Schumann Resonances and the Human Body: Questions About Interactions, Problems and Prospects
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Earth’s Magnetic Field and Schumann Resonance Frequencies: Origin and Essence
3.2. Magnetoelectrochemical Theory of Metabolism as a Fundamental Theoretical Basis for Justifying the Interaction of the Human Body with the Magnetic Field of the Earth
3.3. The Concept of Synchronization of the Human Body and the Earth’s Magnetic Field in the Schumann Resonance Frequency Spectrum
3.4. Studying the Influence of Schumann Resonance Frequencies on the Functioning of the Internal Organs of the Human Body
3.4.1. Results of Studying the Interaction of Schumann Resonances with the Nervous System of the Human Body
3.4.2. Results of Studying the Interaction of Schumann Resonances with the Cardiovascular System of the Human Body
3.4.3. Results of Studying the Interaction of Schumann Resonances with the Urinary System of the Human Body
3.4.4. Results of Studying the Interaction of Schumann Resonances with the Skin of the Human Body
3.5. Conceptualization of the Mechanisms of Interaction Between the Human Body and the Magnetic Field of the Earth at Schumann Resonance Frequencies
3.6. Is There a Cause-And-Effect Relationship Between the Human Body and the Electromagnetic Field of the Earth at Schumann Resonance Frequencies?
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, P.C.W. The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics; Cambridge University Press: Cambridge, UK, 2010; pp. 1–176. [Google Scholar]
- Hübsch, T. Advanced Concepts in Particle and Field Theory; Cambridge University Press: Cambridge, UK, 2023; pp. 1–575. [Google Scholar]
- Mintser, O.P.; Potyazhenko, M.M.; Nevoit, G.V. Magnetoelectrochemical Theory of Metabolism; Interservice: Kyiv, Ukraine, 2021; Volume 1, pp. 1–352. (In Ukranian) [Google Scholar]
- Gupta, V.P. Principles and Applications of Quantum Chemistry; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Nevoit, G.; Bumblyte, I.A.; Potyazhenko, M.; Mintser, O.; Vainoras, A. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: The role of biophotons. J. Complex. Health Sci. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Mintser, O.P.; Potiazhenko, M.M.; Vainoras, A.; Bumblyte, I.A.; Nevoit, G.V. Informational analytical representations of the Magnetoelectrochemical Theory of metabolism, life and health. Ukr. J. Med. Biol. Sports 2022, 6, 232–246. [Google Scholar]
- Mintser, O.; Potiazhenko, M.; Nevoit, G. Informational analytical representations of the magneto-electrochemical theory of life and health. J. Appl. Interdiscip. Res. 2023, 2, 91–98. [Google Scholar] [CrossRef]
- Pophof, B.; Henschenmacher, B.; Kattnig, D.R.; Kuhne, J.; Vian, A.; Ziegelberger, G. Biological Effects of Electric, Magnetic, and Electromagnetic Fields from 0 to 100 MHz on Fauna and Flora: Workshop Report. Health Phys. 2023, 124, 39–52. [Google Scholar] [CrossRef]
- Benediktova, K.; Adamkova, J.; Svoboda, J.; Painter, M.S.; Bartos, L.; Novakova, P.; Vynikalova, L.; Hart, V.; Phillips, J.; Burda, H. Magnetic alignment enhances homing efficiency of hunting dogs. eLife 2020, 9, e55080. [Google Scholar] [CrossRef]
- Bertea, C.M.; Narayana, R.; Agliassa, C.; Rodgers, C.T.; Maffei, M.E. Geomagnetic field (GMF) and plant evolution: Investigating the effects of GMF reversal on Arabidopsis thaliana development and gene expression. J. Vis. Exp. 2015, 105, 53286. [Google Scholar] [CrossRef]
- BfS. Internationaler Workshop zum Einfluss Elektrischer, Magnetischer und Elektromagnetischer Felder auf die Belebte Umwelt—Vorhaben. 2020. 3619I02420. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/umid_2202_221111_clean_dnk61_gw_02.pdf (accessed on 22 November 2024). (In German).
- Burda, H.; Begall, S.; Hart, V.; Malkemper, E.P.; Painter, M.S.; Phillips, J.B. Magnetoreception in mammals. In The Senses: A Comprehensive Reference; Fritzsch, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 421–444. [Google Scholar]
- Agliassa, C.; Narayana, R.; Bertea, C.M.; Rodgers, C.T.; Maffei, M.E. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018, 39, 361–374. [Google Scholar] [CrossRef]
- Agliassa, C.; Narayana, R.; Christie, J.M.; Maffei, M.E. Geomagnetic field impacts on cryptochrome and phytochrome signaling. J. Photochem. Photobiol. 2018, 185, 32–40. [Google Scholar] [CrossRef]
- Bartos, P.; Netusil, R.; Slaby, P.; Dolezel, D.; Ritz, T.; Vacha, M. Weak radiofrequency fields affect the insect circadian clock. J. R. Soc. Interface 2019, 16, 20190285. [Google Scholar] [CrossRef]
- Kostova, D.; Richter, P.; Van Vliet, G.; Mahar, M.; Moolenaar, R.L. The Role of Noncommunicable Diseases in the Pursuit of Global Health Security. Health Secur. 2021, 19, 288–301. [Google Scholar] [CrossRef]
- Mikkelsen, B.; Williams, J.; Rakovac, I.; Wickramasinghe, K.; Hennis, A.; Shin, H.R.; Farmer, M.; Weber, M.; Berdzuli, N.; Borges, C.; et al. Life course approach to prevention and control of non-communicable diseases. BMJ 2019, 364, l257. [Google Scholar] [CrossRef] [PubMed]
- Kundu, J.; Chakraborty, R. Socio-economic inequalities in burden of communicable and non-communicable diseases among older adults in India: Evidence from Longitudinal Ageing Study in India, 2017–2018. PLoS ONE 2023, 18, e0283385. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.A.S.; Mahrouseh, N.; Gabrani, J.; Charalampous, P.; Cuschieri, S.; Grad, D.A.; Unim, B.; Mechili, E.A.; Chen-Xu, J.; Devleesschauwer, B.; et al. Inequalities in the burden of non-communicable diseases across European countries: A systematic analysis of the Global Burden of Disease 2019 study. Int. J. Equity Health 2023, 22, 140. [Google Scholar] [CrossRef]
- The Lancet. Non-communicable diseases: What now? Lancet 2022, 399, 1201. [Google Scholar] [CrossRef] [PubMed]
- Hyder, A.A.; Rylance, S.; Al Saegh, A.; Feigin, V.L.; Kataria, I.; Laatikainen, T.; Lee, L.; Mahendradhata, Y.; Marten, R.; Mikkelsen, B.; et al. WHO NCD R&I TAG. Strengthening evidence to inform health systems: Opportunities for the WHO and partners to accelerate progress on non-communicable diseases. BMJ Glob. Health 2023, 8, e013994. [Google Scholar] [PubMed]
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.who.int/publications/i/item/9789241506236 (accessed on 14 July 2024).
- Gassner, L.; Zechmeister-Koss, I.; Reinsperger, I. National Strategies for Preventing and Managing Non-communicable Diseases in Selected Countries. Front. Public Health 2022, 10, 838051. [Google Scholar] [CrossRef]
- NCD Alliance. The Link Between Food, Nutrition, Diet and Non-Communicable Diseases. Available online: https://ncdalliance.org/sites/default/files/rfiles/WCRFI_NCD_Alliance_Nutrition_ed2.pdf (accessed on 21 October 2024).
- Mintser, O.P.; Semenets, V.V.; Potiazhenko, M.M.; Podpruzhnykov, P.M.; Nevoit, G.V. The study of the electromagnetic component of the human body as a diagnostic indicator in the examination of patients with Non-Communicable diseases: Problem statement. Wiadomości Lek. 2020, 6, 1279–1283. [Google Scholar] [CrossRef]
- Rouleau, N.; Dotta, B.T. Electromagnetic fields as structure-function zeitgebers in biological systems: Environmental orchestrations of morphogenesis and consciousness. Front. Integr. Neurosci. 2014, 8, 84. [Google Scholar] [CrossRef]
- Constable, C. Earth’s Electromagnetic Environment. Surv. Geophys. 2016, 37, 27–45. [Google Scholar] [CrossRef]
- Popp, F.-A.; Warnke, U.; Konig, H.L.; Peschka, W.; Becker, G.; Breithaup, H.; Fischer, H.A.; Kroy, W.; Rogest, V.J.; Ruth, B.; et al. Electromagnetic Bio-Information, 2nd ed.; Urban & Schwarzenberg: Munchen, Wien, Germany, 1989; pp. 1–259. [Google Scholar]
- Kolemann, L.; Hervé, C.; Terry, T.; Fasma, C.I. Electromagnetic Fields to Sustain Life on Earth and Beyond. In Proceedings of the 72 International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October 2021. [Google Scholar]
- Ahlbom, A.; Feychting, M. Electromagnetic radiation: Environmental pollution and health. Br. Med. Bull. 2003, 68, 157–165. [Google Scholar] [CrossRef]
- Gallagher, D.L. Discovering the Plasmasphere; Space Plasma Physics, NASA Marshall Space Flight Center: Huntsville, AL, USA, 2015. [Google Scholar]
- Darrouzet, F.; Keyser, J.; Pierrard, V. (Eds.) The Earth’s Plasmasphere; Springer: New York, NY, USA, 2009; pp. 1–296. [Google Scholar]
- Aplin, K.L. Atmospheric electrification in the Solar System. Surv. Geophys. 2006, 27, 63–108. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Hayakawa, M. Resonances in the Earth–Ionosphere Cavity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Volland, H. Handbook of Atmospheric Electrodynamics; CRC Press: Boca Raton, FL, USA, 1995; pp. 1–277. [Google Scholar]
- Rodríguez-Camacho, J.; Salinas, A.; Carrión, M.C.; Portí, J.; Fornieles-Callejón, J.; Toledo-Redondo, S. Four-year study of the Schumann resonance regular variations using the Sierra Nevada station ground-based magnetometers. J. Geophys. Res. Atmos. 2022, 127, e2021JD036051. [Google Scholar] [CrossRef]
- Foldes, R.; Del Corpo, A.; Napoletano, G. Automatic detection of field line resonance frequencies in the Earth’s plasmasphere. Rend. Fis. Acc. Lincei. 2023, 34, 1077–1088. [Google Scholar] [CrossRef]
- Polk, C. Schumann Resonances. In CRC Handbook of Atmospherics; CRC Press, Inc.: Boca Raton, FL, USA, 1982; Volume 1, pp. 111–177. [Google Scholar]
- Simões, F.; Grard, R.; Hamelin, M.; López-Moreno, J.J.; Schwingenschuh, K.; Béghin, C.; Berthelier, J.-J.; Lebreton, J.-P.; Molina-Cuberos, G.J.; Tokano, T. The Schumann resonance: A tool for exploring the atmospheric environment and the subsurface of the planets and their satellites. Icarus 2008, 194, 30–41. [Google Scholar] [CrossRef]
- Besser, B.P. Synopsis of the historical development of Schumann resonances. Radio. Sci. 2007, 42, RS2S02. [Google Scholar] [CrossRef]
- Schumann, W.O. Uber die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenhulle umgeben ist. Z. Naturforsch. 1952, 7a, 149. [Google Scholar] [CrossRef]
- Schumann, W.O. Uber die Dampfung der elektromagnetischen Eigenschwingungen des Systems Erde-Luft-Ionosphare. Z. Naturforsch. 1952, 7a, 250. [Google Scholar] [CrossRef]
- Price, C. ELF electromagnetic waves from lightning: The Schumann resonances. Atmosphere 2016, 7, 116. [Google Scholar] [CrossRef]
- Price, C.; Melnikov, A. Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters. J. Atmos. Sol.—Terr. Phys. 2004, 66, 1179–1185. [Google Scholar] [CrossRef]
- Guglielmi, A.V.; Pokhotelov, O.A. Geoelectromagnetic Waves; Instituteof Physics Publishing: London, UK, 1996. [Google Scholar]
- Rawer, K. Modelling of Neutral and Ionized Atmospheres. In Encyclopaedia of Physics; Springer: New York, NY, USA, 1984; Volume 49/7, pp. 223–250. [Google Scholar]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2005; pp. 1–687. [Google Scholar]
- Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M. Global frequency and distribution oflightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. 2003, 108, ACL4-1–ACL4-15. [Google Scholar] [CrossRef]
- Koloskov, A.V.; Nickolaenko, A.P.; Yampolsky, Y.M.; Hall, C.; Budanov, O.V. Variations of global thunderstorm activity derivedfrom the long-term Schumann resonance monitoring in the Antarctic and in the Arctic. J. Atmos. Sol.—Terr. Phys. 2020, 201, 105231. [Google Scholar] [CrossRef]
- Nevoit, G.; Vlasova, O.; Ryabushko, M.; Zviagolska, I.; Moisieieva, N.; Potyazhenko, M. Magnetoelectrochemical theory of metabolism and life: What is it, when is it needed and what to expect from it for medicine and reflexology (literature review). Fitoterapiia. Chasopys—Phytotherapy. J. 2024, 2, 47–62. [Google Scholar] [CrossRef]
- Paganini, P. Fundamentals of Particle Physics: Understanding the Standard Model; Cambridge University Press: Cambridge, UK, 2023; pp. 1–550. [Google Scholar]
- Davydov, A.S. Biology and Quantum Mechanics; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Davydov, A.S. Solitons and energy transfer along protein molecules. J. Theor. Biol. 1977, 66, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Davydov, A.S. The theory of contraction of proteins under their excitation. J. Theor. Biol. 1973, 38, 559–569. [Google Scholar] [CrossRef]
- Paolis, L.D.; Francini, R.; Davoli, I.; De Matteis, F.; Scordo, A.; Clozza, A.; Grandi, M.; Pace, E.; Curceanu, C.; Grigolini, P.; et al. Biophotons: A Hard Problem. Appl. Sci. 2024, 14, 5496. [Google Scholar] [CrossRef]
- Nevoit, G.; Filyunova, O.; Kitura, O.; Mintser, O.; Potyazenko, M.; Bumblyte, I.A.; Vainoras, A. Biophotonics and reflexology: Conceptualization of the role of biophotonic signaling. Fitoterapiia. Chasopys—Phytotherapy. J. 2024, 3, 62–78. [Google Scholar] [CrossRef]
- Nevoit, G.; Bumblyte, I.A.; Korpan, A.; Mintser, O.; Potyazhenko, M.; Iliev, M.T.; Vainoras, A.; Ignatov, I. The biophoton emission in biotechnological research—Part 1. Ukr. J. Phys. 2024, 69, 190–206. [Google Scholar] [CrossRef]
- Nevoit, G.; Potiazhenko, M.; Mintser, O.; Babintseva, L. Electro-photonic Emission Analysis and Hardware-software Recording of Heart Rate Variability during an Objective Structured Clinical Examination. World Med. Biol. 2020, 74, 107–111. [Google Scholar] [CrossRef]
- Nevoit, G.; Bumblyte, I.A.; Potyazhenko, M.; Mintser, O. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: The role of cell membranes. J. Complex. Health Sci. 2022, 5, 22–34. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life?: With Mind and Matter and Autobiographical Sketches; Cambridge University Press: Cambridge, UK, 1992; pp. 1–194. [Google Scholar]
- Zheligovskaya, E.A.; Bulienkov, N.A. Structures consisting of helices 30/11 and their possible realization in aqueous systems. Phys. Wave Phenom. 2021, 2, 141–154. [Google Scholar] [CrossRef]
- Nevoit, G.; Bumblyte, I.A.; Potyazhenko, M.; Mintser, O. Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: The role of water. J. Complex. Health Sci. 2022, 2, 45–57. [Google Scholar] [CrossRef]
- Zamir, A.; Li, G.; Chase, K.; Moskovitch, R.; Sun, B.; Zaritsky, A. Emergence of synchronized multicellular mechanosensing from spatiotemporal integration of heterogeneous single-cell information transfer. Cell Syst. 2022, 13, 711–723.e7. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J. Unrolling Time: Christiaan Huygens and the Mathematics of Nature; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Manrubia, S.C.; Mikhailov, A.S.; Zanette, D.H. Emergence of Dynamical Order. Synchronization Phenomena in Complex Systems; World Scientific Lecture Notes in Complex Systems; World Scientific: Singapore, 2004; pp. 1–360. [Google Scholar]
- Goushcha, A.; Hushcha, T.; Christophorov, L.; Goldsby, M. Self-Organization and Coherency in Biology and Medicine. Open J. Biophys. 2014, 4, 119–146. [Google Scholar] [CrossRef]
- Persinger, M.A. ELF and VLF Electromagnetic Field Effects; Plenum Press: New York, NY, USA, 1974. [Google Scholar]
- Hart, D.A. The Influence of Magnetic Fields, Including the Planetary Magnetic Field, on Complex Life Forms: How Do Biological Systems Function in This Field and in Electromagnetic Fields? Biophysica 2024, 4, 1–21. [Google Scholar] [CrossRef]
- Mohamed, H.M.I.; Elgeme, N.A. Propagation of Electromagnetic Waves in Seawate. Al Acad. J. Basic Appl. Sci. (AJBAS) 2022, 4. Available online: https://www.researchgate.net/publication/360901902_Propagation_of_Electromagnetic_Waves_in_Seawater (accessed on 22 November 2024).
- Benzi, R.; Sutera, A.; Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A Math. Gen. 1981, 14, L453–L457. [Google Scholar] [CrossRef]
- Schumann, W.O.; Konig, H. Uber die Beobachtung von Atmospherics bei geringsten Frequenzen. Z. Naturwissensch. 1954, 41, 283. [Google Scholar]
- Hamer, J.R. Biological Entrainment of the Human Brain by Low Frequency Radiation; Northrop Space Labs NSL: New York, NY, USA, 1965; pp. 65–199. [Google Scholar]
- Wever, R. Einfluss schwacher elektromagnetischer Felder auf die circadiane Periodik des Menschen. Naturwissenschaften 1968, 55, 29–32. [Google Scholar] [CrossRef]
- Wever, R. Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int. Biometeorol. 1973, 17, 227–232. [Google Scholar] [CrossRef]
- Kirmaier, N.; Konig, H.-L. Einfluß von Impulsmodulierten Elektrischen Feldern auf Probanden im Fahrsimulator, 2nd ed.; Bioklimatol Wirk Luftelektr Faktoren: Münich, Germany, 1970. [Google Scholar]
- Gavalas, R.J.; Walter, D.O.; Hamer, J.; Ross, A.W. Effect of low-level, low frequency electric fields on EEG and behavior in Macaca Nemestrina. Brain Res. 1970, 18, 491–501. [Google Scholar] [CrossRef]
- Konig, H.L. Unsichtbare Umwelt; Eigenverlag Herbert L. Konig: Munchen, Germany, 1977. [Google Scholar]
- Franz, R.C.; Nemzek, R.J.; Winckler, J.R. Television image of a large upward electrical discharge above a thunderstorm system. Science 1990, 249, 48. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.R. The Schumann resonance: A global tropical thermometer. Science 1992, 256, 1184. [Google Scholar] [CrossRef] [PubMed]
- Sentman, D.D. Schumann Resonances. In Handbook of Atmospheric Electrodynamics; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Volume 1, p. 267. [Google Scholar]
- Schlegel, K.; Fullekrug, M. Schumann resonance parameter changes during high-energy particle precipitation. J. Geophys. Res. 1999, 104, 10111. [Google Scholar]
- Fullekrug, M.; Constable, S. Global triangulation of intense lightning discharges. Geophys. Res. Lett. 2000, 27, 333. [Google Scholar] [CrossRef]
- Price, C. Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature 2000, 406, 290. [Google Scholar] [CrossRef]
- Pasko, V.P.; Stanley, M.A.; Mathews, J.D.; Inan, U.S.; Wood, T.G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 2002, 416, 152. [Google Scholar] [CrossRef]
- Fullekrug, M.; Fraser-Smith, A.C.; Schlegel, K. Global ionospheric D-layer height monitoring. Eur. Phys. Lett. 2002, 59, 626. [Google Scholar] [CrossRef]
- Vigário, R.; Oja, E. Independence: A new criterion for the analysis of the electromagnetic fields in the global brain? Neural Netw. 2000, 13, 891–907. [Google Scholar] [CrossRef]
- Rodríguez-Camacho, J.; Fornieles, J.; Carrión, M.C.; Portí, J.; Toledo-Redondo, S.; Salinas, A. On the need of a unified methodology for processing Schumann resonance measurements. J. Geophys. Res. Atmos. 2018, 123, 13277–13290. [Google Scholar] [CrossRef]
- Mandea, M.; Purucker, M. The Varying Core Magnetic Field from a Space Weather Perspective. Space Sci. Rev. 2017, 214, 11. [Google Scholar] [CrossRef]
- World Magnetic Model (WMM). Available online: https://www.ncei.noaa.gov/products/world-magnetic-model (accessed on 25 November 2024).
- Tsyganenko, N.A. Empirical Magnetic Field Models for the Space Weather Program. Space Weather. 2001, 125, 273–280. [Google Scholar]
- Popova, E.; Popov, A.I.; Sagdeev, R. Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather. Mathematics 2022, 10, 1655. [Google Scholar] [CrossRef]
- Welling, D.T.; Ridley, A.J. Validation of SWMF magnetic field and plasma. Space Weather. 2010, 8, 2530–2540. [Google Scholar] [CrossRef]
- Singer, H.; Matheson, L.; Grubb, R.; Newman, A.; Bouwer, D. Monitoring space weather with the GOES magnetometers. In Proceedings of the GOES-8 and Beyond, Denver, CO, USA, 4–9 August 1996. [Google Scholar]
- Mandea, M.; Chambodut, A. Geomagnetic Field Processes and Their Implications for Space Weather. Surv. Geophys. 2020, 41, 1611–1627. [Google Scholar] [CrossRef]
- Ringler, A.T.; Anthony, R.E.; Wilson, D.C.; Claycomb, A.C.; Spritzer, J. Magnetic Field Variations in Alaska: Recording Space Weather Events on Seismic Stations in Alaska. Bull. Seismol. Soc. Am. 2020, 110, 2530–2540. [Google Scholar] [CrossRef]
- Matzka, J.; Stolle, C.; Yamazaki, Y.; Bronkalla, O.; Morschhauser, A. The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather 2021, 19, e2020SW002641. [Google Scholar] [CrossRef]
- The Global Coherence Monitoring System. Heart Math Institute. Available online: https://www.heartmath.org/gci/gcms/ (accessed on 25 November 2024).
- McCraty, R.; Deyhle, A. The global coherence initiative: Investigating the dynamic relationship between people and earth’s energetic systems. Bioelectromagn. Subtle Energy Med. 2015, 2, 411–425. [Google Scholar]
- Timofejeva, I.; McCraty, R.; Atkinson, M.; Alabdulgader, A.A.; Vainoras, A.; Landauskas, M.; Šiaučiūnaitė, V.; Ragulskis, M. Global Study of Human Heart Rhythm Synchronization with the Earth’s Time Varying Magnetic Field. Appl. Sci. 2021, 11, 2935. [Google Scholar] [CrossRef]
- Orinaitė, U.; Petronaitis, D.; Jokimaitis, A.; Landauskas, M.; Ragulskis, M.; Vainoras, A.; McCarty, R.; Atkinson, M.; Plonka, N. Tidal Effects on the Schumann Resonance Amplitudes Recorded by the Global Coherence Monitoring System. Appl. Sci. 2024, 14, 3332. [Google Scholar] [CrossRef]
- Konig, H.L.; Ankermuller, F. Uber den Einfluss besonders niederfrequenter eletrischer Vorgange in der Atmosphare auf den Menschen. Naturwissenschaften 1960, 21, 486–490. [Google Scholar] [CrossRef]
- Konig, H.L.; Krueger, A.P.; Lang, S.; Sonnig, W. Biologic Effects of Environmental Electromagnetism; Springer: New York, NY, USA, 1981. [Google Scholar]
- Nunez, P.L. (Ed.) Towards a physics of neocortex. In Neocortical Dynamics and Human EEG Rhythms; Oxford University: New York, NY, USA, 1995; pp. 68–130. [Google Scholar]
- Nunez, P.L.; Reid, L.; Bickford, R.G. The relationship between head size to alpha frequency with implications to a brain wave model. Electroen. Clin. Neuro. 1978, 44, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Cherry, N. Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar. Nat. Hazard. 2002, 26, 279–331. [Google Scholar] [CrossRef]
- Babayev, E.S.; Allahverdiyeva, A.A. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies. Adv. Space. Res. 2007, 40, 1941–1951. [Google Scholar] [CrossRef]
- Mulligan, B.P.; Hunter, M.D.; Persinger, M.A. Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: Replication of the Azerbaijani studies. Adv. Space Res. 2010, 45, 940–948. [Google Scholar] [CrossRef]
- Saroka, K.S.; Caswell, J.C.; Lapointe, A.; Persinger, M.A. Greater electroencephalographic coherence between left and right temporal lobe structures during increased geomagnetic activity. Neurosci. Lett. 2013, 560, 126–130. [Google Scholar] [CrossRef]
- Saroka, K.S.; Persinger, M.A. Quantitative Evidence for Direct Effects BetweenIonosphere Schumann Resonances and Human Cerebral Cortical Activity. Int. Lett. Che Phys. Astron. 2014, 39, 166–194. [Google Scholar] [CrossRef]
- Pobachenko, S.V.; Kolesnik, A.G.; Borodin, A.S.; Kalyuzhin, V.V. The contingency of parameters of human encephalograms and Schumann Resonance electromagnetic fields revealed in monitoring studies. Biophysics 2006, 51, 480–483. [Google Scholar] [CrossRef]
- Persinger, M.A. Brain electromagnetic activity and lightning: Potentially congruent scale-invariant quantitative properties. Front. Integrat Neurosci. 2012, 6, 19. [Google Scholar] [CrossRef]
- Saroka, K.S.; Vares, D.E.; Persinger, M.A. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko. PLoS ONE 2016, 11, e0146595. [Google Scholar] [CrossRef]
- Persinger, M.A.; Dotta, B.T.; Vares, D.A.E.; Koren, S.A. Shifts in Photon Spectral Power Densities within Schumann (7.7 to 7.8 Hz) Values in Microtubules during Complex Magnetic Field Exposures May Reflect an Information Interface with Universal Energies. Entanglement Open J. Biophys. 2015, 5, 84–95. [Google Scholar] [CrossRef]
- Saroka, K.; Persinger, M. Quantitative Shifts in the Second Harmonic (12–14 Hz) of the Schumann Resonance Are Commensurate with Estimations of the Sleeping Population: Implications of a Causal Relationship. Int. J. Sci. 2016, 2, 102–107. [Google Scholar]
- McCraty, R.; Atkinson, M.; Stolc, V.; Alabdulgader, A.; Vainoras, A.; Ragulskis, M. Synchronization of human autonomic nervous system rhythms with geomagnetic activity in human subjects. Int. J. Environ. Res. Public Health 2017, 14, 770. [Google Scholar] [CrossRef] [PubMed]
- Alabdulgader, A.; McCraty, R.; Atkinson, M.; Dobyns, Y.; Vainoras, A.; Ragulskis, M.; Stolc, V. Long-term study of heart rate variability responses to changes in the solar and geomagnetic environment. Sci. Rep. 2018, 8, 2663. [Google Scholar] [CrossRef] [PubMed]
- Mitsutake, G.; Otsuka, K.; Hayakawa, M.; Sekiguchi, M.; Cornélissen, G.; Halberg, F. Does Schumann resonance affect our blood pressure? Biomed. Pharmacother. 2005, 59, S10–S14. [Google Scholar] [CrossRef]
- Timofejeva, I.; McCraty, R.; Atkinson, M.; Joffe, R.; Vainoras, A.; Alabdulgader, A.; Ragulskis, M. Identification of a group’s physiological synchronization with Earth’s magnetic field. Int. J. Environ. Res. Public Health 2017, 14, 998. [Google Scholar] [CrossRef]
- Qammar, N.W.; Petronaitis, D.; Jokimaitis, A.; Ragulskis, M.; Smalinskas, V.; Ziubryte, G.; Jarusevicius, G.; Vainoras, A.; McCraty, R. Long observation window reveals the relationship between the local earth magnetic field and acute myocardial infarction. Atmosphere 2023, 14, 1234. [Google Scholar] [CrossRef]
- Ricci, Z.; Romagnoli, S.; Ronco, C. Cardiorenal Syndrome. Crit. Care Clin. 2021, 37, 335–347. [Google Scholar] [CrossRef]
- Nevoit, G.; Stankuviene, A.; Jaruševičius, G.; McCraty, R.; Landauskas, M.; Potyazhenko, M.; Bumblyte, I.A.; Vainoras, A. Interconnections between local Schumann resonances and episodes of kidney disease. J. Complex. Health Sci. 2024, 7, 1–18. [Google Scholar] [CrossRef]
- Nevoit, G.; Stankuviene, A.; Jaruševičius, G.; McCraty, R.; Landauskas, M.; Potyazhenko, M.; Bumblyte, I.; Vainoras, A. The search for new pathogenesis of cardiorenal syndrome: The effect of local Schumann resonance on the occurrence of episodes of kidney disease and myocardial infarction. Kidneys 2024, 13, 26–38. [Google Scholar] [CrossRef]
- Ćosić, I.; Cvetković, D.; Fang, O.; Jovanov, E.; Lazoura, H. Human Electrophysiological Signal Responses to ELF Schumann Resonance and Artificial Electromagnetic Fields. FME Trans. 2006, 34, 93–103. [Google Scholar]
- Ćosić, I.; Marinković, M.; Veljko, V. Transfer Functions of Acupuncture Meridians. Digital Signal Process. 1984, 673–675. Available online: https://www.researchgate.net/profile/Irena-Cosic/publication/368391069_Transfer_Functions_of_Acupuncture_Meridians/links/63e59c17dea61217579900db/Transfer-Functions-of-Acupuncture-Meridians.pdf?origin=publication_detail&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uRG93bmxvYWQiLCJwcmV2aW91c1BhZ2UiOiJwdWJsaWNhdGlvbiJ9fQ&__cf_chl_tk=Pla6GW.b..bO4daq_vJEutShHLZj8OVhe3CNnNm4po0-1734779488-1.0.1.1-.noo.PH5IdoNT1BurzAOpn7rZ7Blkio1f0v5JU_A0nI (accessed on 21 December 2024).
- Cohen, M.; Behrenbruch, C.; Ćosić, I. Shared frequency components between Schumann resonances, EEG spectra and acupuncture meridian transfer functions. Acupunct. Electrotheraupetic Res. 1998, 1, 92–93. [Google Scholar]
- Lazoura, H. The Design of Equipment to Measure the Electrical and Optical Proper-ties of Acupuncture Points and Meridians. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2005. [Google Scholar]
- Cvetković, D. Electromagnetic and Audio-Visual Stimulation of the Human Brain at Extremely Low Frequencies. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2005. [Google Scholar]
- Kwok, G.; Cohen, M.; Ćosić, I. Mapping Acupuncture Points Using Multi-Channel Device. Aust. Phys. Eng. Sci. Med. 1998, 21, 68–72. [Google Scholar]
- Wang, C.X.; Hilburn, I.A.; Wu, D.A.; Mizuhara, Y.; Cousté, C.P.; Abrahams, J.N.H.; Bernstein, S.E.; Matani, A.; Shimojo, S.; Kirschvink, J.L. Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain. eNeuro 2019, 6, ENEURO.0483-18.2019. [Google Scholar] [CrossRef]
- Ueno, S. Studies on magnetism and bioelectromagnetics for 45 years: From magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics 2012, 33, 3–33. [Google Scholar] [CrossRef]
- Weinsburg, S. DNA Helix found to oscillate in resonance with microwaves. Science News. 1984, 125, 248. [Google Scholar]
- Gao, G.; Li, J.; Zhang, Y.; Chang, Y.Z. Cellular iron metabolism and regulation. Adv. Exp. Med. Biol. 2019, 1173, 21–32. [Google Scholar]
- Gmitrov, J.; Gmitrova, A. Geomagnetic field effect on cardiovascular regulation. Bioelectromagnetics 2004, 25, 92–101. [Google Scholar] [CrossRef]
- Garcia, R.; Sosner, P.; Laude, D.; Hadjadj, S.; Herpin, D.; Ragot, S. Spontaneous baroreflex sensitivity measured early after acute myocardial infarction is an independent predictor of cardiovascular mortality: Results from a 12-year follow-up study. Int. J. Cardiol. 2014, 177, 120–122. [Google Scholar] [CrossRef]
- Liboff, A.R. Interaction Between Electromagnetic Fields and Cells; Plenum Press: New York, NY, USA, 1985; p. 281. [Google Scholar]
- Bandurin, D.A.; Mönch, E.; Kapralov, K.; Phinney, I.Y.; Lindner, K.; Liu, S.; Edgar, J.H.; Dmitriev, I.A.; Jarillo-Herrero, P.; Svintsov, D.; et al. Cyclotron resonance overtones and near-field magnetoabsorption via terahertz Bernstein modes in graphene. Nat. Phys. 2022, 18, 462–467. [Google Scholar] [CrossRef]
- Liboff, A.R. ION cyclotron resonance: Geomagnetic strategy for living systems? Electromagn. Biol. Med. 2019, 38, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Liboff, A.R. The Warburg hypothesis and weak ELF biointeractions. Electromagn. Biol. Med. 2020, 39, 45–48. [Google Scholar] [CrossRef] [PubMed]
- McKay, B.E.; Persinger, M.A. Lithium ion "cyclotron resonance" magnetic fields decrease seizure onset times in lithium-pilocarpine seized rats. Int. J. Neurosci. 2004, 114, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Liguori, A.; Brizhik, L.; Liguori, S.; Silli, L.; Bangrazi, S.; Petti, F.; Pinti, M.; Pistelli, M.I.; Giuliani, L. Effects of Ion Cyclotron Frequencies on Human Resistance and Reactance in 31 Healthy Subjects. Radiation 2022, 2, 357–375. [Google Scholar] [CrossRef]
- Albert, J.M.; Artemyev, A.; Gan, L.; Ma, Q. Equations of Motion Near Cyclotron Resonance. Front. Astron. Space Sci. Sec. Space Physics. 2022, 9, 910224. [Google Scholar] [CrossRef]
- Gaetani, R.; Ledda, M.; Barile, L.; Chimenti, I.; De Carlo, F.; Forte, E.; Ionta, V.; Giuliani, L.; D’Emilia, E.; Frati, G.; et al. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res. 2009, 82, 411–420. [Google Scholar] [CrossRef]
- Nevoit, G.V. Evaluation of the clinical effectiveness of the method for determining the personalized correction of the patient’s lifestyle and new promising predictors. Ukr. Ther. J. 2021, 1, 20–25. (In Ukrainian) [Google Scholar]
- Nevoit, G.V.; Potiazhenko, M.M.; Mintser, O.P.; Ignatenko, N.I.; Kaberni, Y.A. Bioelectrical impedance determining body composition and hardware-software recording of heart rate variability during an Objective Structured Clinical Examination as a diagnostic tool. World Med. Biol. 2020, 2, 89–93. [Google Scholar] [CrossRef]
- Siddiqa, S.; Naqvi, S.B.; Hossain, M.A. Numerical solutions of locally magnetized blood flow in the vessel filled with the porous medium. Int. J. Mech. Sci. 2019, 157–158, 668–676. [Google Scholar] [CrossRef]
- Olson, J.S. Kinetic mechanisms for O2 binding to myoglobins and hemoglobins. Mol. Asp. Med. 2022, 84, 101024. [Google Scholar] [CrossRef]
- Nagatomo, S.; Naga, M.; Kitagawa, T. Structural origin of cooperativity in human hemoglobin: A view from different roles of alpha and beta subunits in the alpha2beta2 tetramer. Biophys. Rev. 2022, 14, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.S.; Kim, S.C.; Kwon, H.J. Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism. Sci. Rep. 2022, 12, 8997. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.S.; Oh, I.T.; Lee, S.H.; Kim, S.C. Blue light-dependent human magnetoreception in geomagnetic food orientation. PLoS ONE 2019, 14, 1826. [Google Scholar]
- Player, T.C.; Hore, P.J. Viability of superoxide-containing radical pairs as magnetoreceptors. J. Chem. Phys. 2019, 151, 225101. [Google Scholar] [CrossRef]
- Hopfield, J.J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112, 1555–1567. [Google Scholar] [CrossRef]
- Hunting, E.R. Atmospheric electricity: An underappreciated meteorological element governing biology and human well-being. Int. J. Biometeorol. 2021, 65, 1–3. [Google Scholar] [CrossRef]
- Price, C.; Williams, E.; Elhalel, G.; Sentman, D. Natural ELF fields in the atmosphere and in living organisms. Int. J. Biometeorol. 2021, 65, 85–92. [Google Scholar] [CrossRef]
Scientific Direction of the Research | Reference Number of the Publication in the Review Reference List |
---|---|
Neurology * | [105,107,108,109,110,111,112,114,115,118] |
Cardiology | [99,100,116,117,118,119] |
Nephrology | [121,122] |
Traditional medicine (electromagnetic parameters of the skin) * | [123] |
General medicine | [30,98,105,106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevoit, G.; Landauskas, M.; McCarty, R.; Bumblyte, I.A.; Potyazhenko, M.; Taletaviciene, G.; Jarusevicius, G.; Vainoras, A. Schumann Resonances and the Human Body: Questions About Interactions, Problems and Prospects. Appl. Sci. 2025, 15, 449. https://doi.org/10.3390/app15010449
Nevoit G, Landauskas M, McCarty R, Bumblyte IA, Potyazhenko M, Taletaviciene G, Jarusevicius G, Vainoras A. Schumann Resonances and the Human Body: Questions About Interactions, Problems and Prospects. Applied Sciences. 2025; 15(1):449. https://doi.org/10.3390/app15010449
Chicago/Turabian StyleNevoit, Ganna, Mantas Landauskas, Rollin McCarty, Inga Arune Bumblyte, Maksim Potyazhenko, Giedre Taletaviciene, Gediminas Jarusevicius, and Alfonsas Vainoras. 2025. "Schumann Resonances and the Human Body: Questions About Interactions, Problems and Prospects" Applied Sciences 15, no. 1: 449. https://doi.org/10.3390/app15010449
APA StyleNevoit, G., Landauskas, M., McCarty, R., Bumblyte, I. A., Potyazhenko, M., Taletaviciene, G., Jarusevicius, G., & Vainoras, A. (2025). Schumann Resonances and the Human Body: Questions About Interactions, Problems and Prospects. Applied Sciences, 15(1), 449. https://doi.org/10.3390/app15010449