Localized In Vivo Electro Gene Therapy (LiveGT)-Mediated Skeletal Muscle Protein Factory Reprogramming
<p>The in vitro pulse parameter is illustrated with a broken axis, along with 6 monophasic pulses with a length of 100 μs and a 250ms interval (<b>A</b>). A single representative waveform was recorded by an oscilloscope to ensure a square waveform with the correct voltage and pulse length was induced (<b>B</b>).</p> "> Figure 2
<p>Waveforms for in vivo reporter gene delivery. The first in vivo group was pulsed with 90 V of 0.5 µs duration followed by a 45 V pulse with 1 µs duration, which were repeated to yield a biphasic pulse wave (<b>A</b>). The second group was transfected using a 90 V pulse with 1 µs length followed by a 45 V pulse with 2 µs length (<b>B</b>). The last biphasic group was pulsed 50 V of 1 µs duration followed by a 25 V of 2 µs duration (<b>C</b>). Another in vivo group was pulsed with 8 monophasic pulses of 90 V each lasting 150 ms (<b>D</b>).</p> "> Figure 3
<p>GET significantly enhances pDNA delivery. Expression of human insulin (<b>A</b>), human glucokinase (<b>B</b>), insulin and glucokinase (GCK) on the same plasmid (SP) (<b>C</b>), and insulin and glucokinase on different plasmid (DP) backbones (<b>D</b>). Transfection efficiency calculated from three fields of view was significantly higher in all pulsed groups than in the non-pulsed controls (<b>E</b>). High co-localization of insulin and glucokinase was observed for both co-delivery conditions (<b>F</b>). *: <span class="html-italic">p</span> ≤ 0.05; **: <span class="html-italic">p</span> ≤ 0.01; ***: <span class="html-italic">p</span> ≤ 0.001; ****: <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 4
<p>Monophasic GET co-delivery of insulin and glucokinase significantly increases cellular glucose consumption. Glucose consumption over six days compared to glucose metabolism in controls (<b>A</b>). The highest levels of media glucose depletion are seen on day three (<b>B</b>). ***: <span class="html-italic">p</span> ≤ 0.001; ****: <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 5
<p>GET significantly enhances insulin production and release into media. Protein expression in the same plasmid (SP) group in both high-glucose (<b>A</b>) and low-glucose (<b>B</b>) (Glc) conditions and different plasmid (DP) groups in high-glucose media (<b>D</b>) and low-glucose media (<b>E</b>) when compared to high-glucose (<b>G</b>) and low-glucose (<b>H</b>) controls. Protein expression was measured using immunofluorescence microscopy (<b>C</b>). Insulin expression was significantly enhanced in media as measured via ELISA in high-glucose (<b>F</b>) and low-glucose (<b>I</b>) conditions. ***: <span class="html-italic">p</span> ≤ 0.001; ****: <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 6
<p>Glucokinase acts as a glucose sensor, preventing hypoglycemia (<b>A</b>). Change in glucose consumption based on cells in high- and low-glucose conditions when transfected with pDNA (<b>B</b>,<b>C</b>); *: <span class="html-italic">p</span> ≤ 0.05; **: <span class="html-italic">p</span> ≤ 0.01; ***: <span class="html-italic">p</span> ≤ 0.001.</p> "> Figure 7
<p><span class="html-italic">LiveGT</span> significantly enhances luciferase-encoding gene delivery and expression in skeletal muscle over 6 months. Monopolar, monophasic pulses resulted in the highest expression (>100 fold increase over IO; <span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Insulin and glucokinase <span class="html-italic">liveGT</span> increases serum human insulin levels while reducing serum glucose levels. Exogenous (human) insulin levels in serum were significantly elevated over 21 days (<b>A</b>) (<span class="html-italic">p</span> < 0.01). Fed serum glucose levels were significantly lower with insulin and glucokinase co-delivery via <span class="html-italic">liveGT</span> (<b>B</b>) (<span class="html-italic">p</span> < 0.05). Animals maintained healthy weight gain over 10 months (<b>C</b>). <span class="html-italic">LiveGT</span> had no deleterious effect on survival according to Kaplan–Meier survival analysis (<b>D</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids
2.2. Cells and Mitomycin C Treatment
2.3. Electroporation Buffer
2.4. GET Co-Delivery of pDNA Encoding Human Insulin and Glucokinase In Vitro
2.5. Immunofluorescence Staining and Fluorescence Microscopy
2.6. Animals
2.7. In Vivo Reporter Gene Delivery via liveGT
2.8. Bioluminescence Measurements
2.9. LiveGT of Insulin and Glucokinase
2.10. Statistical Analysis
3. Results
3.1. GET Enhances pDNA Delivery In Vitro
3.2. Co-Expression of Insulin and Glucokinase Increases Glucose Consumption In Vitro
3.3. Insulin and Glucokinase Co-Expression in High- vs. Low-Glucose Media
3.4. Glucokinase Co-Expression Prevents Hypoglycemia
3.5. Prolonged Reporter Gene Expression In Vivo
3.6. LiveGT of Insulin and Glucokinase Decreases Serum Glucose Levels In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bureau, M.F.; Gehl, J.; Deleuze, V.; Mir, L.M.; Scherman, D. Importance of Association between Permeabilization and Electrophoretic Forces for Intramuscular DNA Electrotransfer. Biochim. Biophys. Acta Gen. Subj. 2000, 1474, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Heller, R.; Jaroszeski, M.; Atkin, A.; Moradpour, D.; Gilbert, R.; Wands, J.; Nicolau, C. In Vivo Gene Electroinjection and Expression in Rat Liver. FEBS Lett. 1996, 389, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Potočnik, T.; Lebar, A.M.; Kos, Š.; Reberšek, M.; Pirc, E.; Serša, G.; Miklavčič, D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022, 14, 2700. [Google Scholar] [CrossRef] [PubMed]
- Daud, A.I.; DeConti, R.C.; Andrews, S.; Urbas, P.; Riker, A.I.; Sondak, V.K.; Munster, P.N.; Sullivan, D.M.; Ugen, K.E.; Messina, J.L.; et al. Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients with Metastatic Melanoma. J. Clin. Oncol. 2008, 26, 5896–5903. [Google Scholar] [CrossRef] [PubMed]
- Kisakov, D.N.; Belyakov, I.M.; Kisakova, L.A.; Yakovlev, V.A.; Tigeeva, E.V.; Karpenko, L.I. The Use of Electroporation to Deliver DNA-Based Vaccines. Expert Rev. Vaccines 2023, 23, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Bodles-Brakhop, A.M.; Heller, R.; Draghia-Akli, R. Electroporation for the Delivery of DNA-Based Vaccines and Immunotherapeutics: Current Clinical Developments. Mol. Ther. 2009, 17, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Djurovic, S.; Iversen, N.; Jeansson, S.; Hoover, F.; Christensen, G. Comparison of Nonviral Transfection and Adeno-Associated Viral Transduction on Cardiomyocytes. Mol. Biotechnol. 2004, 28, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Young, J.L.; Benoit, J.N.; Dean, D.A. Effect of a DNA Nuclear Targeting Sequence on Gene Transfer and Expression of Plasmids in the Intact Vasculature. Gene Ther. 2003, 10, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, C.; Martens, P.-J.; Vangoitsenhoven, R. One Hundred Years of Insulin Therapy. Nat. Rev. Endocrinol. 2021, 17, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide Therapeutics: Current Status and Future Directions. Drug Discov. Today 2014, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Jaén, M.L.; Vilà, L.; Elias, I.; Jimenez, V.; Rodó, J.; Maggioni, L.; Gopegui, R.R.-D.; Garcia, M.; Muñoz, S.; Callejas, D.; et al. Long-Term Efficacy and Safety of Insulin and Glucokinase Gene Therapy for Diabetes: 8-Year Follow-Up in Dogs. Mol. Ther. Methods Clin. Dev. 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef] [PubMed]
- Mir, L.M.; Bureau, M.F.; Gehl, J.; Rangara, R.; Rouy, D.; Caillaud, J.-M.; Delaere, P.; Branellec, D.; Schwartz, B.; Scherman, D. High-Efficiency Gene Transfer into Skeletal Muscle Mediated by Electric Pulses. Proc. Natl. Acad. Sci. USA 1999, 96, 4262–4267. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.M.; Wells, D.J. Electroporation for Gene Transfer to Skeletal Muscles. BioDrugs 2004, 18, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Arike, L.; Seiman, A.; Van Der Post, S.; Piñeiro, A.M.R.; Ermund, A.; Schütte, A.; Bäckhed, F.; Johansson, M.E.V.; Hansson, G.C. Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Rep. 2020, 30, 1077–1087.e3. [Google Scholar] [CrossRef] [PubMed]
- Stöckli, J.; Fazakerley, D.J.; James, D.E. GLUT4 Exocytosis. J. Cell Sci. 2011, 124, 4147–4159. [Google Scholar] [CrossRef] [PubMed]
- Sherba, J.J.; Hogquist, S.; Lin, H.; Shan, J.W.; Shreiber, D.I.; Zahn, J.D. The Effects of Electroporation Buffer Composition on Cell Viability and Electro-Transfection Efficiency. Sci. Rep. 2020, 10, 3053. [Google Scholar] [CrossRef] [PubMed]
- Bulysheva, A.; Heller, L.; Francis, M.; Varghese, F.; Boye, C.; Heller, R. Monopolar Gene Electrotransfer Enhances Plasmid DNA Delivery to Skin. Bioelectrochemistry 2021, 140, 107814. [Google Scholar] [CrossRef] [PubMed]
- Boye, C.; Arpag, S.; Burcus, N.; Lundberg, C.; DeClemente, S.; Heller, R.; Francis, M.; Bulysheva, A. Cardioporation Enhances Myocardial Gene Expression in Rat Heart. Bioelectrochemistry 2021, 142, 107892. [Google Scholar] [CrossRef] [PubMed]
- Gold Biotechnology. D-Luciferin In Vivo Protocol; Gold Biotechnology: St. Louis, MO, USA, 2013; Available online: http://www.goldbio.com/product/1078/d-luciferin-potassium-salt-proven-and-published (accessed on 2 November 2024).
- Mathew, T.K.; Zubair, M.; Tadi, P. Blood Glucose Monitoring. Last Update: 23 April 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555976/ (accessed on 2 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hensley, J.; Francis, M.; Otten, A.; Korostyleva, N.; Gagliardo, T.; Bulysheva, A. Localized In Vivo Electro Gene Therapy (LiveGT)-Mediated Skeletal Muscle Protein Factory Reprogramming. Appl. Sci. 2024, 14, 11298. https://doi.org/10.3390/app142311298
Hensley J, Francis M, Otten A, Korostyleva N, Gagliardo T, Bulysheva A. Localized In Vivo Electro Gene Therapy (LiveGT)-Mediated Skeletal Muscle Protein Factory Reprogramming. Applied Sciences. 2024; 14(23):11298. https://doi.org/10.3390/app142311298
Chicago/Turabian StyleHensley, Jacob, Michael Francis, Alex Otten, Nadezhda Korostyleva, Tina Gagliardo, and Anna Bulysheva. 2024. "Localized In Vivo Electro Gene Therapy (LiveGT)-Mediated Skeletal Muscle Protein Factory Reprogramming" Applied Sciences 14, no. 23: 11298. https://doi.org/10.3390/app142311298
APA StyleHensley, J., Francis, M., Otten, A., Korostyleva, N., Gagliardo, T., & Bulysheva, A. (2024). Localized In Vivo Electro Gene Therapy (LiveGT)-Mediated Skeletal Muscle Protein Factory Reprogramming. Applied Sciences, 14(23), 11298. https://doi.org/10.3390/app142311298