Radiator Enablers for Wireless Communication Evolution
<p>Diagram of OAM methods.</p> "> Figure 2
<p>Challenges of new mmWave antenna properties.</p> "> Figure 3
<p>Acceptable requirements for design of a mmWave antenna.</p> "> Figure 4
<p>Antenna terminology diagram.</p> "> Figure 5
<p>Wireless evolution-driven antenna convergence diagram.</p> ">
Abstract
:1. Introduction
1.1. Wireless Communication Evolution
1.2. The 6G Use Cases
- eMBB to immersive communications, where extended reality-like communications are becoming more and more real.
- Ultra-reliable and low-latency communications (URLLC) to hyper-reliable and low-latency communications (HRLLC), where network resiliency is a necessity, especially in minimizing critical (especially due to unexpected events) network outages.
- mMTC to massive communication, where massive connectivity, reduced power consumption, increased lifespan of sensors, predictive resource allocation, low-cost authentication and authorization, swarm networking, satellite communication for IoT, and other sensor-related functions are in focus as key components to evolve further.
- AI, where intelligent network automation and optimization is anticipated.
- Sensor networks, where sensing and communication infrastructure for activity recognition, localization, and monitoring are expected.
- Ubiquitous connectivity, where ubiquitous and resilient coverage and enhancements including non-terrestrial, aerial, and maritime communications are targeted.
1.3. Key Performance Indicators and Formulas
2. Challenges, Enabling Technologies, and Antenna Developments
2.1. Challenges and Enabling Antenna Technologies
2.1.1. The eMBB Challenge
2.1.2. URLLC to HRLLC Challenge
2.1.3. mMTC to Massive Communication Challenge
2.2. Antenna Evolution to Provide New Degrees of Freedom
2.2.1. MIMO Technology
2.2.2. The RIS Technology
2.2.3. The Holographic Metasurface Technology
2.2.4. The OAM Vortex Degrees of Freedom Technology
3. Radiators’ Novel Technologies, Design, and Implementation Issues
3.1. gMIMO
3.1.1. General Description
3.1.2. System Requirements
3.1.3. Antennas Selection
3.1.4. Array Configuration
3.1.5. Antenna Feeding Systems
3.1.6. Example Designs
3.1.7. Implementation Issues of gMIMO Systems
3.1.8. State of the Art of the Beamformer–Antenna Array System
3.1.9. Evaluation
3.2. Reconfigurable Intelligent Surfaces
3.2.1. General Description
3.2.2. Reconfigurable System Requirements
3.2.3. RIS System Selection
3.2.4. Array Configuration
3.2.5. Feeding-Programmable Control
3.2.6. State-of-the-Art RIS Designs
3.2.7. RIS Evaluation
3.3. Holographic Metasurfaces
3.3.1. General Description
3.3.2. Holographic Metasurface Requirements
3.3.3. Antenna Element Selection
3.3.4. Array Configurations
3.3.5. Feed Mechanism
3.3.6. Integration with Front-End Circuitry
3.3.7. Example Designs
3.3.8. Holographic Metasurface Performance and Evaluation
3.4. Orbital Angular Momentum Antennas
3.4.1. General Description of OAM Systems
3.4.2. Requirements of OAM Systems
3.4.3. OAM Selection
3.4.4. Array Configurations for OAM Systems
3.4.5. OAM System Feeding
3.4.6. OAM Example Designs
3.4.7. OAM Evaluation
3.5. Advanced Antenna Designs in the mmWave Frequencies
3.5.1. General Description
3.5.2. Challenges and Respective Design Requirements
- Frequency Range and Bandwidth. The requirement to support wide bandwidths in millimeter waves is critical for achieving high data rates (ref. [97]).
- Multiband Compatibility. Usually, designs must support multiple frequency bands. Indeed, for example, since the transition from legacy systems happens gradually, the antennas must support connectivity between various systems, including 5G sub-6 GHz and mmWave bands, ensuring robust connectivity in heterogeneous network environments (ref. [92]).
- Impedance matching. At mmWave frequencies, achieving a good match requires careful design of the feed network and precise manufacturing (ref. [93]).
- High Gain and Beamforming. Due to increased free-space path loss at mmWave frequencies, antennas must provide high gain to ensure reliable signal coverage. Beamforming and beam-steering capabilities are often required to dynamically direct energy toward the user or target, enhancing communication reliability while reducing interference (ref. [92]).
- Low Losses. During the construction of antennas, appropriate materials should be selected to minimize energy losses. For example, the proper substrate, conductive metal, or appropriate feeding method/technique should be chosen (ref. [93]).
- Polarization and MIMO Support. Supporting dual or circular polarization can improve the system’s resilience to multipath effects and polarization mismatches. Moreover, ΜΙΜO (ref. [92]) can further increase the degrees of freedom.
- Cost and Fabrication. Finally, perhaps the most important factor is cost, as all the above are prerequisites for the antenna to function according to new standards and technologies, supporting the massive data transmission rates (ref. [95]).
3.5.3. Selection of Suitable Antenna Technology
3.5.4. Example Designs of mmWave and FR2 Antennas
3.5.5. mmWave Antenna Evaluation
3.6. Advanced Antenna Designs for High-Performance Satellite Communication Systems
3.6.1. General Description
3.6.2. Challenges
3.6.3. Antenna Selection
3.6.4. Antenna Feeding
3.6.5. Example Designs
3.6.6. Future of Antenna Designs for Space Applications
3.7. Terahertz Antennas for 6G Applications
3.7.1. General Description
3.7.2. System Requirements
3.7.3. Antennas Selection
3.7.4. Example Designs
Antenna Type | Advantages | Characteristics | Application Examples |
---|---|---|---|
Graphene-Based Antennas (ref. [134]) | Graphene is a 2D material with exceptional electrical and tunable properties at THz frequencies. | Dynamic frequency tuning through external voltage or chemical doping. Compact size is due to graphene’s ability to confine electromagnetic waves. | High-speed wireless communication, tunable THz sensors. |
Photoconductive Antennas (ref. [136]) | Efficient for generating and detecting THz waves in spectroscopy systems. | Uses photoconductive material excited by a laser to produce THz radiation. Can operate in fiber-coupled or free-space configurations. | THz time-domain spectroscopy (TDS), imaging. |
Metamaterial-Based Antennas (ref. [137]) | Leverages engineered materials to manipulate electromagnetic waves. | Customizable to achieve desired radiation patterns, polarization, and beam steering. Overcomes limitations of conventional designs with enhanced bandwidth and gain. | Beamforming, high-gain systems, imaging. |
Horn Antennas (ref. [138]) | High gain and low-loss operation over broad frequency ranges. | Tapered structure to match impedance and minimize reflections. Commonly used in conjunction with waveguides. | Measurement setups, THz spectroscopy. |
3.7.5. THz Antenna Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABF | Analog beamformer. |
ACS | Asymmetric Coplanar Stripline. |
AI | Artificial intelligence. |
AiP | Antenna in Package. |
BS | Base station. |
CCA | Conical Conformal Array. |
CELC | Complementary electric inductive–capacitive. |
CP | Circularly polarized. |
CPW | Coplanar Waveguide. |
CSI | Channel state information. |
CVD | Chemical vapor deposition. |
DBF | Digital Beamformer. |
DBI | Dual-Band Independent. |
DMA | Dynamic metasurface antenna. |
DRAs | Dielectric resonator antennas. |
DULA | Distributed uniform linear arrays. |
EBG | Suspended electromagnetic bandgap. |
EM Waves | Electromagnetic waves. |
eMBB | Extreme mobile broadband. |
F2M | Fixed-to-mobile. |
FER | Frame error rate. |
FPGA | Field programmable gate array. |
FPGAs | Field programmable gate arrays. |
HMA | Holographic metasurface-based antenna. |
HMIMOS | Holographic Multiple-Input and Multiple-Output Surface. |
HRLLC | Hyper Reliable and Low-Latency Communications. |
IoTs | Internet of Things. |
IRS | Intelligent Reflecting Surface. |
ITS | Intelligent transmitting surfaces. |
KPIs | Key performance indicators. |
LEO | Low Earth Orbit. |
LHCP | Left-Handed Circular Polarization. |
LP | Linear polarization. |
LTCC | Low-Temperature Co-fired Ceramic. |
MIMO | Multiple Input Multiple Output. |
ML | Machine learning. |
mmMIMO | Modular massive MIMO. |
mMTCs | Massive Machine Type Communications. |
mmWaves | Millimeter waves. |
NTNs | Non-terrestrial networks. |
OAM | Orbital angular momentum. |
OFDM | Orthogonal Frequency Division Multiplexing. |
PCB | Printed circuit board. |
PHY | Physical layer. |
PPW | Parallel Plate Waveguide. |
PRAs | Parabolic reflector antennas. |
PSIs | Planar spiral inductors. |
PUCAs | Primary uniform circular arrays. |
PVD | Physical vapor deposition. |
QF-UCA | Quasi-fractal uniform circular array antenna. |
RAs | Reflect Array Antennas. |
RF | Radio Frequency. |
RF MEMS | Radio Frequency Micro-Electro-Mechanical Systems. |
RHCP | Right-handed circular polarization. |
RHS | Reconfigurable holographic surface. |
RIS | Reconfigurable intelligent surfaces. |
RLLC | Reliable Low-Latency Communication. |
RRS | Reconfigurable Refractive Surface. |
SAM | Spin angular momentum. |
SatCOM | Satellite Communications. |
SICs | Substrate Integrated Circuits. |
SIM | Stacked intelligent metasurface. |
SIWs | Substrate integrated waveguides. |
SLL | Side Lobe Level. |
SNR | Signal-to-Noise Ratio. |
SOC | System On Chip. |
SOP | System on Package. |
SPDT | Single Pole Double Throw. |
SPP | Spiral phase plates. |
TDM | Time division multiplexing. |
TTI | Transmission time interval. |
UCAs | Uniform circular arrays. |
UCPA | Uniform Circular Planar Array. |
UE | User Euipment. |
UE-CoMIMO | End user collaborative MIMO. |
UHPA | Uniform hexagonal planar array. |
ULA | Uniform linear array. |
UM-MIMO | Ultra-massive MIMO. |
URA | Uniform rectangular array. |
URLLC | Ultra-reliable and low-latency communications. |
URPA | Uniform rectangular planar array. |
XPD | On-Axis Cross-Polarization Discrimination. |
References
- Sarkar, T.K.; Mailloux, R.J.; Oliner, A.A.; Salazar-Palma, M.; Sengupta, D.L. History of Wireless; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Available online: https://www.histv.net/histoire-de-la-t-s-f-et-de-la-radio (accessed on 29 December 2024).
- Available online: https://www.6gflagship.com/ (accessed on 29 December 2024).
- Available online: https://www.3gpp.org/ (accessed on 29 December 2024).
- Prasad, R.; Prasad, A.R.; Mihovska, A.; Nidhi (Eds.) 6G Enabling Technologies: New Dimensions to Wireless Communication, 1st ed.; River Publishers: Aalborg, Denmark, 2023. [Google Scholar] [CrossRef]
- Available online: https://www.nokia.com/about-us/newsroom/articles/6g-mid-band-spectrum-technology-explained/ (accessed on 29 December 2024).
- Available online: https://www.qualcomm.com/ (accessed on 29 December 2024).
- Marzetta, T.L.; Larsson, E.G.; Hong, Y.; Ngo, H.Q. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Khan, F.; Pi, Z. mmWave Mobile Broadband (MMB): Unleashing the 3–300 GHz Spectrum. In Proceedings of the 34th IEEE Sarnoff Symposium, Princeton, NJ, USA, 3–4 May 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Sadhu, B.; Gu, X.; Valdes-Garcia, A. The More (Antennas), the Merrier: A Survey of Silicon-Based mm-Wave Phased Arrays Using Multi-IC Scaling. IEEE Microw. Mag. 2019, 20, 32–50. [Google Scholar] [CrossRef]
- Gu, X.; Liu, D.; Sadhu, B. Packaging and Antenna Integration for Silicon-Based Millimeter-Wave Phased Arrays: 5G and Beyond. IEEE J. Microw. 2021, 1, 123–134. [Google Scholar] [CrossRef]
- Cohen, E.; Ruberto, M.; Cohen, M.; Degani, O.; Ravid, S.; Ritter, D. A CMOS Bidirectional 32-Element Phased-Array Transceiver at 60 GHz with LTCC Antenna. IEEE Trans. Microw. Theory Tech. 2013, 61, 1359–1375. [Google Scholar] [CrossRef]
- Toskala, A.; Nakamura, T.; Holma, H. 5G Technology: 3GPP New Radio; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Liu, L.; Larsson, E.G.; Yu, W.; Popovski, P.; Stefanovic, C.; de Carvalho, E. Sparse Signal Processing for Grant-Free Massive Connectivity: A Future Paradigm for Random Access Protocols in the Internet of Things. IEEE Signal Process. Mag. 2018, 35, 88–99. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, H.; Sun, L.; Ai, B. Joint Activity Detection and Channel Estimation in Massive MIMO Systems With Angular Domain Enhancement. IEEE Trans. Wirel. Commun. 2022, 21, 2999–3011. [Google Scholar] [CrossRef]
- Donoho, D.L.; Maleki, A.; Montanari, A. Message-Passing Algorithms for Compressed Sensing. Proc. Natl. Acad. Sci. USA 2009, 106, 18914–18919. [Google Scholar] [CrossRef] [PubMed]
- Choi, J. NOMA-Based Compressive Random Access Using Gaussian Spreading. IEEE Trans. Commun. 2019, 67, 5167–5177. [Google Scholar] [CrossRef]
- Kaifas, T.N.F. Performance Aspects of Retrodirective RFID Tags. Eng. Proc. 2024, 70, 19. [Google Scholar] [CrossRef]
- Arnaoutoglou, D.G.; Empliouk, T.M.; Kaifas, T.N.F.; Chryssomallis, M.T.; Kyriacou, G. A Review of Multifunctional Antenna Designs for Internet of Things. Electronics 2024, 13, 3200. [Google Scholar] [CrossRef]
- Arnaoutoglou, D.G.; Kyriakou, A.A.G.; Kaifas, T.N.F.; Sirakoulis, G.C.; Kyriacou, G.A. An All-Polarization, Beamforming, and DoA Ready, Γ–Dipole Antenna Array. IEEE Trans. Antennas Propag. 2024, 72, 2323–2336. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Damantoulakis, P.; Karampatea, A.; Doanis, P.; Geourgoulas, D. Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project. In Proceedings of the 2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Rhodes, Greece, 1–3 July 2019; pp. 127–132. [Google Scholar] [CrossRef]
- Empliouk, T.; Kapetanidis, P.; Arnaoutoglou, D.; Kolitsidas, C.; Lialios, D.; Koutinos, A.; Kaifas, T.N.F.; Georgakopoulos, S.V.; Zekios, C.L.; Kyriacou, G.A. Compact, Ultra-Wideband Butler Matrix Beamformers for the Advanced 5G Band FR3—Part I. Electronics 2024, 13, 2763. [Google Scholar] [CrossRef]
- An, J.; Yuen, C.; Dai, L.; Di Renzo, M.; Debbah, M.; Hanzo, L. Near-Field Communications: Research Advances, Potential, and Challenges. IEEE Wirel. Commun. 2024, 31, 100–107. [Google Scholar] [CrossRef]
- Kaifas, T.N.; Babas, D.G.; Miaris, G.S.; Vafiadis, E.E.; Siakavara, K.; Toso, G.; Sahalos, J.N. A Stochastic Study of Large Arrays Related to the Number of Electrically Large Aperture Radiators. IEEE Trans. Antennas Propag. 2014, 62, 3520–3533. [Google Scholar] [CrossRef]
- Sha, W.E.I.; Lan, Z.; Chen, M.L.N.; Chen, Y.P.; Sun, S. Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms. IEEE J. Multiscale Multiphysics Comput. Tech. 2024, 9, 113–117. [Google Scholar] [CrossRef]
- Yang, L.J.; Sun, S.; Sha, W.E.I. Manipulation of Orbital Angular Momentum Spectrum Using Shape-Tailored Metasurfaces. Adv. Opt. Mater. 2021, 9, 2001711. [Google Scholar] [CrossRef]
- Björnson, E.; Kara, F.; Kolomvakis, N.; Kosasih, A.; Ramezani, P.; Salman, M.B. Enabling 6G Performance in the Upper Mid-Band by Transitioning From Massive to Gigantic MIMO. arXiv 2024, arXiv:2407.05630. [Google Scholar]
- Cui, M.; Wu, Z.; Lu, Y.; Wei, X.; Dai, L. Near-Field MIMO Communications for 6G: Fundamentals, Challenges, Potentials, and Future Directions. IEEE Commun. Mag. 2023, 61, 40–46. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Z.; Lyu, Y.; Kyösti, P.; Zhang, J.; Fan, W. Gigantic MIMO Channel Characterization: Challenges and Enabling Solutions. IEEE Commun. Mag. 2023, 61, 140–146. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and Beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Schwarz, S.; Pratschner, S. Multiple Antenna Systems in Mobile 6G: Directional Channels and Robust Signal Processing. IEEE Commun. Mag. 2023, 61, 64–70. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, C.-X.; Huang, J.; Feng, R.; Thompson, J. Measurements and Characteristics Analysis of 6G Ultra-Massive MIMO Wireless Channels With Different Antenna Configurations and Scenarios. IEEE Trans. Veh. Technol. 2023, 72, 9720–9732. [Google Scholar] [CrossRef]
- Ning, B.; Tian, Z.; Mei, W.; Chen, Z.; Han, C.; Li, S.; Yuan, J.; Zhang, R. Beamforming Technologies for Ultra-Massive MIMO in Terahertz Communications. IEEE Open J. Commun. Soc. 2023, 4, 614–658. [Google Scholar] [CrossRef]
- Jamali, V.; Tulino, A.M.; Fischer, G.; Müller, R.R.; Schober, R. Intelligent Surface-Aided Transmitter Architectures for Millimeter-Wave Ultra Massive MIMO Systems. IEEE Open J. Commun. Soc. 2021, 2, 144–167. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, G.; Ibrahim, A.A.; Yuan, J.; Xu, G.; Cho, J.; Onggosanusi, E.; Kim, Y.; Lee, J.; Zhang, J.C. MIMO Evolution toward 6G: Modular Massive MIMO in Low-Frequency Bands. IEEE Commun. Mag. 2021, 59, 52–58. [Google Scholar] [CrossRef]
- Jing, H.; Cheng, W.; Zhang, W. Breaking Limits of Line-of-Sight MIMO Capacity in 6G Wireless Communications. IEEE Wirel. Commun. 2024, 31, 28–33. [Google Scholar] [CrossRef]
- Raj, S.; Rajput, V.; Tripathi, A.; Choudhary, S. Comparative Analysis of Channel Capacities in 6G Networks: Massive MIMO, Millimeter-Wave and Terahertz Channels. In Proceedings of the 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, 29–31 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Tsai, L.-S.; Shih, S.-L.; Liao, P.-K.; Wen, C.-K. MIMO Evolution Toward 6G: End-User-Centric Collaborative MIMO. IEEE Commun. Mag. 2024, 62, 104–110. [Google Scholar] [CrossRef]
- Molisch, A.F.; Ratnam, V.V.; Han, S.; Li, Z.; Nguyen, S.L.H.; Li, L.; Haneda, K. Hybrid Beamforming for Massive MIMO: A Survey. IEEE Commun. Mag. 2017, 55, 134–141. [Google Scholar] [CrossRef]
- Peterson, B. RF Front-End Technology and Tradeoffs for 5G mmWave Fixed Wireless Access. Microw. J. 2019, 11–16. Available online: https://www.microwavejournal.com/articles/31319-rf-front-end-technology-and-tradeoffs-for-5g-mmwave-fixed-wireless-access (accessed on 29 December 2024).
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef]
- Yarrabothu, R.S.; Telagothoti, P. Massive MIMO and Beamforming Techniques of 5G Networks. Int. J. Eng. Adv. Tech. (IJEAT) 2019, 9, 139–142. [Google Scholar] [CrossRef]
- Pandey, A.K. Design of a Compact High Power Phased Array for 5G FD-MIMO System at 29 GHz. In Proceedings of the 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- He, L.-H.; Ban, Y.-L.; Yan, F.-Q.; Wu, G. Dual-Polarized Two-Dimensional Multibeam Antenna Array With Hybrid Beamforming and its Planarization. IEEE Access 2021, 9, 54951–54961. [Google Scholar] [CrossRef]
- Payami, S.; Khalily, M.; Araghi, A.; Loh, T.H.; Cheadle, D.; Nikitopoulos, K.; Tafazolli, R. Developing the First mmWave Fully-Connected Hybrid Beamformer With a Large Antenna Array. IEEE Access 2020, 8, 141282–141291. [Google Scholar] [CrossRef]
- Hu, Y.; Zhan, J.; Jiang, Z.H.; Yu, C.; Hong, W. An Orthogonal Hybrid Analog-Digital Multibeam Antenna Array for Millimeter-Wave Massive MIMO Systems. IEEE Trans. Antennas Propag. 2021, 69, 1393–1403. [Google Scholar] [CrossRef]
- Tomura, T.; Kim, D.-H.; Wakasa, M.; Sunaguchi, Y.; Hirokawa, J.; Nishimori, K. A 20-GHz-Band 64×64 Hollow Waveguide Two-Dimensional Butler Matrix. IEEE Access 2019, 7, 164080–164088. [Google Scholar] [CrossRef]
- Wang, D.; Polat, E.; Tesmer, H.; Maune, H.; Jakoby, R. Switched and Steered Beam End-Fire Antenna Array Fed by Wideband Via-Less Butler Matrix and Tunable Phase Shifters Based on Liquid Crystal Technology. IEEE Trans. Antennas Propag. 2022, 70, 5383–5392. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, Z.H.; Yu, C.; Wu, F.; Xu, X.; Hong, W. Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for Ka-Band 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2038–2042. [Google Scholar] [CrossRef]
- Klionovski, K.; Sharawi, M.S.; Shamim, A. A Dual-Polarization-Switched Beam Patch Antenna Array for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2019, 67, 3510–3515. [Google Scholar] [CrossRef]
- Shepard, C.; Yu, H.; Anand, N.; Li, E.; Marzetta, T.L.; Yang, R.; Zhong, L. Argos: Practical Many-Antenna Base Stations. In Proceedings of the ACM International Conference Mobile Computing and Networking (MobiCom), Istanbul, Turkey, 22–26 August 2012. [Google Scholar]
- Vieira, J.; Malkowsky, S.; Nieman, K.; Miers, Z.; Kundargi, N.; Liu, L.; Wong, I.; Öwall, V.; Edfors, O.; Tufvesson, F. A Flexible 100-Antenna Testbed for Massive MIMO. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 287–293. [Google Scholar]
- Pang, X.; Hong, W.; Yang, T.; Li, L. Design and Implementation of an Active Multibeam Antenna System with 64 RF Channels and 256 Antenna Elements for Massive MIMO Application in 5G Wireless Communications. China Commun. 2014, 11, 16–23. [Google Scholar] [CrossRef]
- Harris, P.; Hasan, W.B.; Brice, H.; Chitambira, B.; Beach, M.; Mellios, E.; Nix, A.; Armour, S.; Doufexi, A. An Overview of Massive MIMO Research at the University of Bristol. In Proceedings of the Radio Propagation and Technologies for 5G (2016), Durham, UK, 3 October 2016; pp. 1–5. [Google Scholar]
- Wirth, T.; Mehlhose, M.; Thiele, L.; Haustein, T. Proof-of-Concept of Flexible Massive MIMO Beamforming at 2.4 GHz. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 1061–1065. [Google Scholar]
- Al-Tarifi, M.A.; Sharawi, M.S.; Shamim, A. Massive MIMO Antenna System for 5G Base Stations with Directive Ports and Switched Beamsteering Capabilities. IET Microw. Antennas Propag. 2018, 12, 1709–1718. [Google Scholar] [CrossRef]
- Groschel, P.; Hehn, M.; Sippel, E.; Schober, R.; Weigel, R.; Vossiek, M.; Carlowitz, C. An Ultra-Versatile Massive MIMO Transceiver Testbed for Multi-Gb/s Communication. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- El Mrini, M.; Mchbal, A.; Touhami, N.A. Design of a 240 Elements Antenna System for 5G Massive MIMO Applications with an Inclined Beam and Two Operating Modes. J. Electromagn. Waves Appl. 2024, 38, 1796–1810. [Google Scholar] [CrossRef]
- Qualcomm. Giga-MIMO Is the Foundation for Wide-Area 6G. Available online: https://www.rcrwireless.com/20240325/6g/giga-mimo-is-the-foundation-for-wide-area-6g (accessed on 29 December 2024).
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Trans. Commun. 2023, 71, 1707–1725. [Google Scholar] [CrossRef]
- Najafi, M.; Jamali, V.; Schober, R.; Poor, H.V. Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces. IEEE Trans. Commun. 2021, 69, 2673–2691. [Google Scholar] [CrossRef]
- Rao, J.; Zhang, Y.; Tang, S.; Li, Z.; Ming, Z.; Zhang, J.; Chiu, C.-Y.; Murch, R. A Shared-Aperture Dual-Band Sub-6 GHz and mmWave Reconfigurable Intelligent Surface with Independent Operation. IEEE Trans. Microw. Theory Tech. 2024, 1–17. [Google Scholar] [CrossRef]
- Haupt, R.L.; Lanagan, M. Reconfigurable Antennas. IEEE Antennas Propag. Mag. 2013, 55, 49–61. [Google Scholar] [CrossRef]
- Oliveri, G.; Werner, D.H.; Massa, A. Reconfigurable Electromagnetics Through Metamaterials—A Review. Proc. IEEE 2015, 103, 1034–1056. [Google Scholar] [CrossRef]
- Arun, V.; Balakrishnan, H. RFocus: Beamforming using thousands of passive antennas. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, CA, USA, 25–27 February 2020; pp. 1047–1061. [Google Scholar]
- Dunna, M.; Zhang, C.; Sievenpiper, D.; Bharadia, D. ScatterMIMO: Enabling virtual MIMO with smart surfaces. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; pp. 1–14. [Google Scholar]
- Alexandropoulos, G.C.; Vlachos, E. A Hardware Architecture for Reconfigurable Intelligent Surfaces with Minimal Active Elements for Explicit Channel Estimation. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 9175–9179. [Google Scholar] [CrossRef]
- Basar, E.; Poor, H.V. Present and Future of Reconfigurable Intelligent Surface-Empowered Communications [Perspectives]. IEEE Signal Process. Mag. 2021, 38, 146–152. [Google Scholar] [CrossRef]
- An, J.; Xu, C.; Ng, D.W.K.; Alexandropoulos, G.C.; Huang, C.; Yuen, C.; Hanzo, L. Stacked Intelligent Metasurfaces for Efficient Holographic MIMO Communications in 6G. IEEE J. Sel. Areas Commun. 2023, 41, 2380–2396. [Google Scholar] [CrossRef]
- Bagheri, A.; Hosseininejad, S.E.; Gradoni, G.; Xiao, P.; Khalily, M. A Novel Precise Approach for Digital Metasurface Configuration for Sensing Application. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Jabbar, A.; Imran, M.A.; Abbasi, Q.; Ur-Rehman, M. 60 GHz Programmable Dynamic Metasurface Antenna for 6G Avenues, Contactless HealthCare, and Smart Factories. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14–19 July 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Deng, R.; Zhang, Y.; Zhang, H.; Di, B.; Zhang, H.; Poor, H.V.; Song, L. Reconfigurable Holographic Surfaces for Ultra-Massive MIMO in 6G: Practical Design, Optimization and Implementation. IEEE J. Sel. Areas Commun. 2023, 41, 2367–2379. [Google Scholar] [CrossRef]
- Deng, R.; Di, B.; Zhang, H.; Tan, Y.; Song, L. Reconfigurable Holographic Surface: Holographic Beamforming for Metasurface-Aided Wireless Communications. IEEE Trans. Veh. Technol. 2021, 70, 6255–6259. [Google Scholar] [CrossRef]
- Xu, J.; You, L.; Alexandropoulos, G.C.; Yi, X.; Wang, W.; Gao, X. Near-Field Wideband Extremely Large-Scale MIMO Transmissions With Holographic Metasurface-Based Antenna Arrays. IEEE Trans. Wirel. Commun. 2024, 23, 12054–12067. [Google Scholar] [CrossRef]
- Tan, Y.-L.; Yue, Q.-M.; Li, B.-Q.; Zhu, C. Dual Beam Generation with Different Polarization State Based on Anisotropic Holographic Metasurface. In Proceedings of the 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Gong, T.; Wei, L.; Huang, C.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Near-Field Channel Modeling for Holographic MIMO Communications. IEEE Wirel. Commun. 2024, 31, 108–116. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, H.; Di, B.; Song, L. Reconfigurable Refractive Surface-Enabled Multi-User Holographic MIMO Communications. IEEE Trans. Wirel. Commun. 2024, 23, 4845–4860. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; An, J.; Kourtessis, P.; Ratnarajah, T.; Chatzinotas, S. Achievable Rate Optimization for Stacked Intelligent Metasurface-Assisted Holographic MIMO Communications. IEEE Trans. Wirel. Commun. 2024, 23, 13173–13186. [Google Scholar] [CrossRef]
- Noor, S.K.; Yasin, M.N.M.; Ismail, A.M.; Osman, M.N.; Soh, P.J.; Ramli, N.; Rambe, A.H. A Review of Orbital Angular Momentum Vortex Waves for the Next Generation Wireless Communications. IEEE Access 2022, 10, 89465–89484. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Z.; Xie, H.; Jin, H. Orbital Angular Momentum (OAM) in Wireless Communication: Applications and Challenges Towards 6G. In Proceedings of the 14th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 11–13 October 2023; pp. 842–847. [Google Scholar] [CrossRef]
- Dai, X.W.; Fu, Y.H.; Li, Z.; Chen, J.; Wei, Y.; Wu, W.J.; Hong, H. Novel OAM Antenna Based on Circular SIW Resonant Cavity. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 469–473. [Google Scholar] [CrossRef]
- Affan, A.; Mumtaz, S.; Asif, H.M.; Musavian, L. Performance Analysis of Orbital Angular Momentum (OAM): A 6G Waveform Design. IEEE Commun. Lett. 2021, 25, 3985–3989. [Google Scholar] [CrossRef]
- Tan, S.; Yu, S.; Kou, N. Generating Steering Orbital Angular Momentum Vortex Beams Using Conical Conformal Array Antenna. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 429–433. [Google Scholar] [CrossRef]
- Qin, F.; Liu, S.; Li, R.; Wu, X. Generation of Reconfigurable Multi-mode OAM Waves Based on Single-mode Array Multiplexing. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 279–283. [Google Scholar] [CrossRef]
- Vedaee, A.; Mallahzadeh, A. A Single-Layer Series-Fed SIW Slot Array Antenna Generating Two Orbital Angular Momentum Modes. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1261–1265. [Google Scholar] [CrossRef]
- Dhanade, Y.B.; Patnaik, K.M.; Yadav, V.S.; Patnaik, A. Mode Purity Analysis of an Orbital Angular Momentum Antenna. In Proceedings of the IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12–16 December 2022; pp. 1341–1345. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, F.; Pan, S. Frequency-dependent Vortex Electromagnetic Wave Imaging. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 23–27. [Google Scholar] [CrossRef]
- Dai, X.W.; Li, Z.; Ruan, H.; Yu, W.; Liu, L.; Luo, G.Q. An Ultralow-Profile Folded Transmitarray Antenna with Both-Sides Beam Regulate for K-Band Circularly Polarized OAM Waves. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 142–146. [Google Scholar] [CrossRef]
- Ali, A.J.; Khalily, M.; Araghi, A.; Hosseininejad, S.E.; Tafazolli, R. A Circular Reflectarray for OAM Generation at Terahertz Regime for 6G Applications. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1599–1600. [Google Scholar] [CrossRef]
- Singh, C.; Sharma, C.; Tripathi, S.; Sharma, M.; Agrawal, A. A Comprehensive Survey on Millimeter Wave Antennas at 30/60/120 GHz: Design, Challenges and Applications. Wirel. Pers. Commun. 2023, 133, 1547–1584. [Google Scholar] [CrossRef]
- Ghosh, S.; Sen, D. An Inclusive Survey on Array Antenna Design for Millimeter-Wave Communications. IEEE Access 2019, 7, 83137–83161. [Google Scholar] [CrossRef]
- Chittimoju, G.; Devi, U. A Comprehensive Review on Millimeter Waves Applications and Antennas. J. Phys. Conf. Ser. 2021, 1804, 012205. [Google Scholar] [CrossRef]
- Jabbar, A.; Abbasi, Q.H.; Anjum, N.; Kalsoom, T.; Ramzan, N.; Ahmed, S.; Rafi-ul-Shan, P.M.; Falade, O.P.; Imran, M.A.; Ur Rehman, M. Millimeter-Wave Smart Antenna Solutions for HRLLC in Industry 4.0 and Beyond. Sensors 2022, 22, 2688. [Google Scholar] [CrossRef]
- Kumar, S.; Dixit, A.S.; Malekar, R.R.; Raut, H.D.; Shevada, L.K. Fifth Generation Antennas: A Comprehensive Review of Design and Performance Enhancement Techniques. IEEE Access 2020, 8, 163568–163593. [Google Scholar] [CrossRef]
- Arunima, M.S.; Nair, S.B.; Menon, K.A.U. An Overview of Millimeter-wave Antennas. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 395–400. [Google Scholar] [CrossRef]
- Garcia, E.; Pansoy, R.; Arboleda, E. Innovations and Applications of Millimeter Wave Antennas: A Literature Review. Preprints 2024, 2024050609. [Google Scholar] [CrossRef]
- Loktongbam, P.; Pal, D.; Bandyopadhyay, A.K.; Koley, C. A Brief Review on mm-Wave Antennas for 5G and Beyond Applications. IETE Tech. Rev. 2022, 40, 397–422. [Google Scholar] [CrossRef]
- Koul, S.K.; Karthikeya, G.S. Feeding Techniques for mmWave Antennas. In Antenna Architectures for Future Wireless Devices; Signals and Communication Technology; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Zhao, H.; Gu, P.F.; He, Z.; Song, D.W.; Wang, J.X.; Fan, Z.H.; Yang, N.; Leung, K.W.; Ding, D.Z. Ultra-Wideband and Low-Profile Circularly Polarized Waveguide Antenna Array with Wave-Absorber for mm-Wave Applications. IEEE Trans. Antennas Propag. 2024, 1. [Google Scholar] [CrossRef]
- Singh, M.P.; Tomura, T.; Hirokawa, J.; Ghosh, S. A Compact Wideband Millimeter-Wave Polarization-Reconfigurable Antenna Array. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 691–695. [Google Scholar] [CrossRef]
- Munir, M.E.; Nasralla, M.M.; Farman, H. Design and Development of Super-Compact Millimeter Wave Antenna for Future 5G Vehicular Applications. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Mantash, M.; Kesavan, A.; Denidni, T.A. Millimetre-wave antenna with tilted beam for future base station applications. IET Microw. Antennas Propag. 2019, 13, 223–230. [Google Scholar] [CrossRef]
- Przesmycki, R.; Bugaj, M.; Nowosielski, L. Broadband Microstrip Antenna for 5G Wireless Systems Operating at 28 GHz. Electronics 2021, 10, 1. [Google Scholar] [CrossRef]
- Hussain, N.; Awan, W.A.; Ali, W.; Naqvi, S.I.; Zaidi, A.; Le, T.T. Compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU-Int. J. Electron. Commun. 2021, 132, 153612. [Google Scholar] [CrossRef]
- Azari, A.; Skrivervik, A.; Aliakbarian, H. A mmWave Low Complexity and Low-Cost Super Wideband Dual-Polarized Aperture Coupled Antenna for 5G Applications. IEEE Access 2024, 12, 85601–85607. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S. Wideband and Ultrathin 2×2 Dipole Array Antenna for 5G mmWave Applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2517–2521. [Google Scholar] [CrossRef]
- Hwang, I.-J.; Ahn, B.; Chae, S.-C.; Yu, J.-W.; Lee, W.-W. Quasi-Yagi Antenna Array With Modified Folded Dipole Driver for mmWave 5G Cellular Devices. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 971–975. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, W.; Wei, K. A Miniaturized Wideband Differentially-Fed Dual-Polarized Patch Antenna for 5G/6G mmWave Mobile Terminal Application. In Proceedings of the 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China, 16–19 May 2024; pp. 1–3. [Google Scholar] [CrossRef]
- Kundu, S. A Cornetto Shaped Super Wideband Antenna for Microwave and Millimeter Wave Communication. In Proceedings of the 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12–16 December 2022; pp. 877–880. [Google Scholar] [CrossRef]
- Trzebiatowski, K.; Rzymowski, M.; Kulas, L.; Nyka, K. Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 38–42. [Google Scholar] [CrossRef]
- Alam, S.; Pinkey, R.; Haider, M.; Sagor, M.H. Comparative Analysis Between Copper and Transparent 60 GHz mmWave Antenna with Identical Geometry. In Proceedings of the 2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Honolulu, HI, USA, 9–13 August 2021; pp. 143–148. [Google Scholar] [CrossRef]
- Feng, W.; Ni, X.; Shen, R.; Wang, H.; Qian, Z.; Shi, Y. High-Gain 100 GHz Antenna Array Based on Mixed PCB and Machining Technique. IEEE Trans. Antennas Propag. 2022, 70, 7246–7251. [Google Scholar] [CrossRef]
- Bae, H.H.; Jang, T.H.; Kim, H.Y.; Park, C.S. Broadband 120 GHz L-Probe Differential Feed Dual-Polarized Patch Antenna With Soft Surface. IEEE Trans. Antennas Propag. 2021, 69, 6185–6195. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Wu, P.-I.; Jhong, M.-F.; Hsieh, S.-C.; Wang, C.-C. A Low-Cost Antenna-in-Package (AiP) for D-Band Application. In Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2023; pp. 481–486. [Google Scholar] [CrossRef]
- ITU-R Report in Progress: Use of IMT (Likely 5G and 6G) Above 100 GHz, Even 800 GHz. Available online: https://techblog.comsoc.org/2021/09/28/itu-r-report-in-progress-use-of-imt-likely-5g-and-6g-above-100-ghz-even-800-ghz/ (accessed on 29 December 2024).
- Yang, L.-Y.O.; Lin, H.-Y.; Tsai, B. Gain Enhancement and Side-Lobe Suppression of an X-Band Dual-Polarized Deployable Mesh Reflector Antenna Using a Symmetrical, Angle-Insensitive Reflective Metasurface. IEICE Commun. Express 2025, 14, 12–16. [Google Scholar] [CrossRef]
- Thanikonda, R.; González-Ovejero, D.; Toso, G.; Martini, E.; Maci, S. High-Efficiency Low Profile Full-Metal CTS array for SATCOM. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 11–14 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Toso, G.; Angeletti, P. On the Scanning Properties of Bidimensional Discrete Lens Antennas with 1, 3, Infinite Focal Points. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Pan, H.; Qiu, L. Passive Metasurface-Based Low Earth Orbit Ground Station Design. Tsinghua Sci. Technol. 2023, 30, 148–160. [Google Scholar] [CrossRef]
- Chen, Z.N.; Qing, X.; Tang, X.; Liu, W.E.I.; Xu, R. Phased Array Metantennas for Satellite Communications. IEEE Commun. Mag. 2021, 60, 46–50. [Google Scholar] [CrossRef]
- Polo-Lopez, L.; Berretti, L.; Menargues, E.; Capdevila, S.; Toso, G.; Garcia-Vigueras, M. Dual-Polarized Spaceborne Phased Arrays Using Tri-Ridge Evanescent Waveguide Antennas. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 656–660. [Google Scholar] [CrossRef]
- Ha, N.; Kim, G.; Bae, H.-C.; Kim, S. Compact Dual-Band, Dual-Circular Polarized Microstrip Antenna Array for K/Ka-Band Application. IEEE Open J. Antennas Propag. 2020, 5, 1847–1853. [Google Scholar] [CrossRef]
- Lin, W.; Wu, Y.; Su, B. Broadened-Beam Uniform Rectangular Array Coefficient Design in LEO SatComs Under Quality of Service and Constant Modulus Constraints. IEEE Access 2024, 12, 184909–184928. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Zhang, N.; Cui, Y.; Zhu, R. A Wide Beam and Circularly Polarized Antenna with Parasitic Element. In Proceedings of the 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 13–15 November 2023. [Google Scholar] [CrossRef]
- Shariar, F.; Hossain, F. Design and Analysis of a Triple Band Microstrip Patch Antenna for Wireless Applications. In Proceedings of the 2023 6th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 7–9 December 2023. [Google Scholar] [CrossRef]
- Sani, A.S.; Sharma, A.; Srivastava, P.; Anjali, K. Design of Wideband Microstrip Antenna for X, Ku, and K-Band Applications. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021. [Google Scholar] [CrossRef]
- Akash, M.H.; Uddin, M.J.; Haque, M.; Pasha, N.; Fahim, M.; Uddin, F. Performance Analysis of Novel Design and Simulation of a Microstrip Patch Antenna for Ku-Band Satellite Communications. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021. [Google Scholar] [CrossRef]
- Bennioui, F.-Z.; Khabba, A.; Amadid, J.; Wakrim, L.; Ibnyaich, S. Broadband Antenna Design with Multiple Slots for Satellite Applications. In Proceedings of the 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 12–14 December 2022. [Google Scholar] [CrossRef]
- Teniou, M. Metasurface Antennas for Space Applications. Doctoral Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2017. NNT: 2017PA066281. Available online: https://tel.archives-ouvertes.fr/tel-02336550 (accessed on 29 December 2024).
- Sidharth Thomas, J.; Virdi, J.S.; Babakhani, A.; Roberts, I.P. A Survey on Advancements in THz Technology for 6G: Systems, Circuits, Antennas, and Experiments. arXiv 2024. [Google Scholar] [CrossRef]
- Xu, R.; Gao, S.; Izquierdo, B.S.; Gu, C.; Reynaert, P.; Standaert, A.; Gibbons, G.J.; Bosch, W.; Gadringer, M.E.; Li, D. A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications. IEEE Access 2020, 8, 57615–57629. [Google Scholar] [CrossRef]
- Carrasco, E.; Perruisseau-Carrier, J. Reflectarray Antenna at Terahertz Using Graphene. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 253–256. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Zhang, L.; Wong, S.-W.; Chen, Z.N. An Overview of Terahertz Antennas. China Commun. 2020, 17, 124–165. [Google Scholar] [CrossRef]
- Emadi, R.; Emadi, H.; Emadi, R.; Safian, R.; Nezhad, A.Z. Analysis and Design of Photoconductive Antenna Using Spatially Dispersive Graphene Strips with Parallel-Plate Configuration. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 4600109. [Google Scholar] [CrossRef]
- Aqlan, B.; Himdi, M.; Le Coq, L.; Vettikalladi, H. Sub-THz Circularly Polarized Horn Antenna Using Wire Electrical Discharge Machining for 6G Wireless Communications. IEEE Access 2020, 8, 117245–117252. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Liu, J. High-Gain Microstrip Patch Antenna Based on Metamaterial. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 12–14 December 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Ghafoor, S.; Rehmani, M.H.; Davy, A. Next Generation Wireless Terahertz Communication Networks; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9780367770426. [Google Scholar]
- Song, H.-J.; Nagatsuma, T. Present and Future of Terahertz Communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Kaifas, T.N.F. State of the Art and Innovations needed for Direct Radiating Arrays to place Very High Throughput Satellite Communications into Technology Reach. In Proceedings of the 2024 5th International Conference on Communications, Information, Electronic and Energy Systems (CIEES), Veliko Tarnovo, Bulgaria, 20–22 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
KPI | Critical Formula | Equation Number |
---|---|---|
Area Traffic Capacity | Area Traffic Capacity = (Cells/Km2) × (BW) × Spectral Efficiency | (1) |
Spectral Efficiency | Spectral Efficiency = n × log2(1 + H × SINR) | (2) |
Latency | Latency = processing latency + propagation latency | (3) |
Reliability | Reliability =FER = 1 − [1 − BER]L = 1 − [1 − Q((2 × H × SINR)1/2)]L | (4) |
Devise Density per angular sector | Device Density per angular sector = Device Density × 360/(angular sector) | (5) |
Energy Efficiency | Energy Efficiency = Spectral Efficiency/(P/BW) | (6) |
MIMO Design | Description | Advantages | Disadvantages | Applications |
---|---|---|---|---|
Quasi-Fractal Uniform Circular Array (QF-UCA), ref. [36] | Consists of inner UCAs and an inter-UCA comprising multiple inner UCAs. Exploits circular symmetry for spatial multiplexing and accurate beamforming. | High capacity, low-complexity demodulation, and accurate CSI estimation. | Requires precise geometric alignment and calibration. | Suitable for LOS MIMO in mmWave and THz bands, supporting high-capacity transmission |
Modular Massive MIMO (mmMIMO), ref. [35] | Uses modular building blocks to create antenna arrays for low-frequency bands (sub-1 GHz). | Allows localized repairs, scalable for diverse setups, cost-effective for low-frequency operations. | Limited effectiveness at lower frequencies. | Urban and rural applications; useful in high-cost scenarios |
Gigantic MIMO in divided subarrays, refs. [27,31] | Divides large antenna arrays into smaller subarrays for focused beamforming and localization. Best for near-field communication. | Enhanced localization and beam focusing capabilities. | Limited to near-field areas, range restricted to tens of meters. | Applications in mmWave and THz bands for near-field sensing and user localization |
End-User Collaborative MIMO (UE-CoMIMO), refs. [37,38] | Combines antennas from multiple devices (e.g., smartphones, XR glasses) to create a virtual large antenna array. Enhances performance without requiring large antennas on devices. | Improves diversity, channel rank, and localization; reduces energy use and latency. | High implementation complexity; frequent handover issues in outdoor scenarios affect reliability. | Indoor and outdoor networks; AR/VR systems; collaborative IoT device networks |
Ref. No | BFM | # Beams | # of SD | T | FBW | Antenna Element | Antenna Array |
---|---|---|---|---|---|---|---|
[44] | B: 4 × 4 | 2 × 16 = 32 | 2 (DBF + ABF) | MS | 0.1 | V, Bow tie | 4 × 4 = 16 |
[45] | A | 8 | 1 | MS | 0.1 | P, Patch | 8 × 16 = 128 |
[46] | MB:4 × 8 | 64 | 1 | SIW | 0.17 | V, TSA | 8 × 16 |
[47] | B: 8 × 8 | CS | 2 | WG | 0.05 | P, WG-A | 8 × 8 |
[48] | B: 4 × 4 | 2 × 4 = 8 | 1 | MS | 0.15 | V, Yagi-Uda | 1 × 4 |
[49] | B: 4 × 4 | 2 × 4 = 8 | 1 | MS | 0.22 | P, Patch | 1 × 4 |
[50] | B: 4 × 4 | 2 × 8 | 1 | MS | 0.2 | P, Patch | 4 × 4 |
Ref. No | F (GHz) | Number of Antennas | Number of Ports | Publication Time |
---|---|---|---|---|
[51] | 2.4 | 64 | 16 | 2012 |
[52] | 3.7 | 100 | 100 (10) | 2014 |
[53] | 5.8 | 256 | 64 | 2014 |
[54] | 3.5 | 128 | 128 (12) | 2016 |
[55] | 3.5 | 64 | 32 | 2017 |
[56] | 3.5 | 288 | 72 | 2018 |
[57] | 5.8 | 120 | 120 | 2019 |
[58] | 3.5 | 240 | 60 | 2024 |
[59] | 13 | 4096 | 256 | 2024 |
Example Design | Description | Type of RIS | Number of Elements | Rectangular Array | Manufacture Technology | Performance Metrics | Frequency |
---|---|---|---|---|---|---|---|
RFocus, ref. [66] | Low-cost passive RIS design using λ/4 × λ/10 units | Passive | 3200 | 6 m2 | Thin “wallpaper” | Improves median signal strength by 9.5 times | 1.6–3.1 GHz |
ScatterMIMO, ref. [67] | Employs discrete phase shifts to enhance scattering and improve signal quality | Passive | Less than 50 | 30 cm × 10 cm | COTS WIFI 4 × 4 AP Tiles with OSH Park’s 4-layer PCB, which uses Isola FR408 substrate | Doubles throughput and increases SNR by 4.5 dB | 5 GHz |
Active RIS, refs. [60,61,67,68] | Amplifies reflected signals to overcome multiplicative fading | Active | Flexible | Flexible | Adjusts operation modes dynamically and introduces the new concept of physical layer (PHY) slicing over RISs | Achieves 130% sum-rate gain compared to Passive RIS’s 22% gain | 2.36 GHz or 4.72 GHz |
Dual-Band Independent RIS, ref. [63] | Combines sub-6 GHz and mmWave functionalities with shared-aperture designs | Passive | Flexible | 4 × 4 sub-6-GHz elements and 32 × 32 mm Wave elements | An array of double-layer patch antennas loaded by 1-bit phase shifters | Offers beam steering: −35° to 35° (sub-6 GHz) and −30° to 30° (mmWave) | 3.5 GHz and 28 GHz |
Reference No. | Near/Far Field | Application | Configuration | Algorithm/Technique |
---|---|---|---|---|
[71] | Far Field | Holography, imaging | Phase-only holograms | Genetic algorithm |
[72] | Far Field | Sensing, imaging, contactless monitoring | DMA | FPGA-based beam steering |
[73] | Far Field | Reduced power consumption, spectral efficiency | HMIMOS | - |
[74] | Far Field | High-definition video transmission | RHS | Amplitude-controlled beamforming algorithm |
[70] | Near Field | HMIMO communications | SIM | Phase shifts and covariance optimization |
[75] | Far Field | Wireless communications | RHS | Amplitude-controlled beamforming algorithm |
[76] | Near Field | Handling spatial-wideband effects | HMA | Spherical wave propagation, iterative beamforming |
[77] | Far Field | Dual beam generation, polarization control | Tensor metasurfaces | - |
[78] | Far Field | Channel modeling | Dense antenna arrays | Deterministic and stochastic modeling |
[79] | Far Field | Energy efficiency | RRS | - |
[80] | Near and Far Field | Spectral and energy efficiency optimization | SIM | Dynamic waveform shaping, gradient-based algorithm |
Ref. No | Frequency (GHz) | Method | Mode Numbers (l) | Total Number of Modes | Study Type |
---|---|---|---|---|---|
[82] | Variable | Variable | Variable | Variable | Theory |
[83] | 24 | SIW | −1 | N/2 −1 | Measurement |
[84] | 10 | UCA/MIMO | Variable | Variable | Theory |
[85] | 10 | CCA | +1, +2 | 2 | Measurement |
[86] | 2.5 | PUCA | −1, 0, +1 | 3 | -//- |
[87] | 10.190 | SIW | 0, +1 | 2 | -//- |
[88] | 10 | UCA | −1, +1 | 2 | Simulation |
[89] | Variable | UCA | −8 to +7 | 16 | -//- |
[90] | 21 (K-Band) | Meta-surfaces | +1 | 1 | Measurement |
[91] | 185–188 | RA | +2, +3 | 2 | Simulation |
Design Technology | Characteristics | Drawbacks |
---|---|---|
SPP | At 18–28–60 GHz, it provides low attenuation | Low number of modes and only for higher frequencies |
Metasurfaces | Simple feeding networks, good purity on higher modes | Mainly for unique usage |
UCA | Multiple modes and frequency bands | High attenuation |
DRA | Simple designs with multiple modes for 3.5–10 GHz | Massive in higher frequencies |
PRA | Good directivity with high gain and purity | The overall structure is large |
Design Technology: Antenna Type | Characteristic | Drawbacks |
---|---|---|
Dipole Antenna | easy to build | Low gain |
Loop Antenna | Easy to build | Low gain, multi-element loop antennas are necessary for next generations |
Horn | Broad bandwidth, low side-lobe levels, large power handling, basic design | Increased profile |
Reflector | Enhanced gain and efficiency, compact dimensions, enhanced emission directivity | Costly |
(Antipodal) Vivaldi Antenna | High gain, broad bandwidth | Needs extra space |
Lens | Broad bandwidth, high beam focus | Large surface |
Microstrip | Compact design, economical, microwave compatibility, low weight, easily manufactured | Low power handling, reduced radiative efficiency, limited bandwidth |
Magneto-Electric Dipole Antenna | Broad bandwidth | Costly |
On-Chip Integrated | Advanced integration, superior dependability, space-efficient design, cost-effective | Low electrical impedance, reduced metal conduction, enhanced dielectric properties |
Fractal Antenna | Reduced size of antenna, broad bandwidth | Difficult design |
(Planar) Inverted F Antenna | Extremely low profile | Low gain, limited bandwidth |
Antenna Type | Operation Frequency (GHz) | Bandwidth | Gain | Efficiency | Characteristic |
---|---|---|---|---|---|
Waveguide antenna (ref. [101]) | 19–31 | 48% | 21.9 dBic | 90% | Radiation absorption with many small waveguide antennas |
Polarization-changing antenna (ref. [102]) | 23–29 | ~20% | 11.7 ± 1 dBic | 80% | Change of polarization with diode |
Antenna for vehicles (ref. [103]) | 24–32 | 8 GHz | 4.4–4.5 dBi | >90% | Increased performance |
Flexible mmWave antenna for BS (ref. [104]) | 29–31 | 2 GHz | 12.1 dBi | - | Flexible |
A simple patch antenna for compact devices (ref. [105]) | 26.01–31.58 | 5.57 GHz | 5.06 dB | 80.18% | Compact size and low reflection coefficient |
Patch antenna for mini devices (ref. [106]) | 26.5–32.9 | 6.4 GHz | 5.42 dB | 83% | Small-scale antenna |
Low cost antenna (ref. [107]) | 24–44 | 60% | 7 dBi | - | Satisfactory characteristics and simple construction |
Thin Antenna for 5G Mobile Terminals (ref. [108]) | 24–40 | 50% | 10.8 dBi | 78% | Matches network with a special structure and construction to optimize characteristics |
A parameterized folded dipole (ref. [109]) | 26.3–29.75 | 3 GHz | 9.98 dB | 90.4% | Technique with vias on PCB for folded dipole |
Patch antenna for smartphones (ref. [110]) | 23.6–43.5 | 60% | 7.1 dBi | 95% | Cheap and simple antenna construction |
Impressive antenna shape (ref. [111]) | 2–60 | 30:1 | 6.8 dBi | - | Wideband antenna |
Low-Cost 5G Beam-Switching Antenna (ref. [112]) | 55–65 | - | 3.1 dBi | ~80% | Beem steering with SPDT and p-i-n |
Beautiful antenna geometry (ref. [113]) | 60 | 57–67 | 8.5 dB | 88% | Transparent antenna |
Array antenna for 100 GHz (ref. [114]) | 97.8–107 | 9.2% | 26.5 dBi | 78% | Two feed techniques: SIW and RGW |
Dual-polarized patch for 120 GHz (ref. [115]) | 107.5–132.5 | 25 GHz | 9.8 dBi/dBic | ~85% | Dual-polarized antenna with high isolation on a soft substrate |
AiP Array (ref. [116]) | 135–155 | 20 GHz | 16.8 dBi | - | BT-Based Substrate |
Design Type | Description | Advantages | Disadvantages | Suitable Applications |
---|---|---|---|---|
Single-Patch Antennas (refs. [124,126,127,128,129,130]) | Basic design with a radiating patch on a dielectric substrate |
|
| Ideal for low-cost, low-gain applications with relaxed radiation requirements |
Waveguide Antennas (refs. [119,123]) | Uses guided structures for efficient radiation |
|
| Useful for applications that need robust designs and high efficiency |
Reflector Antennas with Metasurface (ref. [118]) | Uses a reflective metasurface to direct the radiation |
|
| Preferred for satellite systems requiring high gain and fixed coverage |
Patch Arrays | Multiple patch antennas combined to form linear or planar arrays |
|
| Suitable for applications requiring beamforming, higher gain, and compact solutions for arrays |
Phased Array Antennas (ref. [122]) | Array of elements with phase control for beam steering |
|
| Preferred for dynamic beam steering in high-performance satellite systems |
Metasurface Antennas (ref. [131]) | Modulated surfaces control amplitude, phase, and polarization |
|
| Ideal for adaptive radiation patterns, polarization control, and efficiency |
Metantennas (ref. [122]) | Combines metasurfaces with arrays for intelligent beam steering |
|
| Suitable for 5G-beyond and 6G satellite systems requiring reconfigurable, multi-frequency operation |
Uniform Rectangular Arrays (URAs) (ref. [125]) | Structured arrays for broadening beams and maintaining signal quality |
|
| Ideal for LEO constellations requiring efficient spectrum usage and reduced interference |
Lens Antennas (ref. [120]) | Uses dielectric lens-like structures to focus and steer beams |
|
| Suitable for high-performance multibeam satellite systems (e.g., tracking multiple targets) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsafaras, A.-C.; Mpatargias, P.; Karakilidis, A.; Giouros, G.; Gavriilidis, I.; Katsinelis, V.; Sarinakis, G.; Kaifas, T. Radiator Enablers for Wireless Communication Evolution. Electronics 2025, 14, 1081. https://doi.org/10.3390/electronics14061081
Tsafaras A-C, Mpatargias P, Karakilidis A, Giouros G, Gavriilidis I, Katsinelis V, Sarinakis G, Kaifas T. Radiator Enablers for Wireless Communication Evolution. Electronics. 2025; 14(6):1081. https://doi.org/10.3390/electronics14061081
Chicago/Turabian StyleTsafaras, Apostolos-Christos, Panagiotis Mpatargias, Adamantios Karakilidis, Georgios Giouros, Ioannis Gavriilidis, Vasileios Katsinelis, Georgios Sarinakis, and Theodoros Kaifas. 2025. "Radiator Enablers for Wireless Communication Evolution" Electronics 14, no. 6: 1081. https://doi.org/10.3390/electronics14061081
APA StyleTsafaras, A.-C., Mpatargias, P., Karakilidis, A., Giouros, G., Gavriilidis, I., Katsinelis, V., Sarinakis, G., & Kaifas, T. (2025). Radiator Enablers for Wireless Communication Evolution. Electronics, 14(6), 1081. https://doi.org/10.3390/electronics14061081