen | 729,000 | 370,000 |
Liver | 17,000 | 2700 |
Kidney | 7400 | 5800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelzl, L.; Mantino, S.; Sauter, M.; Manuylova, T.; Vogel, U.; Klingel, K. Lymphocytic Myocarditis in Children with Parvovirus B19 Infection: Pathological and Molecular Insights. Biomedicines 2024, 12, 1909. https://doi.org/10.3390/biomedicines12081909
Pelzl L, Mantino S, Sauter M, Manuylova T, Vogel U, Klingel K. Lymphocytic Myocarditis in Children with Parvovirus B19 Infection: Pathological and Molecular Insights. Biomedicines. 2024; 12(8):1909. https://doi.org/10.3390/biomedicines12081909
Chicago/Turabian StylePelzl, Lisann, Sabrina Mantino, Martina Sauter, Tatiana Manuylova, Ulrich Vogel, and Karin Klingel. 2024. "Lymphocytic Myocarditis in Children with Parvovirus B19 Infection: Pathological and Molecular Insights" Biomedicines 12, no. 8: 1909. https://doi.org/10.3390/biomedicines12081909
APA StylePelzl, L., Mantino, S., Sauter, M., Manuylova, T., Vogel, U., & Klingel, K. (2024). Lymphocytic Myocarditis in Children with Parvovirus B19 Infection: Pathological and Molecular Insights. Biomedicines, 12(8), 1909. https://doi.org/10.3390/biomedicines12081909