Perceived Brightness and Resolution of Holographic Augmented Reality Retinal Scan Glasses
<p>(<b>a</b>) BML500P RS glasses prototype with light engine in the right temple. (<b>b</b>) Transparent holographic optical element embedded in the right spectacle lens.</p> "> Figure 2
<p>Beam paths of a single pixel for a Lambertian display (<b>top</b>) and an RS display (<b>bottom</b>). Without an aperture (<b>left</b>), all light rays hitting the lens contribute to the luminous flux on the retina. When the human pupil acts as an aperture (<b>right</b>), the total luminous flux is reduced for a Lambertian display but not for an RS display as long as the narrow RS beam (diameter < 0.5 mm) fully passes through the pupil.</p> "> Figure 3
<p>Beam paths of a single pixel entering the eye for a Lambertian display (<b>top</b>) and an RS display (<b>bottom</b>). An ideal cornea and lens (<b>left</b>) focus light from a single pixel onto a narrow point on the retina. Aberrations of the cornea and lens (<b>middle</b>) or an out-of-focus retinal plane in myopia or hyperopia (<b>right</b>) have a much smaller impact on the focus and perceived resolution of an RS image.</p> "> Figure 4
<p>(<b>a</b>) Chinrest in front of LED monitor displaying an even green background. (<b>b</b>) LED monitor seen through right spectacle lens with embedded HOE. (<b>c</b>) Red rectangle stimulus from glasses on green background seen through right spectacle lens. (<b>d</b>) Trial stimulus with horizontal red lines, green background. (<b>e</b>) Trial stimulus with vertical red lines, green background. (<b>f</b>) Trial stimulus with horizontal green lines, green background. (<b>g</b>) Trial stimulus with green horizontal lines, red background. (<b>h</b>) Trial stimulus with blue horizontal lines, orange background.</p> "> Figure 5
<p>RS luminance <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">L</mi> <mrow> <mi>RS</mi> </mrow> </msub> </mrow> </semantics></math> and RS ambient contrast ratio <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ACR</mi> </mrow> <mrow> <mi>RS</mi> </mrow> </msub> </mrow> </semantics></math> for ambient luminance <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">A</mi> </msub> </mrow> </semantics></math> from 1 to 10,000 cd/m<sup>2</sup> and corresponding pupil diameters <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math>. Radiant fluxes <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Φ</mi> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math>, average wavelengths <math display="inline"><semantics> <mrow> <msub> <mrow> <mover> <mi mathvariant="sans-serif">λ</mi> <mo>¯</mo> </mover> </mrow> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math>, field of view angles <math display="inline"><semantics> <mi mathvariant="sans-serif">α</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="sans-serif">β</mi> </semantics></math>, and combiner transparency <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mi mathvariant="normal">C</mi> </msub> </mrow> </semantics></math> are constant.</p> "> Figure 6
<p>Sigmoidal psychometric curves for perceived resolution of horizontal and vertical lines.</p> "> Figure 7
<p>Sigmoidal psychometric curves for perceived resolution with different stimulus colors.</p> "> Figure 8
<p>Sigmoidal psychometric curves for perceived resolution with different stimulus brightness.</p> "> Figure 9
<p>Sigmoidal psychometric curves for perceived resolution with different stimulus and background color combinations.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Retinal Scan Glasses
2.1.1. Brightness in Retinal Raster Scanning
2.1.2. Focus and Resolution in Retinal Raster Scanning
2.2. Perceived Resolution Study Design
3. Results
3.1. Retinal Scan Luminance and Ambient Contrast Ratio
3.2. Perceived Resolution Study Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RS | Retinal Scan |
HOE | Holographic Optical Element |
ACR | Ambient Contrast Ratio |
Appendix A
Symbol | Meaning |
---|---|
Area of human pupil | |
Area of image on retina | |
Area of image on retina for a Lambertian system | |
Area of image on retina for a retinal scan system | |
Area of a light source (e.g., area of a display panel) | |
Ambient contrast ratio of a retinal scan system | |
Diameter of human pupil in millimeters | |
Retinal illuminance | |
Retinal illuminance from a Lambertian system | |
Retinal illuminance from a retinal scan system | |
Focal distance of the human eye | |
Luminous efficacy constant | |
Luminance | |
Ambient luminance | |
Luminance of a Lambertian system | |
Luminance of a retinal scan system | |
Distance between human pupil and a Lambertian display | |
Luminous efficiency function | |
First projection angle of a retinal scan system | |
Second projection angle of a retinal scan system | |
Wavelength | |
Average wavelength of blue retinal scan system primary | |
Average wavelength of green retinal scan system primary | |
Average wavelength of red retinal scan system primary | |
Transparency of retinal scan system optical combiner | |
Radiant flux from retinal scan system | |
Radiant flux from blue retinal scan system primary | |
Radiant flux from green retinal scan system primary | |
Radiant flux from red retinal scan system primary | |
Luminous flux | |
Luminous flux from a Lambertian system | |
Luminous flux from a retinal scan system | |
Solid angle |
References
- Suzuki, M.; Ishimoto, M.; Sugawara, M.; Hasegawa, K.; Miyauchi, H.; Teshima, N.; Yasui, K. Every Aspect of Advanced Retinal Imaging Laser Eyewear: Principle, Free Focus, Resolution, Laser Safety, and Medical Welfare Applications. In Proceedings of the MOEMS and Miniaturized Systems XVII, San Francisco, CA, USA, 22 February 2018; Piyawattanametha, W., Park, Y.-H., Zappe, H., Eds.; SPIE: San Francisco, CA, USA, 2018; p. 22. [Google Scholar]
- Wilm, T.; Hofmann, J.; Fiess, R.; Höckh, S.; Stork, W. Immersion-Based Holographic Wave Front Printer Setup for Volume Holographic Retinal Projection Elements. In Proceedings of the Holography: Advances and Modern Trends VII, Online, 7 May 2021; Fimia, A., Hrabovský, M., Sheridan, J.T., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 12. [Google Scholar]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic Near-Eye Displays for Virtual and Augmented Reality. ACM Trans. Graph. 2017, 36, 85. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Fidler, F.; Balbekova, A.; Noui, L.; Anjou, S.; Werner, T.; Reitterer, J. Laser Beam Scanning in XR: Benefits and Challenges. In Proceedings of the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) II, Online, 28 March 2021; Kress, B.C., Peroz, C., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 1. [Google Scholar]
- Park, J.-H.; Lee, B. Holographic Techniques for Augmented Reality and Virtual Reality Near-Eye Displays. Light Adv. Manuf. 2022, 3, 9. [Google Scholar] [CrossRef]
- Campbell, F.W.; Green, D.G. Optical and Retinal Factors Affecting Visual Resolution. J. Physiol. 1965, 181, 576–593. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, E. Bosch Gets Smartglasses Right with Tiny Eyeball Lasers. IEEE Spectrum, 4 February 2020. [Google Scholar]
- Peirce, J.; Gray, J.R.; Simpson, S.; MacAskill, M.; Höchenberger, R.; Sogo, H.; Kastman, E.; Lindeløv, J.K. PsychoPy2: Experiments in Behavior Made Easy. Behav. Res. 2019, 51, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Pelli, D.G.; Bex, P. Measuring Contrast Sensitivity. Vis. Res. 2013, 90, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.T.L.; Tjan, B.S. Spatial-Frequency and Contrast Properties of Reading in Central and Peripheral Vision. J. Vis. 2009, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Dressier, M.; Rassotv, B. Neural Contrast Sensitivity Measurements with a Laser Interference System for Clinical and Screening Application. Investig. Ophthalmol. Vis. Sci. 1981, 21, 737–744. [Google Scholar]
- Bass, M.; Enoch, J.M.; Lakshminarayanan, V. Handbook of Optics. Volume III, Vision and Vision Optics, 3rd ed.; McGraw-Hill: New York, NY, USA, 2010; ISBN 978-1-61583-165-4. [Google Scholar]
- CIE JTC 2 CIE 018:2019; The Basis of Physical Photometry. 3rd ed. International Commission on Illumination (CIE): Vienna, Austria, 2019.
- Kelbsch, C.; Strasser, T.; Chen, Y.; Feigl, B.; Gamlin, P.D.; Kardon, R.; Peters, T.; Roecklein, K.A.; Steinhauer, S.R.; Szabadi, E.; et al. Standards in Pupillography. Front. Neurol. 2019, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.B.; Yellott, J.I. A Unified Formula for Light-Adapted Pupil Size. J. Vis. 2012, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Stanley, P.A.; Davies, A.K. The Effect of Field of View Size on Steady-state Pupil Diameter. Ophthalmic Physiol. Opt. 1995, 15, 601–603. [Google Scholar] [CrossRef] [PubMed]
- Thibos, L.N.; Lopez-Gil, N.; Bradley, A. What Is a Troland? J. Opt. Soc. Am. A 2018, 35, 813. [Google Scholar] [CrossRef] [PubMed]
- Caltrider, D.; Gupta, A.; Tripathy, K. Evaluation of Visual Acuity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- IEC 61947-2:2001; International Electrotechnical Commission (IEC). Electronic Projection—Measurement and Documentation of Key Performance Criteria—Part 2: Variable Resolution Projectors. International Electrotechnical Commission: Geneva, Switzerland, 2001.
Trial | Trial Parameters | Number of Participants That Passed Staircase Resolution Level Horizontal [H] and Vertical [V] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Glasses | Monitor | LRS [cd/m2] | ACRRS | 4H 3.59 c/d | 3H 4.78 c/d | 2H 7.17 c/d | 1H 14.35 c/d | 4V 4.00 c/d | 3V 5.34 c/d | 2V 8.01 c/d | 1V 16.01 c/d | |
1 | red | black | 83 | 92 | 20 | 17 | 0 | 0 | 20 | 17 | 0 | 0 |
2 | red | green | 83 | 3 | 20 | 19 | 0 | 0 | 20 | 18 | 0 | 0 |
3 | red | red | 83 | 3 | 20 | 19 | 0 | 0 | 19 | 19 | 0 | 0 |
4 | green | black | 929 | 1032 | 20 | 20 | 4 | 0 | 20 | 20 | 0 | 0 |
5 | green | black | 83 | 92 | 20 | 20 | 5 | 0 | 20 | 20 | 0 | 0 |
6 | green | red | 929 | 38 | 20 | 20 | 5 | 0 | 20 | 20 | 0 | 0 |
7 | green | red | 83 | 3 | 20 | 20 | 6 | 0 | 20 | 20 | 0 | 0 |
8 | green | green | 929 | 38 | 20 | 20 | 6 | 0 | 20 | 20 | 0 | 0 |
9 | green | green | 83 | 3 | 20 | 20 | 5 | 0 | 20 | 20 | 0 | 0 |
10 | blue | black | 91 | 101 | 20 | 20 | 4 | 0 | 20 | 20 | 0 | 0 |
11 | blue | black | 83 | 92 | 20 | 20 | 5 | 0 | 20 | 20 | 2 | 0 |
12 | blue | orange | 91 | 4 | 20 | 20 | 3 | 0 | 20 | 20 | 1 | 0 |
13 | blue | orange | 83 | 3 | 20 | 20 | 4 | 0 | 20 | 20 | 1 | 0 |
14 | blue | blue | 91 | 4 | 20 | 20 | 5 | 0 | 20 | 20 | 1 | 0 |
15 | blue | blue | 83 | 3 | 20 | 20 | 5 | 0 | 20 | 20 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutz, M.; Neuberger, P.; Pick, S.; Straßer, T. Perceived Brightness and Resolution of Holographic Augmented Reality Retinal Scan Glasses. Appl. Sci. 2025, 15, 1540. https://doi.org/10.3390/app15031540
Rutz M, Neuberger P, Pick S, Straßer T. Perceived Brightness and Resolution of Holographic Augmented Reality Retinal Scan Glasses. Applied Sciences. 2025; 15(3):1540. https://doi.org/10.3390/app15031540
Chicago/Turabian StyleRutz, Maximilian, Pia Neuberger, Simon Pick, and Torsten Straßer. 2025. "Perceived Brightness and Resolution of Holographic Augmented Reality Retinal Scan Glasses" Applied Sciences 15, no. 3: 1540. https://doi.org/10.3390/app15031540
APA StyleRutz, M., Neuberger, P., Pick, S., & Straßer, T. (2025). Perceived Brightness and Resolution of Holographic Augmented Reality Retinal Scan Glasses. Applied Sciences, 15(3), 1540. https://doi.org/10.3390/app15031540