A Method of Discriminating Between Power Swings and Faults Based on Principal Component Analysis
<p>Schematic diagram of PCA processing results.</p> "> Figure 2
<p>Projection trajectories under different disturbances. (<b>a</b>) Three-phase shorting fault; (<b>b</b>) power swing.</p> "> Figure 3
<p>The value of <span class="html-italic">C</span>.</p> "> Figure 4
<p>Flow chart of blocking protection relay.</p> "> Figure 5
<p>Flow chart of deblocking the protection relay.</p> "> Figure 6
<p>Sketch of simulation system.</p> "> Figure 7
<p>Trajectory of measured impedance during power swing.</p> "> Figure 8
<p>The waveform of the three-phase voltage under a power swing of 2 Hz.</p> "> Figure 9
<p>The value of <span class="html-italic">C</span> under a power swing of 2 Hz.</p> "> Figure 10
<p>Sketch of 400 kV system.</p> "> Figure 11
<p>The waveform of the three-phase voltage under a fault.</p> "> Figure 12
<p>The value of <span class="html-italic">C</span> under a fault.</p> "> Figure 13
<p>Waveforms of voltage and current.</p> "> Figure 14
<p>ΔP under different sampling frequencies of power swings.</p> "> Figure 15
<p>ΔP under different sampling frequencies for faults.</p> ">
Abstract
:1. Introduction
2. Principal Component Analysis
3. Power Swing Blocking Method Using PCA
3.1. Basic Principle
3.2. Criterion for PSB and PSD Function
3.3. Flow Chart of PSB and PSD Function
4. Simulation Tests
4.1. Test Results Based on Two-End System
4.2. Test Results Based on Nine-Bus System
4.3. Comparison and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Components | Specification |
---|---|
G1, G2, and G3 | Capacity: Voltage rating: Leakage reactance: Direct axis reactance: Quadrature axis reactance: Transient reactance: Sub-transient reactance: Transient time constant: Sub-transient time constant: Inertia constant: |
T1, T2, and T3 | |
Transmission line | Positive sequence: Zero sequence: Length: |
Load | Load1: 500 MVA, p.f. 0.90 (lagging) Load2: 350 MVA, p.f. 0.85 (lagging) Load3: 400 MVA, p.f. 0.92 (lagging) |
References
- Lin, X.; Li, Z.; Ke, S.; Gao, Y. Theoretical Fundamentals and Implementation of Novel Self-Adaptive Distance Protection Resistant to Power Swings. IEEE Trans. Power Deliv. 2010, 25, 1372–1383. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Sanaye-Pasand, M. Distance protection during asymmetrical power swings: Challenges and solutions. IEEE Trans. Power Deliv. 2018, 33, 2736–2745. [Google Scholar] [CrossRef]
- Gawande, P.; Dambhare, S. Protection and fault identification in presence of power swing blocking/unblocking function. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–6. [Google Scholar]
- Gao, Z.D.; Wang, G.B. A new power swing block in distance protection based on a microcomputer-principle and performance analysis. In Proceedings of the 1991 International Conference on Advances in Power System Control, Operation and Management, APSCOM-91, Hongkong, 5–8 November 1991; pp. 843–847. [Google Scholar]
- Su, B.; Dong, X.; Bo, Z.; Sun, Y.; Caunce, B.; Tholomier, D.; Apostolov, A. Fast detector of symmetrical fault during power swing for distance relay. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 12–16 June; 2005; pp. 1836–1841. [Google Scholar]
- Paudyal, S.; Ramakrishna, G.; Sachdev, M.S. Application of equal area criterion conditions in the time domain for out-of-step protection. IEEE Trans. Power Deliv. 2010, 25, 600–609. [Google Scholar] [CrossRef]
- Lin, X.; Gao, Y.; Liu, P. A novel scheme to identify symmetrical faults occurring during power swings. IEEE Trans. Power Deliv. 2008, 23, 73–78. [Google Scholar] [CrossRef]
- Pang, C.; Kezunovic, M. Fast distance relay scheme for detecting symmetrical fault during power swing. IEEE Trans. Power Deliv. 2010, 25, 2205–2212. [Google Scholar] [CrossRef]
- Brahma, S.M. Distance relay with out-of-step blocking function using wavelet transform. IEEE Trans. Power Deliv. 2007, 22, 1360–1366. [Google Scholar] [CrossRef]
- Alsyoufi, Y.R.; Hajjar, A.A. A high-speed algorithm to discriminate between power swing and faults in distance relays based on a fast wavelet. Electr. Power Syst. Res. 2019, 172, 269–276. [Google Scholar] [CrossRef]
- Dubey, R.; Samantaray, S.R. Wavelet singular entropy-based symmetrical fault-detection and out-of-step protection during power swing. IET Gener. Transm. Distrib. 2013, 7, 1123–1134. [Google Scholar] [CrossRef]
- Biswal, S.; Biswal, M. Fault-swing discrimination using Hilbert-Huang transform integrated discrete teager energy operator. IET Sci. Meas. Technol. 2018, 12, 829–837. [Google Scholar] [CrossRef]
- Lotfifard, S.; Faiz, J.; Kezunovic, M. Detection of symmetrical faults by distance relays during power swings. IEEE Trans. Power Deliv. 2010, 25, 81–87. [Google Scholar] [CrossRef]
- Mahamedi, B.; Zhu, J.G. A novel approach to detect symmetrical faults occurring during power swings by using frequency components of instantaneous three-phase active power. IEEE Trans. Power Deliv. 2012, 27, 1368–1376. [Google Scholar] [CrossRef]
- Esmaeilian, A.; Astinfeshan, S. A novel power swing detection algorithm using adaptive neuro fuzzy technique. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 17–19 July 2011; pp. 1–6. [Google Scholar]
- Zadeh, H.K.; Li, Z. A novel power swing blocking scheme using adaptive neuro-fuzzy inference system. Electr. Power Syst. Res. 2008, 78, 1138–1146. [Google Scholar] [CrossRef]
- Seethalekshmi, K.; Singh, S.N.; Srivastava, S.C. Svm based power swing identification scheme for distance relays. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Swetapadma, A.; Yadav, A. Data-mining-based fault during power swing identification in power transmission system. IET Sci. Meas. Technol. 2016, 10, 130–139. [Google Scholar] [CrossRef]
- Moravej, Z.; Ashkezari, J.D.; Pazoki, M. An effective combined method for symmetrical faults identification during power swing. Int. J. Electr. Power Energy Syst. 2015, 64, 24–34. [Google Scholar] [CrossRef]
- Daryalal, M.; Sarlak, M. Fast fault detection scheme for series-compensated lines during power swing. Int. J. Electr. Power Energy Syst. 2017, 92, 230–244. [Google Scholar] [CrossRef]
- Zou, L.; Zhao, Q.C.; Lin, X.N.; Liu, P. Improved phase selector for unbalanced faults during power swings using morphological technique. IEEE Trans. Power Deliv. 2006, 21, 1847–1855. [Google Scholar] [CrossRef]
- Gautam, S.; Brahma, S. Out-of-step blocking function in distance relay using mathematical morphology. IET Gener. Transm. Distrib. 2012, 6, 313–319. [Google Scholar] [CrossRef]
- Patel, B.; Bera, P. Detection of power swing and fault during power swing using Lissajous figure. IEEE Trans. Power Deliv. 2018, 33, 3019–3027. [Google Scholar] [CrossRef]
- Patel, B. A new technique for detection and classification of faults during power swing. Electr. Power Syst. Res. 2019, 175, 105920. [Google Scholar] [CrossRef]
- Rao, J.G.; Pradhan, A.K. Differential power-based symmetrical fault detection during power swing. IEEE Trans. Power Deliv. 2012, 27, 1557–1564. [Google Scholar] [CrossRef]
- Khodaparast, J.; Khederzadeh, M. Three-phase fault detection during power swing by transient monitor. IEEE Trans. Power Syst. 2015, 30, 2558–2565. [Google Scholar] [CrossRef]
- Tekdemir, I.G.; Alboyaci, B. A novel approach for improvement of power swing blocking and deblocking functions in distance relays. IEEE Trans. Power Deliv. 2017, 32, 1986–1994. [Google Scholar] [CrossRef]
- Chatterjee, S.; Anand, A.; Roy, B.K.S.; Terzija, V. Dual use line relays to improve power swing deblocking function. Int. J. Electr. Power Energy Syst. 2020, 121, 106156. [Google Scholar] [CrossRef]
- Musa, M.H.; He, Z.; Fu, L.; Deng, Y. A covariance indices based method for fault detection and classification in a power transmission system during power swing. Int. J. Electr. Power Energy Syst. 2019, 105, 581–591. [Google Scholar] [CrossRef]
- Wang, H.; Dai, Y.; Fu, L.; Liu, F.; Hu, J.; Dong, X.; Kang, X.; Li, W. Power swing detecting method using principal components analysis. Energy Rep. 2021, 7, 1009–1014. [Google Scholar] [CrossRef]
- Hadri, A.; Chougdali, K.; Touahni, R. Intrusion detection system using pca and fuzzy pca techniques. In Proceedings of the 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS), Marrakesh, Morocco, 17–19 October 2016; pp. 1–7. [Google Scholar]
Parameter | Positive Sequence | Zero Sequence |
---|---|---|
R (Ω/km) | 0.0196 | 0.1828 |
L (mH/km) | 0.8917 | 2.739 |
C (μF/km) | 135 | 92 |
No. | fps (Hz) | t0 (s) | Cavr | Result |
---|---|---|---|---|
1 | 7.00 | 1.200 | 85.24 | PS |
2 | 5.00 | 1.200 | 88.06 | PS |
3 | 2.50 | 1.200 | 94.36 | PS |
4 | 2.00 | 1.200 | 95.55 | PS |
5 | 1.25 | 1.200 | 96.77 | PS |
6 | 1.00 | 1.200 | 97.44 | PS |
7 | 0.50 | 1.200 | 98.30 | PS |
8 | 0.40 | 1.200 | 98.24 | PS |
9 | 0.20 | 1.200 | 98.50 | PS |
10 | 7.00 | 1.201 | 83.51 | PS |
11 | 7.00 | 1.202 | 84.19 | PS |
12 | 7.00 | 1.203 | 84.89 | PS |
13 | 7.00 | 1.204 | 83.17 | PS |
14 | 7.00 | 1.205 | 83.85 | PS |
15 | 7.00 | 1.206 | 84.89 | PS |
16 | 7.00 | 1.207 | 85.24 | PS |
17 | 7.00 | 1.208 | 83.85 | PS |
18 | 7.00 | 1.209 | 84.53 | PS |
No. | Distance (km) | t0 (s) | Cavr | Result |
---|---|---|---|---|
1 | 10 | 1.200 | 1.57 | F |
2 | 30 | 1.200 | 5.28 | F |
3 | 70 | 1.200 | 16.90 | F |
4 | 110 | 1.200 | 27.37 | F |
5 | 150 | 1.200 | 36.10 | F |
6 | 190 | 1.200 | 42.96 | F |
7 | 230 | 1.200 | 49.32 | F |
8 | 270 | 1.200 | 55.39 | F |
9 | 290 | 1.200 | 58.05 | F |
10 | 290 | 1.201 | 58.05 | F |
11 | 290 | 1.202 | 58.05 | F |
12 | 290 | 1.203 | 58.05 | F |
13 | 290 | 1.204 | 58.05 | F |
14 | 290 | 1.205 | 58.05 | F |
15 | 290 | 1.206 | 58.05 | F |
16 | 290 | 1.207 | 58.05 | F |
17 | 290 | 1.208 | 58.05 | F |
18 | 290 | 1.209 | 58.05 | F |
No. | Distance (km) | ΔP | Result | |
---|---|---|---|---|
1 | 10 | 50° | 1605.52 | F |
2 | 80 | 50° | 895.34 | F |
3 | 150 | 50° | 1162.82 | F |
4 | 220 | 50° | 1325.18 | F |
5 | 290 | 50° | 1441.59 | F |
6 | 150 | 80° | 770.14 | F |
7 | 150 | 120° | 125.90 | F |
8 | 150 | 150° | 276.45 | F |
9 | 150 | 180° | 698.84 | F |
10 | 150 | 220° | 1076.44 | F |
11 | 150 | 260° | 1325.72 | F |
12 | 150 | 330° | 593.41 | F |
No. | Distance (km) | t0 (s) | Cavr | Result |
---|---|---|---|---|
1 | 10 | 1.200 | 2.11 | F |
2 | 25 | 1.200 | 4.87 | F |
3 | 55 | 1.200 | 13.62 | F |
4 | 85 | 1.200 | 22.12 | F |
5 | 125 | 1.200 | 31.68 | F |
6 | 155 | 1.200 | 36.67 | F |
7 | 185 | 1.200 | 44.05 | F |
8 | 225 | 1.200 | 56.94 | F |
9 | 240 | 1.200 | 54.69 | F |
10 | 240 | 1.201 | 54.76 | F |
11 | 240 | 1.202 | 54.70 | F |
12 | 240 | 1.203 | 54.69 | F |
13 | 240 | 1.204 | 54.74 | F |
14 | 240 | 1.205 | 54.69 | F |
15 | 240 | 1.206 | 54.70 | F |
16 | 240 | 1.207 | 54.72 | F |
17 | 240 | 1.208 | 54.75 | F |
18 | 240 | 1.209 | 54.72 | F |
No. | Distance (km) | ΔP | Result | |
---|---|---|---|---|
1 | 10 | 50° | 1279.13 | F |
2 | 70 | 50° | 1068.65 | F |
3 | 125 | 50° | 873.70 | F |
4 | 180 | 50° | 683.19 | F |
5 | 240 | 50° | 533.45 | F |
6 | 240 | 80° | 676.34 | F |
7 | 240 | 120° | 769.19 | F |
8 | 240 | 150° | 711.32 | F |
9 | 240 | 180° | 560.03 | F |
10 | 240 | 220° | 413.78 | F |
11 | 240 | 260° | 388.03 | F |
12 | 240 | 330° | 374.51 | F |
fps (Hz) | SNR (dB) | Proposed Method | Method in [27] | ||||
---|---|---|---|---|---|---|---|
Cavr | R | T (ms) | DI | R | T (ms) | ||
7.00 | - | 85.24 | √ | 10.07 | √ | 10.09 | |
5.00 | - | 88.06 | √ | 10.09 | √ | 10.08 | |
2.00 | - | 95.55 | √ | 10.09 | √ | 10.10 | |
1.00 | - | 97.44 | √ | 10.07 | √ | 10.09 | |
0.40 | - | 98.24 | √ | 10.08 | √ | 10.10 | |
7.00 | 50 | 85.29 | √ | 10.07 | 0.03 | × | 10.07 |
7.00 | 40 | 85.83 | √ | 10.08 | 0.25 | × | 10.08 |
7.00 | 30 | 83.06 | √ | 10.08 | 3.82 | × | 10.07 |
Distance (Hz) | SNR (dB) | Proposed Method | Method in [27] | ||||
---|---|---|---|---|---|---|---|
Cavr | R | T (ms) | DI | R | T (ms) | ||
10 | - | 1.57 | √ | 10.09 | 0.01 | √ | 10.09 |
70 | - | 16.90 | √ | 10.09 | 0.76 | √ | 10.08 |
150 | - | 36.10 | √ | 10.08 | 0.31 | √ | 10.10 |
230 | - | 49.32 | √ | 10.09 | 0.42 | √ | 10.09 |
290 | - | 58.05 | √ | 10.09 | 0.47 | √ | 10.10 |
290 | 50 | 58.12 | √ | 10.09 | 0.63 | × | 10.07 |
290 | 40 | 58.41 | √ | 10.09 | 1.63 | × | 10.08 |
290 | 30 | 57.46 | √ | 10.08 | 14.26 | × | 10.07 |
fps (Hz) | Distance (km) | SNR (dB) | R | T (ms) | ||
---|---|---|---|---|---|---|
7.00 | 10 | 50° | - | 85.24 | √ | 0.5 |
150 | 50° | - | 88.06 | √ | 0.75 | |
290 | 50° | -- | 94.36 | √ | 1.25 | |
150 | 120° | - | 95.55 | √ | 0.75 | |
150 | 180° | - | 96.77 | √ | 0.75 | |
150 | 220° | - | 97.44 | √ | 0.75 | |
150 | 120° | 50 | 98.30 | √ | 0.75 | |
150 | 120° | 40 | 98.24 | √ | 0.75 | |
150 | 120° | 30 | 98.50 | √ | 0.50 | |
0.40 | 10 | 50° | - | 83.51 | √ | 0.50 |
150 | 50° | - | 84.19 | √ | 0.75 | |
290 | 50° | -- | 84.89 | √ | 1.00 | |
150 | 120° | - | 83.17 | √ | 0.75 | |
150 | 180° | - | 83.85 | √ | 1.50 | |
150 | 220° | - | 84/89 | √ | 0.75 | |
150 | 120° | 50 | 85.24 | √ | 0.75 | |
150 | 120° | 40 | 83.85 | √ | 0.75 | |
150 | 120° | 30 | 84.53 | √ | 0.75 |
fps (Hz) | Distance (km) | SNR (dB) | k | R | T (ms) | |
---|---|---|---|---|---|---|
7.00 | 10 | 50° | - | 0.29 | √ | 29.50 |
150 | 50° | - | 0.27 | √ | 31.75 | |
290 | 50° | -- | 0.29 | √ | 32.00 | |
150 | 120° | - | 0.29 | √ | 23.50 | |
150 | 180° | - | 0.12 | √ | 12.75 | |
150 | 220° | - | 0.21 | √ | 33.00 | |
150 | 120° | 50 | 0.29 | √ | 23.50 | |
150 | 120° | 40 | 0.29 | √ | 23.50 | |
150 | 120° | 30 | 0.29 | √ | 23.50 | |
0.40 | 10 | 50° | - | 0.28 | √ | 30.25 |
150 | 50° | - | 0.27 | √ | 32.50 | |
290 | 50° | -- | 0.29 | √ | 32.50 | |
150 | 120° | - | 0.28 | √ | 36.00 | |
150 | 180° | - | 0.27 | √ | 8.50 | |
150 | 220° | - | 0.29 | √ | 35.75 | |
150 | 120° | 50 | 0.28 | √ | 35.50 | |
150 | 120° | 40 | 0.24 | √ | 35.00 | |
150 | 120° | 30 | 0.27 | √ | 36.25 |
fps (Hz) | Distance (km) | SNR (dB) | DI | R | T (ms) | |
---|---|---|---|---|---|---|
7.00 | 10 | 50° | - | 0.92 | √ | 0.50 |
150 | 50° | - | 0.12 | √ | 1.25 | |
290 | 50° | -- | 0.33 | √ | 1.25 | |
150 | 120° | - | - | × | - | |
150 | 180° | - | 0.04 | √ | 0.75 | |
150 | 220° | - | 0.09 | √ | 0.75 | |
150 | 120° | 50 | - | × | - | |
150 | 120° | 40 | - | × | - | |
150 | 120° | 30 | - | × | - | |
0.40 | 10 | 50° | - | 1.33 | √ | 0.75 |
150 | 50° | - | 0.19 | √ | 1.00 | |
290 | 50° | -- | 0.49 | √ | 1.50 | |
150 | 120° | - | 0.33 | √ | 1.00 | |
150 | 180° | - | - | × | - | |
150 | 220° | - | 0.02 | √ | 1.00 | |
150 | 120° | 50 | - | × | - | |
150 | 120° | 40 | - | × | - | |
150 | 120° | 30 | - | × | - |
Disturbance | Fs (kHz) | |
---|---|---|
Power swing | 1 | 88.51 |
2 | 89.42 | |
4 | 88.06 | |
8 | 88.11 | |
Fault | 1 | 34.25 |
2 | 35.28 | |
4 | 36.10 | |
8 | 33.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yang, Q.; Li, X.; Zhou, W. A Method of Discriminating Between Power Swings and Faults Based on Principal Component Analysis. Appl. Sci. 2025, 15, 2867. https://doi.org/10.3390/app15052867
Wang H, Yang Q, Li X, Zhou W. A Method of Discriminating Between Power Swings and Faults Based on Principal Component Analysis. Applied Sciences. 2025; 15(5):2867. https://doi.org/10.3390/app15052867
Chicago/Turabian StyleWang, Hao, Qi Yang, Xiaopeng Li, and Wenyue Zhou. 2025. "A Method of Discriminating Between Power Swings and Faults Based on Principal Component Analysis" Applied Sciences 15, no. 5: 2867. https://doi.org/10.3390/app15052867
APA StyleWang, H., Yang, Q., Li, X., & Zhou, W. (2025). A Method of Discriminating Between Power Swings and Faults Based on Principal Component Analysis. Applied Sciences, 15(5), 2867. https://doi.org/10.3390/app15052867