Climate Justice in the City: Mapping Heat-Related Risk for Climate Change Mitigation of the Urban and Peri-Urban Area of Padua (Italy)
<p>Functional Urban Area of Padua (530,322 inhabitants), including 31 municipalities (Veneto Region, NE Italy).</p> "> Figure 2
<p>Flowchart of the GIS-based methodology.</p> "> Figure 3
<p>Map of the land surface temperature in the Functional Urban Area of Padua (NE Italy) based on four Sentinel-3 scenes (100 m raster resolution output).</p> "> Figure 4
<p>NDVI map (median value) geovisualising green areas in the Functional Urban Area of Padua (100 m raster resolution output).</p> "> Figure 5
<p>Map of the percentage of green surfaces with a 1 km<sup>2</sup> grid size in the Functional Urban Area of Padua in Italy using the Corinne Land Cover (CLC) in 2018.</p> "> Figure 6
<p>Map of urban thermal anomalies in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (100 m raster resolution output).</p> "> Figure 7
<p>Map of the heat-related elderly risk index (<span class="html-italic">HERI</span>) in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (normalised values from 0 to 1).</p> "> Figure A1
<p>Map of the LSTs in the Functional Urban Area of Padua in Italy based on four Sentinel-3 scenes (1 km raster resolution output).</p> "> Figure A2
<p>Map of LSTs at the municipal level in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (June–August).</p> "> Figure A3
<p>NDVI map (median value) geovisualising green areas in the Functional Urban Area of Padua (1 km raster resolution output).</p> "> Figure A4
<p>Map of urban thermal anomalies in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (1 km raster resolution output).</p> "> Figure A5
<p>Map of urban thermal anomalies at the municipal level in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (June–August).</p> "> Figure A6
<p>Map of the exposure (E) parameter in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (normalised values from 0 to 1).</p> "> Figure A7
<p>Map of the vulnerability (V) parameter in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (normalised values from 0 to 1).</p> "> Figure A8
<p>Map of the hazard (H) parameter in the Functional Urban Area of Padua in Italy during the summers of 2018–2021 (normalised values from 0 to 1).</p> ">
Abstract
:1. Introduction
1.1. Research Background
1.1.1. Urban Heat Island (UHI) Assessment
1.1.2. Mitigation Strategies and Their Impacts
1.1.3. Case Studies
1.2. Study Area: The Functional Urban Area (FUA) of Padua
1.3. Research Objectives
- I.
- UHI assessment by calculating the HW period and the heat wave magnitude index daily (HWMId) using a meteorological analysis from 2018 to 2021.
- II.
- Mapping the LST and NDVI and the percentage of green surfaces.
- III.
- Mapping urban thermal anomalies by calculating the temperature difference between the LST and the average LST in peri-urban green areas.
- IV.
- Mapping UHI hazard and vulnerability by modelling the heat-related elderly risk index (HERI).
2. Materials and Methods
- The collection of input data;
- The pre-processing of data using open source software, SNAP and QGIS;
- The processing phase, in which all the parameters necessary to assess the urban thermal anomalies and the HERI are calculated;
- In the last phase, the results are mapped in QGIS.
2.1. Input and Processing Data
2.1.1. Weather Data
2.1.2. Satellite Data
2.1.3. Land Cover Data
2.1.4. Socio-Demographic Data
2.2. Urban Heat Island (UHI) Analysis
2.2.1. Heat Wave (HW) Period
- -
- U is the union of the datasets;
- -
- is the daily maximum temperature of the day in the year .
2.2.2. Heat Wave Magnitude Index Daily (HWMId)
- -
- is the maximum daily temperature on day of the HW;
- -
- is the 25th percentile of the annual maximum temperatures recorded from 1992 to 2021;
- -
- is the 75th percentile of the annual maximum temperatures recorded from 1992 to 2021.
2.3. Thermal Anomalies Analysis
- Creation of a circular crown (15–20 km) 15 km distant from the FUA with an extension of 5 km.
- Extraction of the CLC layer using a 15–20 km circular crown level.
- From the extracted CLC database (15–20 km), identification of the points the maximum distance from the edge of the polygons classified as ‘vegetation’.
- Selection of points at least 400 m away for the 15–20 km circular crown.
- Extraction of the value from the LST raster corresponding to the identified ‘pins’.
- Calculation of an average temperature value of the ‘pins’, which was then used to evaluate the thermal anomaly.
2.4. Relationship between Land Cover and Satellite Data
2.5. Heat-Related Urban Risk Assessment
2.5.1. Exposure and Vulnerability Parameters
2.5.2. Hazard Parameter
2.5.3. Heat-Related Elderly Risk Index (HERI)
- -
- is the normalised value in the dataset, which varies between 0 and 1 ();
- -
- is the value in the dataset;
- -
- is the minimum value in the dataset;
- -
- is the maximum value in the dataset.
3. Results
3.1. Urban Heat Island (UHI) Analysis
3.2. Mapping Urban Heat Waves and Heat Islands
3.2.1. Mapping Land Surface Temperature (LST)
3.2.2. Normalised Difference Vegetation Index (NDVI) Calculation
3.2.3. Urban Green Analysis: Estimation of Green Surfaces
3.3. Correlations between Satellite Data and the Percentage of Green Surfaces
3.4. Mapping Urban Thermal Anomalies
3.5. Mapping the Heat-Related Elderly Risk Index (HERI)
4. Discussion
5. Conclusions
5.1. Main Research Findings
5.2. Limitations and Future Direction of the Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: London, UK; New York, NY, USA, 2021. [Google Scholar]
- The Lancet Health in a world of extreme heat. Lancet 2021, 398, 641. [CrossRef]
- Tong, S.; Prior, J.; McGregor, G.; Shi, X.; Kinney, P. Urban heat: An increasing threat to global health. BMJ 2021, 375, n2467. [Google Scholar] [CrossRef] [PubMed]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Juárez, E.B.; López-Martínez, J.O.; Hernández-Stefanoni, J.L.; Hernández-Nuñez, H. Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS Int. J. Geo-Inf. 2021, 10, 76. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Alabsi, A.A.N.; Hamed, R. Spatiotemporal Influence of Land Use/Land Cover Change Dynamics on Surface Urban Heat Island: A Case Study of Abuja Metropolis, Nigeria. ISPRS Int. J. Geo-Inf. 2021, 10, 272. [Google Scholar] [CrossRef]
- Shi, L.; Chu, E.; Anguelovski, I.; Aylett, A.; Debats, J.; Goh, K.; Schenk, T.; Seto, K.C.; Dodman, D.; Roberts, D.; et al. Roadmap towards justice in urban climate adaptation research. Nat. Clim. Chang. 2016, 6, 131–137. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Wemegah, C.S.; Yamba, E.I.; Aryee, J.N.A.; Sam, F.; Amekudzi, L.K. Assessment of urban heat island warming in the greater accra region. Sci. Afr. 2020, 8, e00426. [Google Scholar] [CrossRef]
- de Almeida, C.R.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Shi, H.; Xian, G.; Auch, R.; Gallo, K.; Zhou, Q. Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land 2021, 10, 867. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Göttsche, F.-M.; Long, Z.; Ma, J.; Luo, R. Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102136. [Google Scholar] [CrossRef]
- Hidalgo García, D. Analysis and precision of the Terrestrial Surface Temperature using Landsat 8 and Sentinel 3 images: Study applied to the city of Granada (Spain). Sustain. Cities Soc. 2021, 71, 102980. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; Niclòs, R.; Puchades, J.; Coll, C.; Göttsche, F.-M.; Valiente, J.A.; Valor, E.; Galve, J.M. Validation of Sentinel-3 SLSTR Land Surface Temperature Retrieved by the Operational Product and Comparison with Explicitly Emissivity-Dependent Algorithms. Remote Sens. 2021, 13, 2228. [Google Scholar] [CrossRef]
- Hidalgo García, D.; Arco Díaz, J. Modeling of the Urban Heat Island on local climatic zones of a city using Sentinel 3 images: Urban determining factors. Urban Clim. 2021, 37, 100840. [Google Scholar] [CrossRef]
- Stuckey, O. A Comparison of ArcGIS and QGIS for Animation. Cartogr. Perspect. 2017, 85, 23–32. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Fiorito, F.; Santamouris, M. Development of a holistic urban heat island evaluation methodology. Sci. Rep. 2020, 10, 17913. [Google Scholar] [CrossRef]
- Aslan, N.; Koc-San, D. The Use of Land Cover Indices for Rapid Surface Urban Heat Island Detection from Multi-Temporal Landsat Imageries. ISPRS Int. J. Geo-Inf. 2021, 10, 416. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.W.M.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green infrastructure as an urban heat island mitigation strategy—A review. Water 2020, 12, 2577. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Ng, A.W.M.; Muthukumaran, S. Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod. 2018, 197, 393–405. [Google Scholar] [CrossRef]
- Aminipouri, M.; Knudby, A.J.; Krayenhoff, E.S.; Zickfeld, K.; Middel, A. Modelling the impact of increased street tree cover on mean radiant temperature across Vancouver’s local climate zones. Urban For. Urban Green. 2019, 39, 9–17. [Google Scholar] [CrossRef]
- Aminipouri, M.; Rayner, D.; Lindberg, F.; Thorsson, S.; Knudby, A.J.; Zickfeld, K.; Middel, A.; Krayenhoff, E.S. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones. Build. Environ. 2019, 158, 226–236. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Acero, J.A. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 2015, 14, 251–267. [Google Scholar] [CrossRef]
- O’Malley, C.; Piroozfar, P.; Farr, E.R.P.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustain. Cities Soc. 2015, 19, 222–235. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Degirmenci, K.; Desouza, K.C.; Fieuw, W.; Watson, R.T.; Yigitcanlar, T. Understanding policy and technology responses in mitigating urban heat islands: A literature review and directions for future research. Sustain. Cities Soc. 2021, 70, 102873. [Google Scholar] [CrossRef]
- Martinelli, A.; Kolokotsa, D.-D.; Fiorito, F. Urban Heat Island in Mediterranean Coastal Cities: The Case of Bari (Italy). Climate 2020, 8, 79. [Google Scholar] [CrossRef]
- Cocci Grifoni, R.; Caprari, G.; Marchesani, G.E. Combinative Study of Urban Heat Island in Ascoli Piceno City with Remote Sensing and CFD Simulation—Climate Change and Urban Health Resilience—CCUHRE Project. Sustainability 2022, 14, 688. [Google Scholar] [CrossRef]
- Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustain. Cities Soc. 2016, 22, 19–28. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An Urban Heat Island Study of the Colombo Metropolitan Area, Sri Lanka, Based on Landsat Data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef]
- Ranagalage, M.; Ratnayake, S.S.; Dissanayake, D.; Kumar, L.; Wickremasinghe, H.; Vidanagama, J.; Cho, H.; Udagedara, S.; Jha, K.K.; Simwanda, M.; et al. Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka. ISPRS Int. J. Geo-Inf. 2020, 9, 461. [Google Scholar] [CrossRef]
- Nurwanda, A.; Honjo, T. Analysis of Land Use Change and Expansion of Surface Urban Heat Island in Bogor City by Remote Sensing. ISPRS Int. J. Geo-Inf. 2018, 7, 165. [Google Scholar] [CrossRef]
- Peng, T.; Sun, C.; Feng, S.; Zhang, Y.; Fan, F. Temporal and Spatial Variation of Anthropogenic Heat in the Central Urban Area: A Case Study of Guangzhou, China. ISPRS Int. J. Geo-Inf. 2021, 10, 160. [Google Scholar] [CrossRef]
- Ge, X.; Mauree, D.; Castello, R.; Scartezzini, J.-L. Spatio-Temporal Relationship between Land Cover and Land Surface Temperature in Urban Areas: A Case Study in Geneva and Paris. ISPRS Int. J. Geo-Inf. 2020, 9, 593. [Google Scholar] [CrossRef]
- ISPRA. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; ISPRA: Varese, Italy, 2021. (In Italian) [Google Scholar]
- Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S.E.; De Marchi, M. Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability 2020, 12, 150. [Google Scholar] [CrossRef]
- Pristeri, G.; Peroni, F.; Pappalardo, S.E.; Codato, D.; Castaldo, A.G.; Masi, A.; De Marchi, M. Mapping and Assessing Soil Sealing in Padua Municipality through Biotope Area Factor Index. Sustainability 2020, 12, 5167. [Google Scholar] [CrossRef]
- Pristeri, G.; Peroni, F.; Pappalardo, S.E.; Codato, D.; Masi, A.; De Marchi, M. Whose Urban Green? Mapping and Classifying Public and Private Green Spaces in Padua for Spatial Planning Policies. ISPRS Int. J. Geo-Inf. 2021, 10, 538. [Google Scholar] [CrossRef]
- Rajashree, K.; Meenal, S. Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban Heat Islands through Traverse Survey in the Nagpur Urban Area, India. J. Urban Plan. Dev. 2016, 142, 4015003. [Google Scholar] [CrossRef]
- Phelan, P.E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva, H.; Taylor, R.A. Urban Heat Island: Mechanisms, Implications, and Possible Remedies. Annu. Rev. Environ. Resour. 2015, 40, 285–307. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, A. Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area. Model. Earth Syst. Environ. 2018, 4, 501–515. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci. Total Environ. 2019, 671, 1036–1046. [Google Scholar] [CrossRef]
- Noro, M.; Busato, F.; Lazzarin, R.M. Urban heat island in Padua, Italy: Experimental and theoretical analysis. Indoor Built Environ. 2014, 24, 514–533. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R. Urban heat island in Padua, Italy: Simulation analysis and mitigation strategies. Urban Clim. 2015, 14, 187–196. [Google Scholar] [CrossRef]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three years of study of the Urban Heat Island in Padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Zanetti, C.; Pappalardo, S.E. Heat Waves e Isole di Calore Nell’area Urbana di Padova: Analisi e Mappatura delle Anomalie Termiche Mediante Landsat 8; University of Padua: Padua, Italy, 2019. (In Italian) [Google Scholar]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J. V Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 500–512. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Including the urban heat island in spatial heat health risk assessment strategies: A case study for Birmingham, UK. Int. J. Health Geogr. 2011, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Buscail, C.; Upegui, E.; Viel, J.-F. Mapping heatwave health risk at the community level for public health action. Int. J. Health Geogr. 2012, 11, 38. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Di Stefano, V.; Orlandini, S.; Gensini, G.F. Urban-hazard risk analysis: Mapping of heat-related risks in the elderly in major Italian cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef] [PubMed]
- Sabrin, S.; Karimi, M.; Nazari, R. Developing Vulnerability Index to Quantify Urban Heat Islands Effects Coupled with Air Pollution: A Case Study of Camden, NJ. ISPRS Int. J. Geo-Inf. 2020, 9, 349. [Google Scholar] [CrossRef]
- Maragno, D.; dall’Omo, C.F.; Pozzer, G.; Musco, F. Multi-Risk Climate Mapping for the Adaptation of the Venice Metropolitan Area. Sustainability 2021, 13, 1334. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V. Bertoldi Accelerating Energy Renovation Investments in Buildings—Financial and Fiscal Instruments Across the EU; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12195-4. [Google Scholar]
- Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafò, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. [Google Scholar] [CrossRef]
- Biryukov, A.; Olenkov, V.; Kolmogorova, A.O. Urban climate and registration of thermal anomalies of territories using satellite imagery. E3S Web Conf. 2021, 266, 8008. [Google Scholar] [CrossRef]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Vautard, R.; Van Aalst, M.; Boucher, O.; Drouin, A.; Haustein, K.; Kreienkamp, F.; Van Oldenborgh, G.J.; Otto, F.E.L.; Ribes, A.; Robin, Y.; et al. Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett. 2020, 15, 094077. [Google Scholar] [CrossRef]
- Singh, R.; Arrighi, J.; Jjemba, E.; Strachan, K.; Spires, M.; Kadihasanoglu, A. Heatwave Guide for Cities; Red CrossRed Crescent Climate Centre: Athina, Greece, 2019. [Google Scholar]
- Martín, Y.; Paneque, P. Moving from adaptation capacities to implementing adaptation to extreme heat events in urban areas of the European Union: Introducing the U-ADAPT! research approach. J. Environ. Manag. 2022, 310, 114773. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Andhikaputra, G.; Wang, Y.-C. Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adaptation Strategies. Atmosphere 2022, 13, 734. [Google Scholar] [CrossRef]
- Amorim-Maia, A.T.; Anguelovski, I.; Chu, E.; Connolly, J. Intersectional climate justice: A conceptual pathway for bridging adaptation planning, transformative action, and social equity. Urban Clim. 2022, 41, 101053. [Google Scholar] [CrossRef]
- Xu, C.; Chen, G.; Huang, Q.; Su, M.; Rong, Q.; Yue, W.; Haase, D. Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Sci. Total Environ. 2022, 841, 156687. [Google Scholar] [CrossRef] [PubMed]
- Mohtat, N.; Khirfan, L. The climate justice pillars vis-à-vis urban form adaptation to climate change: A review. Urban Clim. 2021, 39, 100951. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Liao, W.; Hong, T.; Heo, Y. The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy Build. 2021, 244, 111027. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.-X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
Data | Source | CRS | Type | Reference Year |
---|---|---|---|---|
Functional Urban Area (FUA) | Copernicus 1 | ETRS89-xtended/LAEA Europe | Polygonal vector data | 2018 |
Municipalities | Geoportal of the Veneto Region 2 | Monte Mario/Italy zone 1 | Polygonal vector data | 2018 |
Corine Land Cover (CLC) | Geoportal of the Veneto Region 2 | RDN2008/Zone 12 | Polygonal vector data | 2018 |
Sentinel-3 satellite images | Copernicus 3 | not assigned | Raster data with 1 km spatial resolution | 2018, 2019, 2020 and 2021 |
Socio-demographic data | Statistical database of the Veneto Region 4 | WSG 84/UTM zone 32N | Polygonal vector data | 2020 |
Sentinel-3 Sensing Date | Hour UTCI | HW Analysis | Md (-) Sensing Date | Tae,day,max (°C) | ||
---|---|---|---|---|---|---|
Period | Duration (Days) | HWMId (-) | ||||
24 June 2016 * | n/a | From 23 to 25 June | 3 | 5.00 | 1.83 | 33.6 |
2 August 2017 * | n/a | From 1 to 6 August | 6 | 11.3 | 2.32 | 36.9 |
1 August 2018 | 9.00 a.m. | From 30 July to 1 August | 3 | 4.98 | 1.89 | 35.3 |
27 June 2019 | 9.45 a.m. | From 25 to 28 June | 4 | 7.91 | 2.73 | 37.3 |
31 July 2020 | 9.30 a.m. | 30 July to 1 August | 3 | 5.33 | 1.96 | 35.7 |
14 August 2021 | 9.45 a.m. | From 13 to 15 August | 3 | 4.96 | 1.73 | 34.9 |
y | x | a | b | R 1 |
---|---|---|---|---|
LSTmedian | Percentage of green surfaces | 42.32 | −4.71 | −0.67 |
NDVImedian | 0.37 | 0.23 | 0.76 |
Municipality | Exposure (inh./km2) | Vulnerability (%) | Hazard (°C) | HERI (-) |
---|---|---|---|---|
Padova | 2255 | 25.5 | 2.91 | 0.88 |
Abano Terme | 939 | 26.8 | 2.32 | 0.67 |
Noventa Padovana | 1626 | 20.1 | 2.42 | 0.65 |
Ponte San Nicolò | 991 | 23.5 | 2.54 | 0.65 |
Albignasego | 1250 | 21.1 | 2.38 | 0.62 |
Cadoneghe | 1236 | 24.1 | 1.88 | 0.60 |
Selvazzano Dentro | 1174 | 24.8 | 1.74 | 0.59 |
Rubano | 1152 | 22.1 | 1.82 | 0.55 |
Stra | 856 | 24.6 | 1.6 | 0.53 |
Sant’Angelo di Piove di Sacco | 394 | 28.3 | 1.45 | 0.51 |
Vigonovo | 772 | 21.0 | 1.99 | 0.51 |
Vigonza | 693 | 21.2 | 1.86 | 0.48 |
Montegrotto Terme | 739 | 25.4 | 1.24 | 0.48 |
Saonara | 770 | 19.4 | 1.65 | 0.44 |
Maserá di Padova | 520 | 20.0 | 1.78 | 0.44 |
Battaglia Terme | 611 | 27.9 | 0.53 | 0.42 |
Legnaro | 618 | 20.1 | 1.41 | 0.40 |
Due Carrare | 337 | 20.7 | 1.53 | 0.39 |
Campodarsego | 575 | 19.3 | 1.37 | 0.38 |
Casalserugo | 344 | 23.8 | 0.84 | 0.36 |
Brugine | 278 | 25.0 | 0.69 | 0.35 |
Vigodarzere | 654 | 21.9 | 0.63 | 0.33 |
Cartura | 280 | 22.0 | 0.73 | 0.30 |
Saccolongo | 357 | 23.5 | 0.29 | 0.28 |
Terrassa Padovana | 182 | 18.7 | 0.94 | 0.26 |
Mestrino | 606 | 17.8 | 0.64 | 0.26 |
Teolo | 217 | 32.8 | −0.96 | 0.26 |
Bovolenta | 153 | 23.3 | 0.27 | 0.25 |
Limena | 531 | 21.0 | 0.03 | 0.23 |
Villafranca Padovana | 438 | 19.3 | −0.29 | 0.15 |
Polverara | 341 | 19.2 | −0.39 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todeschi, V.; Pappalardo, S.E.; Zanetti, C.; Peroni, F.; Marchi, M.D. Climate Justice in the City: Mapping Heat-Related Risk for Climate Change Mitigation of the Urban and Peri-Urban Area of Padua (Italy). ISPRS Int. J. Geo-Inf. 2022, 11, 490. https://doi.org/10.3390/ijgi11090490
Todeschi V, Pappalardo SE, Zanetti C, Peroni F, Marchi MD. Climate Justice in the City: Mapping Heat-Related Risk for Climate Change Mitigation of the Urban and Peri-Urban Area of Padua (Italy). ISPRS International Journal of Geo-Information. 2022; 11(9):490. https://doi.org/10.3390/ijgi11090490
Chicago/Turabian StyleTodeschi, Valeria, Salvatore Eugenio Pappalardo, Carlo Zanetti, Francesca Peroni, and Massimo De Marchi. 2022. "Climate Justice in the City: Mapping Heat-Related Risk for Climate Change Mitigation of the Urban and Peri-Urban Area of Padua (Italy)" ISPRS International Journal of Geo-Information 11, no. 9: 490. https://doi.org/10.3390/ijgi11090490