Identification and Classification of Routine Locations Using Anonymized Mobile Communication Data
<p>Histogram of the number of events per user.</p> "> Figure 2
<p>Histogram of unique locations per user.</p> "> Figure 3
<p>3D scatter plot of the K-means clustering applied to user locations with K = 3.</p> "> Figure 4
<p>Example of an antenna’s signal area.</p> "> Figure 5
<p>Histogram of high-level categories present in the example antenna of <a href="#ijgi-11-00228-f004" class="html-fig">Figure 4</a>.</p> "> Figure 6
<p>Routine locations classified for one user: (<b>a</b>) time interval from 9 a.m.to 12 a.m.; (<b>b</b>) time interval from 12 a.m.to 2 p.m.; and (<b>c</b>) time interval from 2 p.m. to 5 p.m.</p> "> Figure 7
<p>Accuracy of predictions in relation to average antenna’s radius.</p> ">
Abstract
:1. Introduction
2. State of the Art
2.1. Call Detail Records
2.2. Points of Interest
2.3. Semantic Disambiguation of CDRs
3. Materials
3.1. CDR Dataset
3.2. POIs Dataset
3.3. User Survey
4. Proposed Approach
4.1. CDR Pre-Processing
4.2. Home and Workplace Detection
4.3. Other Routine Locations
4.4. Geographic Regions Classification
5. Results and Discussion
5.1. Experimental Results on Regions
5.2. User Routines Validation
6. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
CDRs | Call Detail Records |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
EVPs | Exceptionally Visited Places |
GPS | Global Positioning System |
MVPs | Most Visited Places |
OVPs | Occasionally Visited Places |
POIs | Points of Interest |
References
- Gonzalez, M.C.; Hidalgo, C.; Barabasi, A.L. Understanding Individual Human Mobility Patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Sacharidis, D.; Mathioudakis, M.; Wang, G. Inferring Venue Visits from GPS Trajectories. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Proux, D.; Roulland, F. Mobile Recommendation Challenges within a Strong Privacy Oriented Paradigm. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising, Chicago, IL, USA, 5–8 November 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Li, Y.; Zhang, F.; Xu, C.; He, T. Exploring Human Mobility with Multi-Source Data at Extremely Large Metropolitan Scales. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 201–212. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, G.; Zang, H.; Zhang, Z.L.; Bolot, J. Are Call Detail Records Biased for Sampling Human Mobility? Mob. Comput. Commun. Rev. 2012, 16, 33–44. [Google Scholar] [CrossRef]
- Vanhoof, M.; Reis, F.; Smoreda, Z.; Ploetz, T. Detecting home locations from CDR data: Introducing spatial uncertainty to the state-of-the-art. arXiv 2018, arXiv:1808.06398. [Google Scholar]
- Ayesha, B.; Jeewanthi, B.; Chitraranjan, C.; Perera, A.S.; Kumarage, A.S. User Localization Based on Call Detail Record. In Intelligent Data Engineering and Automated Learning—IDEAL 2019; Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.J., Menezes, R., Allmendinger, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 411–423. [Google Scholar]
- Yang, P.; Zhu, T.; Wan, X.; Wang, X. Identifying Significant Places Using Multi-Day Call Detail Records. In Proceedings of the 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, Washington, DC, USA, 10–12 November 2014; pp. 360–366. [Google Scholar] [CrossRef]
- Isaacman, S.; Becker, R.; Cáceres, R.; Kobourov, S.; Martonosi, M.; Rowland, J.; Varshavsky, A. Identifying Important Places in People’s Lives from Cellular Network Data. In Pervasive Computing; Lyons, K., Hightower, J., Huang, E.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 133–151. [Google Scholar]
- Quadri, C.; Zignani, M.; Gaito, S.; Rossi, G.P. On Non-Routine Places in Urban Human Mobility. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 584–593. [Google Scholar] [CrossRef]
- Qian, C.; Li, W.; Duan, Z.; Yang, D.; Ran, B. Using mobile phone data to determine spatial correlations between tourism facilities. J. Transp. Geogr. 2021, 92, 103018. [Google Scholar] [CrossRef]
- Csáji, B.C.; Browet, A.; Traag, V.; Delvenne, J.C.; Huens, E.; Van Dooren, P.; Smoreda, Z.; Blondel, V.D. Exploring the mobility of mobile phone users. Phys. A Stat. Mech. Appl. 2013, 392, 1459–1473. [Google Scholar] [CrossRef] [Green Version]
- Hess, A.; Marsh, I.; Gillblad, D. Exploring communication and mobility behavior of 3G network users and its temporal consistency. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 5916–5921. [Google Scholar] [CrossRef]
- Lenormand, M.; Picornell, M.; Cantú-Ros, O.G.; Tugores, A.; Louail, T.; Herranz, R.; Barthelemy, M.; Frías-Martínez, E.; Ramasco, J.J. Cross-Checking Different Sources of Mobility Information. PLoS ONE 2014, 9, e105184. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Ni, C.C.; Gao, J. Fighting Statistical Re-Identification in Human Trajectory Publication. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Vancea, F.; Vancea, C.; Popescu, D.; Zmaranda, D.; Gabor, G. Secure Data Retention of Call Detail Records. Int. J. Comput. 2010, 5, 961–967. [Google Scholar] [CrossRef]
- Yang, J.; Dash, M.; Teo, S. PPTPF: Privacy-Preserving Trajectory Publication Framework for CDR Mobile Trajectories. ISPRS Int. J. Geo Inf. 2021, 10, 224. [Google Scholar] [CrossRef]
- Khosrow-Pour, D.B.A. Encyclopedia of Information Science and Technology, 3rd ed.; IGI Global: Hershey, PA, USA, 2015. [Google Scholar] [CrossRef]
- Phithakkitnukoon, S.; Horanont, T.; Di Lorenzo, G.; Shibasaki, R.; Ratti, C. Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data. In Human Behavior Understanding; Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 14–25. [Google Scholar]
- Zhou, X.; Liu, J.; Yeh, A.G.O.; Yue, Y.; Li, W. The Uncertain Geographic Context Problem in Identifying Activity Centers Using Mobile Phone Positioning Data and Point of Interest Data. In Advances in Spatial Data Handling and Analysis: Select Papers from the 16th IGU Spatial Data Handling Symposium; Springer International Publishing: Cham, Switzerland, 2015; pp. 107–119. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C. On data processing required to derive mobility patterns from passively-generated mobile phone data. Transp. Res. Part C Emerg. Technol. 2018, 87, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Diao, M.; Zhu, Y.; Ferreira, J.; Ratti, C. Inferring individual daily activities from mobile phone traces: A Boston example. Environ. Plan. Plan. Des. 2015, 43, 920–940. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Chen, Y.; Sun, L.; Lai, J.; Li, T.; Zhuo, L. Recognition of Functional Areas Based on Call Detail Records and Point of Interest Data. J. Adv. Transp. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Available online: https://www.portugal.gov.pt/pt/gc22/governo/comunicados-do-conselho-de-ministros?p=13 (accessed on 13 February 2021).
- He, R.; Cao, J.; Zhang, L.; Lee, D. Statistical Enrichment Models for Activity Inference from Imprecise Location Data. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 946–954. [Google Scholar] [CrossRef]
- Andrade, R.; Alves, A.; Bento, C. POI Mining for Land Use Classification: A Case Study. Int. J. Geo Inf. 2020, 9, 493. [Google Scholar] [CrossRef]
- Iovan, C.; Olteanu-Raimond, A.M.; Couronné, T.; Smoreda, Z. Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies. In Geographic Information Science at the Heart of Europe; Springer International Publishing: Cham, Switzerland, 2013; pp. 247–265. [Google Scholar] [CrossRef]
User Count | 35,676 |
Mean Events | 1346.32 |
Std | 425.81 |
Min | 1.000 |
25% | 1109.00 |
50% | 1351.00 |
75% | 1561.00 |
Max | 7288.00 |
User Count | 35,674 |
Mean (Unique Locations) | 25.309 |
Std | 18.406 |
Min | 1.000 |
25% | 12.000 |
50% | 24.000 |
75% | 34.000 |
Max | 224.000 |
Name | Check-Ins | Hours | Latitude | Longitude |
---|---|---|---|---|
Restaurante Aviz | 425 | [[8, 0], [9, 0]] | 39.82468 | −7.4915 |
AZULMIR | 15 | [[9, 19], [9, 12]] | 40.43211 | −8.72678 |
B-Culture | 0 | [[9, 19], [9, 13]] | 41.45011 | −8.33808 |
... | ... | ... | ... | ... |
Category | City | Top Category | ||
Portuguese Restaurant | Castelo Branco | Food and Beverage | ||
Wholesale and Supply Store | Mira | Shopping and Retail | ||
Medical and Health | Guimarães | Medical and Health | ||
... | ... | ... |
Facebook’s Top Category | POIs Percentage | Check-Ins Percentage | Result |
---|---|---|---|
Food and Beverage | 0.125 | 0.009709 | 0.001214 |
Beauty, Cosmetic and Personal Care | 0.125 | 0.019417 | 0.002427 |
Religious Organization | 0.125 | 0.064725 | 0.008091 |
Medical and Health | 0.375 | 0.284790 | 0.106796 |
Shopping and Retail | 0.250 | 0.621359 | 0.155340 |
Temporal Interval | Classification | Temporal Interval | Classification |
---|---|---|---|
(0, 3) | Food & Beverage | (0, 3) | Food & Beverage |
(3, 6) | None | (3, 6) | None |
(6, 9) | Sports and Recreation | (6, 9) | Sports and Recreation |
(9, 12) | Medical and Health | (9, 12) | Medical and Health |
(12, 14) | Medical and Health | (12, 14) | Medical and Health |
(14, 17) | Medical and Health | (14, 17) | Hotel and Lodging |
(17, 20) | Medical and Health | (17, 20) | Hotel and Lodging |
(20, 24) | Sports and Recreation | (20, 24) | Sports and Recreation |
Workdays | Weekends | ||
---|---|---|---|
Temporal Interval | Activities | Temporal Interval | Activities |
(9, 12) | [Local Service, Real Estate, Education, Food and Beverage] | (9, 12) | [Real Estate, Shopping and Retail, Food and Beverage] |
(12, 14) | [Education, Real Estate, Medical and Health, Food and Beverage] | (12, 14) | [Food and Beverage] |
(14, 17) | [Beauty, Cosmetic and Personal Care, Real Estate, Education, Food and Beverage] | (14, 17) | [Food and Beverage] |
(17, 20) | [Real Estate, Education, Food and Beverage, Medical and Health, Local Service] | (17, 20) | [Food and Beverage] |
(20, 24) | [Food and Beverage, Education, Medical and Health, Shopping and Retail] | (20, 24) | [Food and Beverage] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, G.; Alves, A.; Veloso, M.; Bento, C. Identification and Classification of Routine Locations Using Anonymized Mobile Communication Data. ISPRS Int. J. Geo-Inf. 2022, 11, 228. https://doi.org/10.3390/ijgi11040228
Ferreira G, Alves A, Veloso M, Bento C. Identification and Classification of Routine Locations Using Anonymized Mobile Communication Data. ISPRS International Journal of Geo-Information. 2022; 11(4):228. https://doi.org/10.3390/ijgi11040228
Chicago/Turabian StyleFerreira, Gonçalo, Ana Alves, Marco Veloso, and Carlos Bento. 2022. "Identification and Classification of Routine Locations Using Anonymized Mobile Communication Data" ISPRS International Journal of Geo-Information 11, no. 4: 228. https://doi.org/10.3390/ijgi11040228
APA StyleFerreira, G., Alves, A., Veloso, M., & Bento, C. (2022). Identification and Classification of Routine Locations Using Anonymized Mobile Communication Data. ISPRS International Journal of Geo-Information, 11(4), 228. https://doi.org/10.3390/ijgi11040228