Impact of UV Light Exposure During Printing on Thermomechanical Properties of 3D-Printed Polyurethane-Based Orthodontic Aligners
<p>FTIR spectra (<b>A</b>) NextDent Orto Flex resin, (<b>B</b>) NextDent Orto Flex printed, (<b>C</b>) Tera Harz TC85 resin, and (<b>D</b>) Tera Harz TC85 printed.</p> "> Figure 2
<p>Degree of conversion (DC, %).</p> "> Figure 3
<p>Storage modulus (MPa).</p> "> Figure 4
<p>Glass transition temperature (°C).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Material Identification and Degree of Conversion
2.3. Characterization of Material Structure and Glass Transition
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Degree of Conversion (DC)
3.2. Storage Modulus (E′)
3.3. Glass Transition Temperature (Tg)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlMogbel, A. Clear Aligner Therapy: Up to Date Review Article. J. Orthod. Sci. 2023, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Juloski, J.; D’Amico, C.; Balestra, D.; Volpe, A.; Juloski, J.; Vichi, A. Clinically Relevant Properties of 3D Printable Materials for Intraoral Use in Orthodontics: A Critical Review of the Literature. Materials 2023, 16, 2166. [Google Scholar] [CrossRef]
- Narongdej, P.; Hassanpour, M.; Alterman, N.; Rawlins-Buchanan, F.; Barjasteh, E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers 2024, 16, 371. [Google Scholar] [CrossRef]
- Ganta, G.K.; Cheruvu, K.; Ravi, R.K.; Reddy, R.P. Clear Aligners, the Aesthetic Solution: A Review. Int. J. Dent. Mater. 2021, 3, 90–95. [Google Scholar] [CrossRef]
- Staderini, E.; Chiusolo, G.; Guglielmi, F.; Papi, M.; Perini, G.; Tepedino, M.; Gallenzi, P. Effects of Thermoforming on the Mechanical, Optical, Chemical, and Morphological Properties of PET-G: In Vitro Study. Polymers 2024, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, G.; Mapelli, A.; Maspero, C.; Santaniello, T.; Serafin, M.; Farronato, M.; Caprioglio, A. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials 2021, 14, 1799. [Google Scholar] [CrossRef]
- Lovestead, T.M.; O’Brien, A.K.; Bowman, C.N. Models of Multivinyl Free Radical Photopolymerization Kinetics. J. Photochem. Photobiol. A Chem. 2003, 159, 135–143. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Alwafi, A.; Liu, X.; Andrews, J.; Ludwig, B.; Bichu, A.Y.; Zou, B. Advances in Orthodontic Clear Aligner Materials. Bioact. Mater. 2022, 22, 384–403. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, G.; Zheng, Y.; Gao, J.; Fu, Y.; Wang, Q.; Huang, L.; Pan, X.; Ding, J. ‘Invisible’ Orthodontics by Polymeric ‘Clear’ Aligners Molded on 3D-Printed Personalized Dental Models. Regen. Biomater. 2022, 9, rbac007. [Google Scholar] [CrossRef]
- Jindal, P.; Juneja, M.; Siena, F.; Bajaj, D.; Breedon, P. Mechanical and Geometric Properties of Thermoformed and 3D Printed Clear Dental Aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef]
- Šimunović, L.; Jurela, A.; Sudarević, K.; Bačić, I.; Haramina, T.; Meštrović, S. Influence of Post-Processing on the Degree of Conversion and Mechanical Properties of 3D-Printed Polyurethane Aligners. Polymers 2024, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Mattle, M.; Zinelis, S.; Polychronis, G.; Makou, O.; Panayi, N.; Papageorgiou, S.N.; Eliades, T. Effect of Heat Treatment and Nitrogen Atmosphere during Post-Curing on Mechanical Properties of 3D-Printed Orthodontic Aligners. Eur. J. Orthod. 2024, 46, cjad074. [Google Scholar] [CrossRef] [PubMed]
- Aati, S.; Akram, Z.; Shrestha, B.; Patel, J.; Shih, B.; Shearston, K.; Ngo, H.; Fawzy, A. Effect of Post-Curing Light Exposure Time on the Physico-Mechanical Properties and Cytotoxicity of 3D-Printed Denture Base Material. Dent. Mater. 2022, 38, 57–67. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, S.Y.; Gu, H.; Jin, G.; Kim, J.E. Evaluating Oxygen Shielding Effect Using Glycerin or Vacuum with Varying Temperature on 3D Printed Photopolymer in Post-Polymerization. J. Mech. Behav. Biomed. Mater. 2022, 130, 105170. [Google Scholar] [CrossRef]
- Šimunović, L.; Čekalović Agović, S.; Marić, A.J.; Bačić, I.; Klarić, E.; Uribe, F.; Meštrović, S. Color and Chemical Stability of 3D-Printed and Thermoformed Polyurethane-Based Aligners. Polymers 2024, 16, 1067. [Google Scholar] [CrossRef]
- Przybytek, A.; Gubańska, I.; Kucińska-Lipka, J.; Janik, H. Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3D Printers—A Brief Review. Fibres Text. East. Eur. 2018, 26, 120–125. [Google Scholar] [CrossRef]
- Cintora-López, P.; Arrieta-Blanco, P.; Martin-Vacas, A.; Paz-Cortés, M.M.; Gil, J.; Aragoneses, J.M. In Vitro Analysis of the Influence of the Thermocycling and the Applied Force on Orthodontic Clear Aligners. Front. Bioeng. Biotechnol. 2023, 11, 1321495. [Google Scholar] [CrossRef]
- Šimunović, L.; Jurela, A.; Sudarević, K.; Bačić, I.; Meštrović, S. Differential Stability of One-layer and Three-layer Orthodontic Aligner Blends under Thermocycling: Implications for Clinical Durability. Acta Stomatol. Croat. 2023, 57, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Shaik, A.; Huynh, N.; Youssef, G. Micromechanical Behavior of Ultraviolet-Exposed Polyurea. Mech. Mater. 2020, 140, 103244. [Google Scholar] [CrossRef]
- Whitten, I.; Youssef, G. The Effect of Ultraviolet Radiation on Ultrasonic Properties of Polyurea. Polym. Degrad. Stab. 2016, 123, 88–93. [Google Scholar] [CrossRef]
- Dizon, J.; Espera, A.; Chen, Q.; Advíncula, R. Mechanical Characterization of 3D-Printed Polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Raza, S.; Nazeer, S.; Abid, A.; Huang, J. Recent research progress in the synthesis, characterization and applications of hyper cross-linked polymer. J. Polym. Res. 2023, 30, 415. [Google Scholar] [CrossRef]
- Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.S.; da Luz, F.S.; da Costa Garcia Filho, F.; Pereira, A.C.; de Oliveira Aguiar, V.; Lopera, H.A.C.; Monteiro, S.N. Dynamic Mechanical Analysis of Thermally Aged Fique Fabric-Reinforced Epoxy Composites. Polymers 2021, 13, 4037. [Google Scholar] [CrossRef]
- Dalaie, K.; Fatemi, S.; Ghaffari, S. Dynamic Mechanical and Thermal Properties of Clear Aligners after Thermoforming and Aging. Prog. Orthod. 2021, 22, 15. [Google Scholar] [CrossRef]
- Youssef, G.; Whitten, I. Dynamic Properties of Ultraviolet-Exposed Polyurea. Mech. Time-Depend. Mater. 2017, 21, 351–363. [Google Scholar] [CrossRef]
- Xie, R.; Weisen, A.R.; Lee, Y.; Aplan, M.A.; Fenton, A.M.; Masucci, A.E.; Kempe, F.; Sommer, M.; Pester, C.W.; Colby, R.H.; et al. Glass Transition Temperature from the Chemical Structure of Conjugated Polymers. Nat. Commun. 2020, 11, 893. [Google Scholar] [CrossRef]
- Suteja, T.; Soesanti, A. Mechanical Properties of 3D Printed Polylactic Acid Product for Various Infill Design Parameters: A Review. J. Phys. Conf. Ser. 2020, 1569, 042010. [Google Scholar] [CrossRef]
- Dewaele, M.; Asmussen, E.; Peutzfeldt, A.; Munksgaard, E.; Benetti, A.; Finné, G.; Leloup, G.; Devaux, J. Influence of Curing Protocol on Selected Properties of Light-Curing Polymers: Degree of Conversion, Volume Contraction, Elastic Modulus, and Glass Transition Temperature. Dent. Mater. 2009, 25, 1576–1584. [Google Scholar] [CrossRef]
- Tan, J.H.; Chen, C.L.; Wu, J.Y.; He, R.; Liu, Y.W. The effect of UV radiation ageing on the structure, mechanical and gas permeability performances of ethylene–propylene–diene rubber. J. Polym. Res. 2021, 28, 81. [Google Scholar] [CrossRef]
- Thiessen, M.; Abetz, V. Influence of the Glass Transition Temperature and the Density of Crosslinking Groups on the Reversibility of Diels-Alder Polymer Networks. Polymers 2021, 13, 1189. [Google Scholar] [CrossRef] [PubMed]
- Cristea, M.; Ionita, D.; Iftime, M.M. Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful? Materials 2020, 13, 5302. [Google Scholar] [CrossRef] [PubMed]
- Nowick, A.S.; Berry, B.S. Anelastic Relaxation in Crystalline Solids; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Ennis, C.P.; Kaiser, R.I. Mechanical Studies on the Electron Induced Degradation of Polymethyl Methacrylate and Kapton. Phys. Chem. Chem. Phys. 2010, 12, 14902–14915. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, J.; Shi, X.; Song, F.; Gao, W.; Liu, S. Stereocomplexation of Poly(lactic acid) and Chemical Crosslinking of Ethylene Glycol Dimethacrylate (EGDMA) Double-Crosslinked Temperature/pH Dual Responsive Hydrogels. Polymers 2020, 12, 2204. [Google Scholar] [CrossRef]
- Fouassier, J.P.; Lalevée, J. Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar] [CrossRef]
- Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers 2022, 14, 2074. [Google Scholar] [CrossRef]
- Bowman, C.N.; Kloxin, C.J. Toward an Enhanced Understanding and Implementation of Photopolymerization Reactions. AIChE J. 2008, 54, 2775–2795. [Google Scholar] [CrossRef]
- Balcerak, A.; Kabatc-Borcz, J.; Czech, Z.; Bartkowiak, M. Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers 2023, 15, 1148. [Google Scholar] [CrossRef]
- De Beer, M.P.; Van Der Laan, H.L.; Cole, M.A.; Whelan, R.J.; Burns, M.A.; Scott, T.F. Rapid, Continuous Additive Manufacturing by Volumetric Polymerization Inhibition Patterning. Sci. Adv. 2019, 5, eaau8723. [Google Scholar] [CrossRef]
- Van Der Laan, H.L.; Burns, M.A.; Scott, T.F. Volumetric Photopolymerization Confinement through Dual-Wavelength Photoinitiation and Photoinhibition. ACS Macro Lett. 2019, 8, 899–904. [Google Scholar] [CrossRef]
- Menard, K.P. Dynamic Mechanical Analysis: A Practical Introduction; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-8453-2. [Google Scholar]
- Zhang, L.; Li, L.; Chen, Y.; Pi, J.; Liu, R.; Zhu, Y. Recent Advances and Challenges in Long Wavelength Sensitive Cationic Photoinitiating Systems. Polymers 2023, 15, 2524. [Google Scholar] [CrossRef]
- Lai, Y.; Kuang, X.; Yang, W.; Wang, Y.; Zhu, P.; Li, J.; Dong, X.; Wang, D. Dynamic Bonds Mediate π-π Interaction via Phase Locking Effect for Enhanced Heat Resistant Thermoplastic Polyurethane. Chin. J. Polym. Sci. 2020, 39, 154–163. [Google Scholar] [CrossRef]
- Ceylan, G.; Emik, S.; Yalcinyuva, T.; Sunbuloğlu, E.; Bozdag, E.; Unalan, F. The Effects of Cross-Linking Agents on the Mechanical Properties of Poly (Methyl Methacrylate) Resin. Polymers 2023, 15, 2387. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.L.; Yunus, N.; Abu-Hassan, M.I. Hardness, Flexural Strength, and Flexural Modulus Comparisons of Three Differently Cured Denture Base Systems. J. Prosthodont. 2008, 17, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Jiang, J.; Li, J.; Zhao, L.; Xi, Z. Effects of Chemical Composition and Cross-Linking Degree on the Thermo-Mechanical Properties of Bio-Based Thermosetting Resins: A Molecular Dynamics Simulation Study. Polymers 2024, 16, 1229. [Google Scholar] [CrossRef]
- Gojzewski, H.; Guo, Z.; Grzelachowska, W.; Ridwan, M.; Hempenius, M.; Grijpma, D.; Vancso, G. Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface? ACS Appl. Mater. Interfaces 2020, 12, 8908–8914. [Google Scholar] [CrossRef]
- Panyukov, S. Theory of Flexible Polymer Networks: Elasticity and Heterogeneities. Polymers 2020, 12, 767. [Google Scholar] [CrossRef]
- Denisin, A.; Pruitt, B. Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications. ACS Appl. Mater. Interfaces 2016, 8, 21893–21902. [Google Scholar] [CrossRef]
- Qu, T.; Nan, G.; Ouyang, Y.; Bieketuerxun, B.; Yan, X.; Qi, Y.; Zhang, Y. Structure-Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers. Polymers 2023, 15, 4268. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Wang, H.; Lu, W.; Osa, M.; Wang, Y.; Mays, J.; Hong, K. Chain Flexibility and Glass Transition Temperatures of Poly(n-alkyl (meth)acrylate)s: Implications of Tacticity and Chain Dynamics. Polymer 2020, 213, 123207. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, Y.; Douglas, J.; Xia, W. Understanding the Role of Cross-Link Density in the Segmental Dynamics and Elastic Properties of Cross-Linked Thermosets. J. Chem. Phys. 2022, 157, 064901. [Google Scholar] [CrossRef]
- Li, S.; Jiaping, W.; Wenjuan, Q.; Cheng, J.; Yunna, L.; Wang, D.; Zhang, F. Green Synthesis and Properties of an Epoxy-Modified Oxidized Starch-Grafted Styrene-Acrylate Emulsion. Eur. Polym. J. 2020, 123, 109412. [Google Scholar] [CrossRef]
- Choi, J.E.; Lyons, K.M.; Kieser, J.A.; Waddell, N.J. Diurnal Variation of Intraoral pH and Temperature. BDJ Open 2017, 3, 17015. [Google Scholar] [CrossRef] [PubMed]
- Barclay, C.; Spence, D.; Laird, W. Intra-Oral Temperatures during Function. J. Oral Rehabil. 2005, 32, 886–894. [Google Scholar] [CrossRef] [PubMed]
Wavenumber (cm−1) | Vibration |
---|---|
3343 | ν N–H |
2941 | νas C–H (CH2, CH3) |
2859 | νs C–H (CH2, CH3) |
1715 | ν C=O (ester) |
1650 | ν C=O (amide) |
1638 | ν C=C |
1617 | ν C=C |
1522 | δ N–H |
1407 | δ CH2 |
~1350–1000 | ν C–O–C ν C–C–O |
980 | δrc C–H |
847 | ν C–C |
810 | δtw C=C |
754 | δwg C–H (aromatic) |
693 | δ aromatic ring |
E′ | Tg | DC | ||
E′ | Correlation coefficient | 1.000 | 0.693 ** | −0.187 |
(p value) | . | <0.001 | 0.077 | |
Tg | Correlation coefficient | 0.693 ** | 1.000 | −0.485 ** |
(p value) | <0.001 | . | <0.001 | |
DC | Correlation coefficient | −0.187 | −0.485 ** | 1.000 |
(p value) | 0.077 | <0.001 | . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimunović, L.; Marić, A.J.; Bačić, I.; Haramina, T.; Meštrović, S. Impact of UV Light Exposure During Printing on Thermomechanical Properties of 3D-Printed Polyurethane-Based Orthodontic Aligners. Appl. Sci. 2024, 14, 9580. https://doi.org/10.3390/app14209580
Šimunović L, Marić AJ, Bačić I, Haramina T, Meštrović S. Impact of UV Light Exposure During Printing on Thermomechanical Properties of 3D-Printed Polyurethane-Based Orthodontic Aligners. Applied Sciences. 2024; 14(20):9580. https://doi.org/10.3390/app14209580
Chicago/Turabian StyleŠimunović, Luka, Antun Jakob Marić, Ivana Bačić, Tatjana Haramina, and Senka Meštrović. 2024. "Impact of UV Light Exposure During Printing on Thermomechanical Properties of 3D-Printed Polyurethane-Based Orthodontic Aligners" Applied Sciences 14, no. 20: 9580. https://doi.org/10.3390/app14209580