Applied Sciences Special Issue: Ultrasonic Guided Waves
Funding
Acknowledgments
Conflicts of Interest
References
- Hakoda, C.; Lissenden, C.; Shokouhi, P. Clamping resonators for low-frequency S0 lamb wave reflection. Appl. Sci. 2019, 9, 257. [Google Scholar] [CrossRef]
- Rose, J.; Philtron, J.; Liu, G.; Zhu, Y.; Han, M. A hybrid ultrasonic guided wave-fiber optic system for flaw detection in pipe. Appl. Sci. 2018, 8, 727. [Google Scholar] [CrossRef]
- Pedram, S.; Mudge, P.; Gan, T. Enhancement of ultrasonic guided wave signals using a split-spectrum processing method. Appl. Sci. 2018, 8, 1815. [Google Scholar] [CrossRef]
- Mahal, H.; Yang, K.; Nandi, A. Detection of defects using spatial variances of guided-wave modes in testing of pipes. Appl. Sci. 2018, 8, 2378. [Google Scholar] [CrossRef]
- Nakhli Mahal, H.; Yang, K.; Nandi, A. Improved defect detection using adaptive leaky NLMS filter in guided-wave testing of pipelines. Appl. Sci. 2019, 9, 294. [Google Scholar] [CrossRef]
- Nakhli Mahal, H.; Yang, K.; Nandi, A. Defect detection using power spectrum of torsional waves in guided-wave inspection of pipelines. Appl. Sci. 2019, 9, 1449. [Google Scholar] [CrossRef]
- Wu, Q.; Lee, C. A modified leakage localization method using multilayer perceptron neural networks in a pressurized gas pipe. Appl. Sci. 2019, 9, 1954. [Google Scholar] [CrossRef]
- Hakoda, C.; Lissenden, C. Using the partial wave method for wave structure calculation and the conceptual interpretation of elastodynamic guided waves. Appl. Sci. 2018, 8, 966. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, H.; Zhang, H.; Zhu, W.; Chai, X. Lamb wave local wavenumber approach for characterizing flat bottom defects in an isotropic thin plate. Appl. Sci. 2018, 8, 1600. [Google Scholar] [CrossRef]
- Wu, J.; Tang, Z.; Yang, K.; Wu, S.; Lv, F. Ultrasonic guided wave-based circumferential scanning of plates using a synthetic aperture focusing technique. Appl. Sci. 2018, 8, 1315. [Google Scholar] [CrossRef]
- Wu, J.; Tang, Z.; Yang, K.; Lv, F. Signal strength enhancement of magnetostrictive patch transducers for guided wave inspection by magnetic circuit optimization. Appl. Sci. 2019, 9, 1477. [Google Scholar] [CrossRef]
- Hernandez Crespo, B.; Courtney, C.; Engineer, B. Calculation of guided wave dispersion characteristics using a three-transducer measurement system. Appl. Sci. 2018, 8, 1253. [Google Scholar] [CrossRef]
- Rucka, M.; Wojtczak, E.; Lachowicz, J. Damage imaging in lamb wave-based inspection of adhesive joints. Appl. Sci. 2018, 8, 522. [Google Scholar] [CrossRef]
- Okumura, S.; Nguyen, V.; Taki, H.; Haïat, G.; Naili, S.; Sato, T. Rapid high-resolution wavenumber extraction from ultrasonic guided waves using adaptive array signal processing. Appl. Sci. 2018, 8, 652. [Google Scholar] [CrossRef]
- Wang, B.; Da, Y.; Qian, Z. Forward and inverse studies on scattering of rayleigh wave at surface flaws. Appl. Sci. 2018, 8, 427. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.; Wei, X.; Yao, W. The study of non-detection zones in conventional long-distance ultrasonic guided wave inspection on square steel bars. Appl. Sci. 2018, 8, 129. [Google Scholar] [CrossRef]
- Xing, B.; Yu, Z.; Xu, X.; Zhu, L.; Shi, H. Research on a rail defect location method based on a single mode extraction algorithm. Appl. Sci. 2019, 9, 1107. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, Z.; Lv, F.; Yang, K. Numerical and experimental investigation of guided wave propagation in a multi-wire cable. Appl. Sci. 2019, 9, 1028. [Google Scholar] [CrossRef]
- Chang, S.; Moon, S. Compensation for group velocity of polychromatic wave measurement in dispersive medium. Appl. Sci. 2017, 7, 1306. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lissenden, C.J. Applied Sciences Special Issue: Ultrasonic Guided Waves. Appl. Sci. 2019, 9, 3869. https://doi.org/10.3390/app9183869
Lissenden CJ. Applied Sciences Special Issue: Ultrasonic Guided Waves. Applied Sciences. 2019; 9(18):3869. https://doi.org/10.3390/app9183869
Chicago/Turabian StyleLissenden, Clifford J. 2019. "Applied Sciences Special Issue: Ultrasonic Guided Waves" Applied Sciences 9, no. 18: 3869. https://doi.org/10.3390/app9183869
APA StyleLissenden, C. J. (2019). Applied Sciences Special Issue: Ultrasonic Guided Waves. Applied Sciences, 9(18), 3869. https://doi.org/10.3390/app9183869