A New Extensible Feature Matching Model for Corrosion Defects Based on Consecutive In-Line Inspections and Data Clustering
<p>Fragments of an internally corroded pipe, illustrating metal loss and wall thinning caused by corrosion. These images are sourced from the research conducted by Beben and Steliga [<a href="#B9-applsci-15-02943" class="html-bibr">9</a>].</p> "> Figure 2
<p>Illustration of affine transformation on a two-dimensional plane, demonstrating how translation, scaling, and rotation facilitate correspondence between moving and reference sets.</p> "> Figure 3
<p>Pipeline segmentation as proposed by Dann and Dann [<a href="#B13-applsci-15-02943" class="html-bibr">13</a>].</p> "> Figure 4
<p>Pipeline unrolling and moving set double unrolling as proposed by Dann and Dann [<a href="#B13-applsci-15-02943" class="html-bibr">13</a>]—example problem.</p> "> Figure 5
<p>Identification of mixed nearest neighbors using Voronoi tessellations as proposed by Amaya-Gómez et al. [<a href="#B10-applsci-15-02943" class="html-bibr">10</a>] using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.11 m—example problem.</p> "> Figure 6
<p>Two-dimensional presentation of features (length and width), illustrating how interaction between adjacent defects and corrosion variable growth challenge feature matching and influence defect positioning across inspections—example problem.</p> "> Figure 7
<p>Illustration of the matching problems the proposed framework aims to solve, demonstrating how clustering should facilitate isolated correspondence matching, merging defect matching, and localized transformation problems across ILIs.</p> "> Figure 8
<p>Illustration of the proposed model’s workflow and extensibility, highlighting its parameters, data clustering using DENC and DBSCAN, cluster classification into categories, distance-based filtering, point matching using the Voronoi model, and the process of identifying matching and outlier features.</p> "> Figure 9
<p>Establishing adjacency relationships in DENC based on boundaries defined by the directional proximity thresholds <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.300 m and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.150 m—example problem.</p> "> Figure 10
<p>Graphical representation of the directed edges and binary adjacency matrix in DENC using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.300 m and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.150 m—example problem.</p> "> Figure 11
<p>Clusters (represented by distinct colors) and outliers obtained using DENC with <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.300 m and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.150 m—example problem.</p> "> Figure 12
<p>Outlier and cluster classification, illustrating the four density-based categories: (1) one-to-one, (2) one-to-many, (3) many-to-one, and many-to-many—example problem.</p> "> Figure 13
<p>Feature matching results obtained by the proposed model using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.300 m, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.150 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, α = 0.010, and τ = 0.001—example problem.</p> "> Figure 14
<p>Feature matching results obtained by the Voronoi model [<a href="#B10-applsci-15-02943" class="html-bibr">10</a>] using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> = 0.020, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—example problem.</p> "> Figure 15
<p>Illustration of the pipeline inspection setup from the manned wellhead platform to the unmanned wellhead platform.</p> "> Figure 16
<p>Two-dimensional presentation (length and width) of all features across the six pipeline segments, S1 to S6—case study.</p> "> Figure 17
<p>Sensitivity of the Voronoi model [<a href="#B7-applsci-15-02943" class="html-bibr">7</a>] to outlier proportion parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 18
<p>Sensitivity of the Voronoi model [<a href="#B7-applsci-15-02943" class="html-bibr">7</a>] to defect’s position uncertainty threshold <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> = 0.080 and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 19
<p>Sensitivity of the proposed model to DENC’s directional proximity thresholds <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> = 0.080, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 20
<p>Sensitivity of the proposed model to outlier proportion parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.220 m, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 21
<p>Sensitivity of the proposed model to the merging distance threshold <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.220 m, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> = 0.043 m, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 22
<p>Sensitivity of the proposed DBSCAN-based alternative model to the proximity threshold <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> = 0.080, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 23
<p>Sensitivity of the proposed DBSCAN-based alternative model to outlier proportion parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 24
<p>Sensitivity of the proposed DBSCAN-based alternative model to the merging distance threshold <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> </mrow> </semantics></math> = 0.110 m, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> </mrow> </semantics></math> = 0.055, and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math> = 0.001—case study.</p> "> Figure 25
<p>Feature clustering (represented by distinct colors) using DBSCAN (top) and DENC (bottom) using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> </semantics></math> = 0.250 m, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">x</mi> </mrow> </msub> </mrow> </semantics></math> = 0.220 m, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">ε</mi> </mrow> <mrow> <mi mathvariant="normal">y</mi> </mrow> </msub> </mrow> </semantics></math> = 0.110 m—case study for segment S5.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Point Matching Problem: Identifying Matching Corrosion Features Based on Consecutive ILIs
- Reducing the multiple ILI matching problem to a series of two consecutive ILI matching problems.
- Splitting the pipeline into segments between consecutive girth welds with an overlap of 0.3 m with adjacent joints at both ends, as shown in Figure 3.
- Mapping feature locations to a two-dimensional plane by unrolling the pipeline axially and double unrolling the moving set P to account for features near the unrolling reference point (ideally the 12 o’clock position), as shown in Figure 4. Double unrolling of the moving set is performed by extending the pipeline halves at the opposite ends, duplicating only the moving set in the process. This approach results in a new extended moving set that stacks both the moving and double unrolled moving sets, respectively.
- Matching corrosion features using annealing and the soft-assign mixed point matching approach [19,20,21], derived from the thin plate spline robust point matching (TPS-RPM) method introduced by Chui and Rangarajan [22]. This approach aims to find an optimum affine transformation that is close to the identity transformation matrix, leveraging ILI tools’ accuracy and controlling transformation from overdrifting.
- Transforming the results back to the original feature matching problem.
1.2. Limitations of Feature Matching That Relies on Affine Transformations
1.3. Resolution of the Feature Matching Problem Using Clustering
1.4. Novelty and Purpose of the Study
- Isolated correspondence matching: Clustering identifies isolated correspondent defects along the pipeline, which are easily matched due to their strong correspondence and minimal interference from surrounding defects.
- Merging defect matching: Clustering facilitates the development of tailored matching strategies based on cluster characteristics, such as defect merging, a critical aspect often overlooked or oversimplified by traditional feature matching models.
- Localized transformations: Clustering segments the data into localized regions with minimized distortion and outliers, enabling more precise affine transformations that capture feature displacements.
- 4.
- Aligning with the directional variability in ILI data: Directional thresholds effectively capture axial and circumferential variability, providing a more realistic and accurate representation of spatial relationships.
2. Research Methodology
2.1. Data Clustering
2.1.1. ILI Data Clustering Using DENC
2.1.2. ILI Data Clustering Using DBSCAN
2.2. Cluster Classification and Feature Matching
2.2.1. Category 1: One-to-One
2.2.2. Category 2: One-to-Many
2.2.3. Category 3: Many-to-One
2.2.4. Category 4: Many-to-Many
2.3. Complete Solution for the Given Example Problem
3. Experiment and Analysis
- Recall assesses the model’s ability to identify actual matches and new features, capturing the ratio of true positives among all relevant predictions (true positives and false negatives). High recall indicates the model is effective at finding most of the actual matches and new features.
- Precision focuses on the reliability of the model’s positive predictions, representing the proportion of correctly identified matches and new features (true positives) among all predicted (true positives and false positives) matches and new features. High precision indicates fewer false predictions.
- F1 score provides a balanced measure of precision and recall, particularly useful in cases where these metrics need to be equally emphasized. It is defined as follows:
3.1. Sensitivity Analysis of the Voronoi Model’s Parameters
3.1.1. Sensitivity Analysis of the Outlier Proportion Parameter
3.1.2. Sensitivity Analysis of the Defect’s Position Uncertainty Threshold
3.2. Sensitivity Analysis of the Proposed Model’s Parameters
3.2.1. Sensitivity Analysis of the Directional Proximity Thresholds
3.2.2. Sensitivity Analysis of the Outlier Proportion Parameter
3.2.3. Sensitivity Analysis of the Merging Distance Threshold
3.3. Segment-Level Analysis of the Proposed Model and the Voronoi Model
3.4. Sensitivity Analysis of the Proposed DBSCAN-Based Alternative Model’s Parameters
3.4.1. Sensitivity Analysis of DBSCAN’s Proximity Threshold
3.4.2. Sensitivity Analysis of the Outlier Proportion Parameter
3.4.3. Sensitivity Analysis of the Merging Distance Threshold
4. Discussion
4.1. Improvements Brought to Feature Matching Using Clustering and DENC
4.2. Effectiveness of the Proposed Classification of Clusters
4.3. Influence of the Proposed Model’s Parameters on Balancing Performance and Clustering Efficiency
4.3.1. Proximity Thresholds
4.3.2. Outlier Proportion Parameter
4.3.3. Merging Distance Threshold
4.4. Applicability of the Proposed Model to Match Internal and External Features
4.5. Insights into the Proposed Model’s Runtime Performance
4.6. Considerations for Detection Limitations and Pipeline Materials
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ILI | In-line inspection |
DENC | Directional epsilon neighborhood clustering |
UT | Ultrasonic testing |
MFL | Magnetic flux leakage |
POD | Probability of detection |
POA | Probability of false alarm |
TPS-RPM | Thin plate spline robust point matching |
ICP | Iterative closest point |
MSE | Mean square error |
DBSCAN | Density-based spatial clustering of applications with noise |
DFS | Depth-first search |
BFS | Breadth-first search |
RFM-SCAN | Robust feature matching using spatial clustering with heavy outliers |
PCA | Principal component analysis |
ADCN | Anisotropic density-based clustering with noise |
QUAC | Quick unsupervised anisotropic clustering |
References
- Iannuzzi, M.; Frankel, G. The carbon footprint of steel corrosion. NPJ Mater. Degrad. 2022, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabaeei, A.M.; Alhussian, H.; Abdulkadir, S.J.; Jagadeesh, A. Prediction of oil and gas pipeline failures through machine learning approaches: A systematic review. Energy Rep. 2023, 10, 1313–1338. [Google Scholar] [CrossRef]
- DNV GL. DNV-RP-F116 Integrity Management of Submarine Pipeline Systems; DNV GL: Høvik, Norway, 2021. [Google Scholar]
- May, Z.; Alam, M.K.; Nayan, N.A. Recent advances in nondestructive method and assessment of corrosion undercoating in carbon-steel pipelines. Sensors 2022, 22, 6654. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, R.; Jia, G.; Lan, H.; Fu, K.; Liu, X. A decade review of the art of inspection and monitoring technologies for long-distance oil and gas pipelines in permafrost areas. Energies 2023, 16, 1751. [Google Scholar] [CrossRef]
- Parlak, B.; Yavasoglu, H. A Comprehensive analysis of in-line inspection tools and technologies for steel oil and gas pipelines. Sustainability 2023, 15, 2783. [Google Scholar] [CrossRef]
- DNV GL. DNV-RP-F101 Corroded Pipelines; Amended 2021; DNV GL: Høvik, Norway, 2019. [Google Scholar]
- AMSE. B31G—Manual for Determining the Remaining Strength of Corroded Pipeline; ASME: New York, NY, USA, 2023. [Google Scholar]
- Beben, D.; Steliga, T. Monitoring and preventing failures of transmission pipelines at oil and natural gas plants. Energies 2023, 16, 6640. [Google Scholar] [CrossRef]
- Amaya-Gómez, R.; Schoefs, F.; Sánchez-Silva, M.; Muñoz, F.; Bastidas-Arteaga, E. Matching of corroded defects in onshore pipelines based on in-line inspections and Voronoi partitions. Reliab. Eng. Syst. Saf. 2022, 223, 108520. [Google Scholar] [CrossRef]
- API. API Standard 1163: In-Line Inspection Systems Qualification Standard; American Petroleum Institute: Washington, DC, USA, 2021. [Google Scholar]
- POF. Specifications and Requirements for In-Line Inspection of Pipelines; Pipeline Operators Forum: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Dann, M.; Dann, C. Automated matching of pipeline corrosion features from in-line inspection data. Reliab. Eng. Syst. Saf. 2017, 162, 40–50. [Google Scholar] [CrossRef]
- NACE Standard. SP0102-2017 Standard Recommended Practice In-Line Inspection of Pipelines; NACE International: Houston, TX, USA, 2017. [Google Scholar]
- Pakrashi, V.; Schoefs, F.; Memet, J.B.; O’Connor, A. ROC dependent event isolation method for image processing based assessment of corroded harbour structures. Struct. Infrastruct. Eng. 2008, 6, 365–378. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Taylor, B.; Dong, H. Matching pipeline in-line inspection data for corrosion characterization. NDT E Int. 2019, 101, 44–52. [Google Scholar] [CrossRef]
- Ismail, M.F.; May, Z.; Asirvadam, V.S.; Nayan, N.A. Machine-learning-based classification for pipeline corrosion with monte carlo probabilistic analysis. Energies 2023, 16, 3589. [Google Scholar] [CrossRef]
- Van Wamelen, P.B.; Li, Z.; Iyengar, S.S. A fast expected time algorithm for the 2-D point pattern matching problem. Pattern Recognit. 2003, 37, 1699–1711. [Google Scholar] [CrossRef]
- Chui, H.; Rambo, J.; Duncan, J.; Schultz, R.; Rangarajan, A. Registration of cortical anatomical structures via robust 3D point matching. In Proceedings of the Information Processing in Medical Imaging (IPMI), Visegrad, Hungary, 28 June–2 July 1999; pp. 114–121. [Google Scholar]
- Gold, S.; Rangarajan, A.; Lu, C.P.; Pappu, S.; Mjolsness, E. New algorithms for 2-D and 3-D point matching: Pose estimation and correspondence. Pattern Recognit. 1998, 31, 1019–1031. [Google Scholar] [CrossRef]
- Rangarajan, A.; Chui, H.; Bookstein, F.L. The softassign Procrustes matching algorithm. In Proceedings of the Information Processing in Medical Imaging (IPMI), Poultney, VT, USA, 9–13 June 1997; pp. 29–42. [Google Scholar]
- Chui, H.; Rangarajan, A. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 2003, 89, 114–141. [Google Scholar] [CrossRef]
- Besl, P.; McKay, N. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Chang, S.; Cheng, F.; Hsu, W.; Wu, G. Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes. Pattern Recognit. 1997, 30, 311–320. [Google Scholar] [CrossRef]
- Yang, J. The thin plate spline robust point matching (TPS-RPM) algorithm: A revisit. Pattern Recognit. Lett. 2011, 32, 910–918. [Google Scholar] [CrossRef]
- Von Luxburg, U. A tutorial on spectral clustering. arXiv 2007, arXiv:0711.0189. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Mitra, P. A survey of density based clustering algorithms. Front. Comput. Sci. 2021, 15, 151308. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Tarjan, R. Depth-first search and linear graph algorithms. In Proceedings of the 12th Annual Symposium on Switching and Automata Theory (swat 1971), East Lansing, MI, USA, 13–15 October 1971; pp. 114–121. [Google Scholar]
- Jiang, X.; Ma, J.; Jiang, J.; Guo, X. Robust Feature Matching Using Spatial Clustering with Heavy Outliers. IEEE Trans. Image Process. 2020, 29, 736–746. [Google Scholar] [CrossRef]
- Ren, K.; Ye, Y.; Gu, G.; Chen, Q. Feature matching based on spatial clustering for aerial image registration with large view differences. Optik 2022, 259, 169033. [Google Scholar] [CrossRef]
- Mai, G.; Janowicz, K.; Hu, Y.; Gao, S. ADCN: An anisotropic density-based clustering algorithm for discovering spatial point patterns with noise. Trans. GIS 2018, 22, 348–369. [Google Scholar] [CrossRef]
- Hanwell, D.; Mirmehdi, M. QUAC: Quick unsupervised anisotropic clustering. Pattern Recognit. 2014, 47, 427–440. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, J.; Sun, X. On solving multi-commodity flow problems: An experimental evaluation. Chin. J. Aeronaut. 2017, 30, 1481–1492. [Google Scholar] [CrossRef]
- Rosen Group. Tethered Ultrasonic In-line Inspection Solution. Available online: https://contenthub.rosen-group.com/api/public/content/02c9d6b9fa6b4f219f14f7b38bc23f0f (accessed on 29 December 2024).
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Benjamin, A.C.; Freire, J.L.F.; Vieira, R.D.; Cunha, D.J.S. Interaction of corrosion defects in pipelines—Part 1: Fundamentals. Int. J. Press. Vessel. Pip. 2016, 144, 56–62. [Google Scholar] [CrossRef]
Segment | Features Q | Features P | Observed Matches | New Features | Complexity |
---|---|---|---|---|---|
S1 | 45 | 62 | 54 | 7 | High |
S2 | 38 | 18 | 18 | 20 | Low |
S3 | 45 | 33 | 33 | 14 | Moderate |
S4 | 29 | 15 | 15 | 14 | Low |
S5 | 31 | 39 | 39 | 4 | High |
S6 | 51 | 57 | 52 | 0 | Moderate |
Total | 239 | 224 | 211 | 59 | - |
Segment | Complexity | Proposed Model | Point Matching (Voronoi Model) | ||||
---|---|---|---|---|---|---|---|
Recall % | Precision % | F1 Score % | Recall % | Precision % | F1 Score % | ||
S1 | High | 77.0 | 92.2 | 83.9 | 60.7 | 82.2 | 69.8 |
S2 | Low | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
S3 | Moderate | 95.7 | 100.0 | 97.8 | 91.5 | 95.6 | 93.5 |
S4 | Low | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
S5 | High | 86.0 | 97.4 | 91.4 | 69.8 | 96.8 | 81.1 |
S6 | Moderate | 98.1 | 100.0 | 99.0 | 98.1 | 100.0 | 99.0 |
Overall | 91.5 | 98.0 | 94.6 | 84.4 | 95.4 | 89.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shatnawi, M.; Földesi, P. A New Extensible Feature Matching Model for Corrosion Defects Based on Consecutive In-Line Inspections and Data Clustering. Appl. Sci. 2025, 15, 2943. https://doi.org/10.3390/app15062943
Shatnawi M, Földesi P. A New Extensible Feature Matching Model for Corrosion Defects Based on Consecutive In-Line Inspections and Data Clustering. Applied Sciences. 2025; 15(6):2943. https://doi.org/10.3390/app15062943
Chicago/Turabian StyleShatnawi, Mohamad, and Péter Földesi. 2025. "A New Extensible Feature Matching Model for Corrosion Defects Based on Consecutive In-Line Inspections and Data Clustering" Applied Sciences 15, no. 6: 2943. https://doi.org/10.3390/app15062943
APA StyleShatnawi, M., & Földesi, P. (2025). A New Extensible Feature Matching Model for Corrosion Defects Based on Consecutive In-Line Inspections and Data Clustering. Applied Sciences, 15(6), 2943. https://doi.org/10.3390/app15062943