Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications
<p>Scaffolds with: (<b>A</b>) Rectangular-, (<b>B</b>) Primitive-, (<b>C</b>) Lattice-, (<b>D</b>) Gyroid- and (<b>E</b>) Honeycomb-type structures (Dimensions: 20 mm in diameter and with 15 mm height), designed via computer-aided design (CAD) software.</p> "> Figure 2
<p>Scaffolds (their weight indicated in parentheses) with: (<b>A</b>) Rectangular (3.97 g), (<b>B</b>) Primitive (5.35 g), (<b>C</b>) Lattice (3.78 g), (<b>D</b>) Gyroid (4.04 g) and (<b>E</b>) Honeycomb (5.52 g) structures with 20 mm diameter and 15 mm height manufactured by selective laser melting.</p> "> Figure 3
<p>Rectangular scaffold simulation: (<b>A</b>) Stress and (<b>B</b>) displacement (final height after compression: 15 − 4.26 = 10.74 mm; red dots are separated particles in contact with compressive punches).</p> "> Figure 4
<p>Primitive scaffold simulation: (<b>A</b>) Stress and (<b>B</b>) displacement (final height after compression 15 − 6.91 = 8.09 mm; the red dots are separated particles in contact with compressive punches).</p> "> Figure 5
<p>Lattice scaffold simulation: (<b>A</b>) Stress and (<b>B</b>) displacement (final height after compression 15 − 9.11 = 5.89 mm; red dots are separated particles in contact with compressive punches).</p> "> Figure 6
<p>Gyroid scaffold simulation: (<b>A</b>) Stress and (<b>B</b>) displacement (final height after compression 15 − 8.1 = 6.9 mm; these red dots are separated particles in contact with compressive punches).</p> "> Figure 7
<p>Honeycomb scaffold simulation: (<b>A</b>) Stress and (<b>B</b>) displacement (final height after compression 15 − 4.24 = 10.76 mm; red dots are separated particles in contact with compressive punches).</p> "> Figure 8
<p>(<b>A</b>) Wollastonite (CaSiO<sub>3</sub>) powder, (<b>B</b>) selective laser melting (SLM)-produced Ti6Al4V lattice structure with 1 mm cell size, and (<b>C</b>) Sintered sample (dimensions of lattice structure: 20 mm diameter and 15 mm height before spark plasma sintering (SPS) and 6 mm height after SPS and polishing).</p> "> Figure 9
<p>SEM micrographs of (<b>A</b>) wollastonite (CaSiO3) powder, (<b>B</b>) Sintered CaSiO<sub>3</sub> embedded in a Ti6Al4V lattice after SPS, and (<b>C</b>) High magnification image of metal-ceramic boundary.</p> "> Figure 10
<p>Stress-Strain compression results of scaffolds produced using the selective laser melting.</p> "> Figure 11
<p>Section view of: (<b>A</b>) Rectangular, and (<b>B</b>) Honeycomb scaffolds.</p> "> Figure 12
<p>Triply periodic minimal surfaces (TPMS) scaffolds after compressive test with indication of their final height: (<b>A</b>) Rectangular −11 mm, (<b>B</b>) Primitive −8.4 mm, (<b>C</b>) Lattice −8.8 mm, (<b>D</b>) Gyroid −7.6 mm and (<b>E</b>) Honeycomb −12.1 mm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Biomaterial Production and Characterization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khan, M.A.; Williams, R.L.; Williams, D.F. In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 1996, 17, 2117–2126. [Google Scholar] [CrossRef]
- Zhuravleva, K.; Boenisch, M.; Prashanth, K.G.; Hempel, U.; Health, A.; Gemming, T.; Caling, M.; Scudino, S.; Schultz, L.; Eckert, J.; et al. Production of porous β-type Ti-40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing. Materials 2013, 6, 5700–5712. [Google Scholar] [CrossRef] [PubMed]
- Schwab, H.; Prashanth, K.G.; Loeber, L.; Kuehn, U.; Eckert, J. Selective laser melting of Ti-45Nb alloy. Metals 2015, 5, 686–694. [Google Scholar] [CrossRef]
- Attar, H.; Loeber, L.; Funk, A.; Calin, M.; Zhang, L.C.; Prashanth, K.G.; Scudino, S.; Zhang, Y.S.; Eckert, J. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 2015, 625, 350–356. [Google Scholar] [CrossRef]
- Attar, H.; Prashanth, K.G.; Zhang, L.C.; Calin, M.; Okulov, I.V.; Scudino, S.; Yang, C.; Eckert, J. Effect of powder particle shape on the properties of in siu Ti-TiB composite powders produced by selective laser melting. J. Mater. Sci. Technol. 2015, 31, 1001–1005. [Google Scholar] [CrossRef]
- Van Lith, R.; Baker, E.; Ware, H.; Yang, J.; Cyrus Farsheed, A.; Sun, C.; Ameer, G. 3D-Printing Strong High-Resolution Antioxidant Bioresorbable Vascular Stents. Adv. Mater. Technol. 2016, 1, 1600138. [Google Scholar] [CrossRef]
- Seitz, H.; Rieder, W.; Irsen, S.; Leukers, B.; Tille, C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 2005, 74, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, B.; Idaszek, J.; Szlązak, K.; Strzelczyk, K.; Brynk, T.; Kurzydłowski, K.J.; Święszkowski, W. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering. Materials 2016, 9, 197. [Google Scholar] [CrossRef]
- Kamboj, N.; Rodríguez, M.A.; Rahmani, R.; Prashanth, K.G.; Hussainova, I. Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin. Proc. Est. Acad. Sci. 2019, 68, 185–190. [Google Scholar] [CrossRef]
- Afshar, M.; Pourkamali Anaraki, A.; Montazerian, H.; Kadkhodapour, J. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. J. Mech. Behav. Biomed. Mater. 2016, 62, 481–494. [Google Scholar] [CrossRef]
- Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Anaraki, A.P.; Ahmadi, S.M.; Zadpoor, A.A.; Schmauder, S. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 2015, 50, 180–191. [Google Scholar] [CrossRef]
- Afshar, M.; Pourkamali Anaraki, A.; Montazerian, H. Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces. Mater. Sci. Eng. C 2018, 92, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Abueidda, D.W.; Bakir, M.; Abu Al-Rub, R.K.; Bergström, J.S.; Sobh, N.A.; Jasiuk, I. Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater. Des. 2017, 122, 255–267. [Google Scholar] [CrossRef]
- Sallica-Leva, E.; Jardini, A.L.; Fogagnolo, J.B. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 2013, 26, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Kapfer, S.C.; Hyde, S.T.; Mecke, K.; Arns, C.H.; Schröder-Turk, G.E. Minimal surface scaffold designs for tissue engineering. Biomaterials 2011, 32, 6875–6882. [Google Scholar] [CrossRef]
- Van Bael, S.; Chai, Y.C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; Kruth, J.P.; Schrooten, J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012, 8, 2824–2834. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Yang, Y.; Su, X.; Wang, D.; Luo, Z. Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds. Trans. Nonferrous Met. Soc. China 2012, 22, 2554–2561. [Google Scholar] [CrossRef]
- Yan, C.; Haob, L.; Hussein, A.; Young, P. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Zhang, L.; Zhang, S.; Ying Hsi Fuh, J.; Feng Lu, W. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS Appl. Bio Mater. 2018, 1, 259–269. [Google Scholar] [CrossRef]
- Yoo, D. New paradigms in hierarchical porous scaffold design for tissue engineering. Mater. Sci. Eng. C 2013, 33, 1759–1772. [Google Scholar] [CrossRef]
- Paital, S.R.; Dahotre, N.B. Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti-6Al-4V. Biomed. Mater. 2007, 2, 274. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, K.G.; Damodaram, R.; Scudino, S.; Wang, Z.; Prasad Rao, K.; Eckert, J. Friction welding of Al-12Si parts produced by selective laser melting. Mater. Des. 2014, 57, 632–637. [Google Scholar] [CrossRef]
- Qin, P.T.; Damodaram, R.; Maity, T.; Zhang, W.W.; Yang, C.; Wang, Z.; Prashanth, K.G. Friction welding of electron beam melted Ti-6Al-4V. Mater. Sci. Eng. A 2019, 761, 138045. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, P.; Wang, Z.; Yang, C.; Kollo, L.; Grzesiak, D.; Prashanth, K.G. Superior wear resistance in EBM-processed TC4 alloy compared with SLM and forged samples. Materials 2019, 12, 782. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Espana, F.; Balla, V.K.; Bose, S.; Ohgami, Y.; Davies, N.M. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010, 6, 1640–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, R.; Rosenberg, M.; Ivask, A.; Kollo, L. Comparison of mechanical and antibacterial properties of TiO2/Ag ceramics and Ti6Al4V-TiO2/Ag composite materials using combining SLM-SPS techniques. Metals 2019, 9, 874. [Google Scholar] [CrossRef]
- Papynov, W.K.; Mayorov, V.Y.; Portnyagin, A.S.; Shichalin, O.O.; Kobylyakov, S.P.; Kaidalova, T.A.; Nepomnyashiy, A.V.; Sokol’nitskaya, T.A.; Zub, Y.L.; Avramenko, V.A. Application of carbonaceous template for porous structure control of ceramic composites based on synthetic wollastonite obtained via Spark Plasma Sintering. Ceramics Int. 2015, 41, 1171–1176. [Google Scholar] [CrossRef]
- Xue, W.; Liu, X.; Zheng, X.B.; Ding, C. In vivo evaluation of plasma-sprayed wollastonite coating. Biomater. 2005, 26, 3455–3460. [Google Scholar] [CrossRef]
- Murphy, S.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotech. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Rahmani, R.; Antonov, M.; Kollo, L. Wear Resistance of (Diamond-Ni)-Ti6Al4V Gradient Materials Prepared by Combined Selective Laser Melting and Spark Plasma Sintering Techniques. Adv. Tribol. 2019, 2019, 5415897. [Google Scholar] [CrossRef]
- Slaughter, W.S. The Linearized Theory of Elasticity; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Prashanth, K.G.; Loeber, L.; Klauss, H.-J.; Kuehn, U.; Eckert, J. Characterization of 316L steel cellular dodecahedron structures produced by selective laser melting. Technologies 2016, 4, 34. [Google Scholar] [CrossRef]
- Wan, X.; Hu, A.; Li, M.; Chang, C.; Mao, D. Performances of CaSiO3 ceramic sintered by spark plasma sintering. Mater. Charact. 2008, 59, 256–260. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater. Sci. Eng. A 2014, 616, 1–11. [Google Scholar] [CrossRef]
- Murr, L.E.; Esquivel, E.V.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; Medina, F.; Hernandez, D.H.; Martinez, E.; Martinez, J.L.; et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater. Charact. 2009, 60, 96–105. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 2017, 16, 24–29. [Google Scholar] [CrossRef]
- Truscello, S.; Kerckhofs, G.; Van Bael, S.; Pyka, G.; Schrooten, J.; Van Oosterwyck, H. Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater. 2012, 8, 1648–1658. [Google Scholar] [CrossRef]
- Li, H.; Chang, J. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials 2004, 25, 5473–5480. [Google Scholar] [CrossRef]
- Rahmani, R.; Antonov, M.; Kollo, L. Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Study. Adv. Mater. Sci. Eng. 2019, 2019, 4210762. [Google Scholar] [CrossRef]
- Rahmani, R.; Antonov, M.; Kamboj, N. Modelling of impact-abrasive wear of ceramic, metallic, and composite materials. Proc. Est. Acad. Sci. 2019, 68, 191–197. [Google Scholar] [CrossRef]
Scaffold Type | Weight Before Test (g) (Figure 2) | Volume Fraction (% of Metal) | Height after Simulation (mm) (Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7) | Height after Experiment (mm) (Figure 8) | Maximum Compressive Load (kN) (Figure 9) |
---|---|---|---|---|---|
Rectangular | 4.0 ± 0.1 | 19 ± 1 | 11 ± 1 | 11 ± 2 | 100 ± 5 |
Primitive | 5.4 ± 0.2 | 28 ± 1 | 8 ± 2 | 8 ± 2 | 52 ± 2 |
Lattice | 3.8 ± 0.1 | 17 ± 2 | 6 ± 2 | 8 ± 2 | 12 ± 1 |
Gyroid | 4.0 ± 0.1 | 26 ± 2 | 7 ± 2 | 8 ± 1 | 35 ± 2 |
Honeycomb | 5.6 ± 0.1 | 19 ± 1 | 11 ± 1 | 12 ± 3 | 70 ± 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, R.; Antonov, M.; Kollo, L.; Holovenko, Y.; Prashanth, K.G. Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications. Appl. Sci. 2019, 9, 3844. https://doi.org/10.3390/app9183844
Rahmani R, Antonov M, Kollo L, Holovenko Y, Prashanth KG. Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications. Applied Sciences. 2019; 9(18):3844. https://doi.org/10.3390/app9183844
Chicago/Turabian StyleRahmani, Ramin, Maksim Antonov, Lauri Kollo, Yaroslav Holovenko, and Konda Gokuldoss Prashanth. 2019. "Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications" Applied Sciences 9, no. 18: 3844. https://doi.org/10.3390/app9183844
APA StyleRahmani, R., Antonov, M., Kollo, L., Holovenko, Y., & Prashanth, K. G. (2019). Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications. Applied Sciences, 9(18), 3844. https://doi.org/10.3390/app9183844