Characterization of Invar Syntactic Foams Obtained by Spark Plasma Sintering
<p>Optical images of Invar powder (<b>a</b>) and NiCrSiB superalloy (<b>b</b>).</p> "> Figure 2
<p>Optical images of the wall thickness (g) of some NiCrSiB superalloy particles; (<b>a</b>) g ≅ 6 μm, (<b>b</b>) g ≅ 26 μm, (<b>c</b>) g ≅ 54 μm.</p> "> Figure 3
<p>Photo images of spark plasma sintered Invar/20%NiCrSiB syntactic foam sample.</p> "> Figure 4
<p>SEM images of Invar/20%NiCrSiB composite foam at different magnifications: 35× (<b>a</b>), 100× (<b>b</b>), 1000× (<b>c</b>) and 5000× (<b>d</b>).</p> "> Figure 5
<p>EDX maps of element distributions of Invar/20%NiCrSiB syntactic foam – mixed elements map distribution (<b>a</b>), map of the Fe (<b>b</b>), map of the Ni (<b>c</b>), map of the Cr (<b>d</b>), map of the Si (<b>e</b>), map of the B (<b>f</b>) and map of the C (<b>g</b>).</p> "> Figure 5 Cont.
<p>EDX maps of element distributions of Invar/20%NiCrSiB syntactic foam – mixed elements map distribution (<b>a</b>), map of the Fe (<b>b</b>), map of the Ni (<b>c</b>), map of the Cr (<b>d</b>), map of the Si (<b>e</b>), map of the B (<b>f</b>) and map of the C (<b>g</b>).</p> "> Figure 6
<p>SEM image and EDX line scan of Invar/20%NiCrSiB sample.</p> "> Figure 7
<p>XRD diffraction patterns of Invar 16 h milled powders (<b>a</b>), NiCrSiB hollow particles (<b>b</b>) and Invar/20%NiCrSBi spark plasma sintered composite foam (<b>c</b>).</p> "> Figure 8
<p>Elongation variation (Δl) as a function of temperature for syntactic foam Invar/20% NiCrSiB and for Invar [<a href="#B17-applsci-15-02932" class="html-bibr">17</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal Foams: A Design Guide, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2000; pp. 1–54. [Google Scholar]
- Banhart, J. Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Neville, B.P.; Rabiei, A. Composite metal foams processed through powder metallurgy. Mater. Des. 2008, 29, 388–396. [Google Scholar] [CrossRef]
- Atwater, M.A.; Guevara, L.N.; Darling, K.A.; Tschopp, M.A. Solid State Porous Metal Production: A Review of the Capabilities, Characteristics and Challenges. Adv. Eng. Mater. 2018, 20, 1700766. [Google Scholar] [CrossRef]
- Hassan, A.; Alnaser, I.A. A Review of Different Manufacturing Methods of Metallic Foams. ACS Omega 2024, 9, 6280–6295. [Google Scholar] [CrossRef]
- Duarte, I.; Ferreira, J.M.F. Composite and Nanocomposite Metal Foams. Materials 2016, 9, 79. [Google Scholar] [CrossRef]
- Thalmaier, G.; Sechel, N.A.; Vida-Simiti, I. Syntactic Aluminum Foam from Recycled Sawing Chips. JOM 2020, 72, 3377–3382. [Google Scholar] [CrossRef]
- Szlancsik, A.; Orbulov, I.N. Compressive properties of metal matrix syntactic foams in uni- and triaxial compression. Mater. Sci. Eng. A 2021, 827, 142081. [Google Scholar] [CrossRef]
- Luong, D.; Lehmhus, D.; Gupta, N.; Weise, J.; Bayoumi, M. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams. Materials 2016, 9, 115. [Google Scholar] [CrossRef]
- Weise, J.; Salk, N.; Jehring, U.; Baumeister, J.; Lehmhus, D.; Bayoumi, M.A. Influence of Powder Size on Production Parameters and Properties of Syntactic Invar Foams Produced by Means of Metal Powder Injection Moulding. Adv. Eng. Mater. 2013, 15, 118–122. [Google Scholar] [CrossRef]
- Peroni, L.; Scapin, M.; Lehmhus, D.; Baumeister, J.; Busse, M.; Avalle, M.; Weise, J. High Strain Rate Testing of Invar Syntactic Foam. Adv. Eng. Mater. 2017, 19, 1600474. [Google Scholar] [CrossRef]
- Taherishargh, M.; Sulong, M.A.; Belova, I.V.; Murch, G.E.; Fiedler, T. On the particle size effect in expanded perlite aluminium syntactic foam. Mater. Des. 2015, 66, 294–303. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Szlancsik, A.; Kemeny, A.; Kincses, D. Low-Cost Light-Weight Composite Metal Foams for Transportation Applications. J. Mater. Eng. Perform. 2022, 31, 6954–6961. [Google Scholar] [CrossRef]
- Dong, Z.; Song, D.; Sun, W.; Wang, J.; Liu, J. Compressive properties of the magnesium matrix syntactic foams using different types of porous volcanic rock particles. Materialia 2022, 25, 101535. [Google Scholar] [CrossRef]
- Wei, K.; Yang, Q.; Ling, B.; Yang, X.; Xie, H.; Qu, Z.; Fang, D. Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 772, 138799. [Google Scholar] [CrossRef]
- Kul, M.; Akgul, B.; Karabay, Y.Z.; Hitzler, L.; Sert, E.; Merkel, M. Minimum and Stable Coefficient of Thermal Expansion by Three-Step Heat Treatment of Invar 36. Crystals 2024, 14, 1097. [Google Scholar] [CrossRef]
- Prică, C.V.; Marinca, T.F.; Neamtu, B.V.; Sechel, A.N.; Popa, F.; Jozsa, E.M.; Chicinaş, I. Invar/WC Composite Compacts Obtained by Spark Plasma Sintering from Mechanically Alloyed Powders. Materials 2022, 15, 6714. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Wei, K.; Yang, Q.; Zhou, j.; Zhou, H.; Zhang, X.; Yang, X. High cycle fatigue behaviour of Invar 36 alloy fabricated by laser powder bed fusion. Virtual Phys. Prototyp. 2023, 18, e2190901. [Google Scholar] [CrossRef]
- Yanga, Q.; Weia, K.; Yanga, X.; Xiec, H.; Qud, Z.; Fang, D. Microstructures and unique low thermal expansion of Invar 36 alloy fabricated by selective laser melting. Mater. Charact. 2020, 166, 110409. [Google Scholar] [CrossRef]
- Bruj, E.; Jumate, N.; Vida-Simiti, I.; Moldovan, V.; Nemeş, D. Study on the physical and mechanical properties of ni-based sintered metallic foams. J. Optoelectron. Adv. Mater. 2011, 13, 866–869. [Google Scholar]
- Rachidia, R.; El Kihela, B.; Delaunois, F. Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying. Mater. Sci. Eng. B 2019, 241, 13–21. [Google Scholar] [CrossRef]
- Zenga, Z.; Kuroda, S.; Era, H. Comparison of oxidation behavior of Ni-20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying. Surf. Coat. Technol. 2009, 204, 69–77. [Google Scholar] [CrossRef]
- Prică, C.V.; Neamţu, B.V.; Marinca, T.F.; Popa, F.; Sechel, A.N.; Isnard, O.; Chicinaş, I. Synthesis of Invar 36 type alloys from elemental and prealloyed powders by mechanical alloying. Powder Metall. 2019, 62, 155–161. [Google Scholar] [CrossRef]
- Scherrer, P. Estimation of the Size and Internal Structure of Colloidal Particles by Means of Röntgen. Nachrichten Ges. Wiss. Zu Göttingen 1918, 2, 96–100. [Google Scholar]
Powders | Chemical Composition [wt.%] | Theoretical Density [g/cm3] | ||||
---|---|---|---|---|---|---|
Ni | Fe | Cr | Si | B | ||
Invar | 36 | 64 | - | - | - | 8.22 |
Superalloy NiCrSiB | 70.19 | 12.34 | 7.08 | 6.73 | 3.66 | 6.72 |
Syntactic Foam | Temperature Range, ΔT (°C) | α (×10−6 °C−1) |
---|---|---|
Invar/20%NiCrSiB | 25–150 | 2.52 |
150–400 | 19.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sechel, A.N.; Prică, C.-V.; Marinca, T.F.; Popa, F.; Baglaevschi, L.-M.; Thalmaier, G.; Vida-Simiti, I. Characterization of Invar Syntactic Foams Obtained by Spark Plasma Sintering. Appl. Sci. 2025, 15, 2932. https://doi.org/10.3390/app15062932
Sechel AN, Prică C-V, Marinca TF, Popa F, Baglaevschi L-M, Thalmaier G, Vida-Simiti I. Characterization of Invar Syntactic Foams Obtained by Spark Plasma Sintering. Applied Sciences. 2025; 15(6):2932. https://doi.org/10.3390/app15062932
Chicago/Turabian StyleSechel, Argentina Niculina, Călin-Virgiliu Prică, Traian Florin Marinca, Florin Popa, Loredana-Maria Baglaevschi, Gyorgy Thalmaier, and Ioan Vida-Simiti. 2025. "Characterization of Invar Syntactic Foams Obtained by Spark Plasma Sintering" Applied Sciences 15, no. 6: 2932. https://doi.org/10.3390/app15062932
APA StyleSechel, A. N., Prică, C.-V., Marinca, T. F., Popa, F., Baglaevschi, L.-M., Thalmaier, G., & Vida-Simiti, I. (2025). Characterization of Invar Syntactic Foams Obtained by Spark Plasma Sintering. Applied Sciences, 15(6), 2932. https://doi.org/10.3390/app15062932