Fluoride Release by Restorative Materials after the Application of Surface Coating Agents: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Question
2.2. Protocol
2.3. Eligibility Criteria
2.4. Information Sources, Search Strategy, and Study Selection
2.5. Data Collection and Data Items
2.6. Assessing Risk of Bias in Individual Studies
2.7. Quality Assessment
3. Results
3.1. Study Selection
3.2. General Characteristics of the Included Studies
3.3. Main Study Outcomes
3.4. Quality Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birkner, E.; Błaszczyk, I.; Ratajczak-Kubiak, E. Korzystne i szkodliwe działanie fluoru. Farm. Pol. 2009, 18, 623–626. [Google Scholar]
- Petersen, P.E.; Ogawa, H. Prevention of dental caries through the use of fluoride—The WHO approach. Community Dent. Health 2016, 33, 27352461. [Google Scholar]
- Shyam, R.; Chaluvaiah, M.B.; Kumar, A.; Pahwa, M.; Rani, G.; Phogat, R. Impact of dental fluorosis on the oral health related quality of life among 11-to 14-year-old school children in endemic fluoride areas of Haryana (India). Int. Dent. J. 2020, 70, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Olczak-Kowalczyk, D.; Mielczarek, A.; Jackowska, T.; Mielnik-Błaszczak, M.; Turska-Szybka, A.; Opydo-Szymaczek, J.; Jurczak, A.; Kaczmarek, U. Środki fluorkowe w zapobieganiu i leczeniu próchnicy i erozji zębów u dzieci, młodzieży i dorosłych—Rekomendacje Polskich Ekspertów. Aktualizacja zaleceń: Indywidualna profilaktyka fluorkowa u dzieci, młodzieży—Rekomendacje Polskich Ekspertów. Nowa Stomatol. 2022, 27, 35–39. [Google Scholar] [CrossRef]
- Kupka, T. Szkło-jonomery—Przeszłość, teraźniejszość i przyszłość dentystyki odtwórczej. Mag. Stomatol. 2014, 4, 28–32. [Google Scholar]
- De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A Critical Review of the Durability of Adhesion to Tooth Tissue: Methods and Results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Tyas, M.J. Milestones in adhesion: Glass-ionomer cements. J. Adhes. Dent. 2003, 5, 259–266. [Google Scholar] [PubMed]
- Kaczmarek, U. Uwalnianie fluorków z materiałów do wypełnień a próchnica wtórna. Dent. Med. Probl. 2005, 42, 333–340. [Google Scholar]
- Cho, S.Y.; Cheng, A.C. A review of glass ionomer restorations in the primary dentition. J. Can. Dent. Assoc. 1999, 65, 491–495. [Google Scholar]
- Jodkowska, E.; Karaś, J. Porównanie wytrzymałości na ścinanie wiązania szkliwa i zębiny z kompomerami. Dent. Med. Probl. 2010, 47, 435–440. [Google Scholar]
- Blunck, V.; Roulet, J.F. Marginal adaptation of compomer Class V restorations in vitro. J. Adhes. Dent. 1999, 1, 143–151. [Google Scholar] [PubMed]
- Itota, T.; Carrick, T.E.; Yoshiyama, M.; McCabe, J.F. Fluoride release and recharge in giomer, compomer and resin composite. Dent. Mater. 2004, 20, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, U.; Lipski, M. Materiały Stosowane w Leczeniu Zachowawczym Zębów. In Stomatologia Zachowawcza z Endodoncją; PZWL: Warszawa, Poland, 2014. [Google Scholar]
- Sunico, M.C.; Shinkai, K.; Katoh, Y. Two-year clinical performance of occlusal and cervival giomer restorations. Oper. Dent. 2005, 30, 282–289. [Google Scholar] [PubMed]
- Kobierska-Brzoza, J.M.; Dobrzyński, M.; Fita, K.A.; Bader-Orłowska, D.; Szymonowicz, M. Currently Recommended Restorative Materials in Modern Conservative Dentistry. Polim. W Med. 2015, 45, 37–43. [Google Scholar]
- Söderholm, K.-J.M. Coatings in Dentistry—A Review of Some Basic Principles. Coatings 2012, 2, 138–159. [Google Scholar] [CrossRef]
- Krajangta, N.; Dulsamphan, C.; Chotitanmapong, T. Effects of Protective Surface Coating on Fluoride Release and Recharge of Recent Uncoated High-Viscosity Glass Ionomer Cement. Dent. J. 2022, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a Knowledge Representation for Clinical Questions. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Washington, DC, USA, 2006; p. 359. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews Systematic reviews and Meta-Analyses. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Homa, K.; Zakrzewski, W.; Dobrzyński, W.; Piszko, P.J.; Piszko, A.; Matys, J.; Wiglusz, R.J.; Dobrzyński, M. Surface Functionalization of Titanium-Based Implants with a Nanohydroxyapatite Layer and Its Impact on Osteoblasts: A Systematic Review. J. Funct. Biomater. 2024, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Piszko, P.J.; Piszko, A.; Kiryk, J.; Lubojański, A.; Dobrzyński, W.; Wiglusz, R.J.; Matys, J.; Dobrzyński, M. The Influence of Fluoride Gels on the Physicochemical Properties of Tooth Tissues and Dental Materials—A Systematic Review. Gels 2024, 10, 98. [Google Scholar] [CrossRef]
- Murias, I.; Grzech-Leśniak, K.; Murias, A.; Walicka-Cupryś, K.; Dominiak, M.; Deeb, J.G.; Matys, J. Efficacy of Various Laser Wavelengths in the Surgical Treatment of Ankyloglossia: A Systematic Review. Life 2022, 12, 558. [Google Scholar] [CrossRef]
- Kowalski, J.; Rygas, J.; Homa, K.; Dobrzyński, W.; Wiglusz, R.J.; Matys, J.; Dobrzyński, M. Antibacterial Activity of Endodontic Gutta-Percha—A Systematic Review. Appl. Sci. 2023, 14, 388. [Google Scholar] [CrossRef]
- Watson, P.; Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef]
- Struzik, N.; Wiśniewska, K.; Piszko, P.J.; Piszko, A.; Kiryk, J.; Matys, J.; Dobrzyński, M. SEM Studies Assessing the Efficacy of Laser Treatment for Primary Teeth: A Systematic Review. Appl. Sci. 2024, 14, 1107. [Google Scholar] [CrossRef]
- Matys, J.; Kensy, J.; Gedrange, T.; Zawiślak, I.; Grzech-Leśniak, K.; Dobrzyński, M. A Molecular Approach for Detecting Bacteria and Fungi in Healthcare Environment Aerosols: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4154. [Google Scholar] [CrossRef]
- Kensy, J.; Dobrzyński, M.; Wiench, R.; Grzech-Leśniak, K.; Matys, J. Fibroblasts Adhesion to Laser-Modified Titanium Surfaces—A Systematic Review. Materials 2021, 14, 7305. [Google Scholar] [CrossRef]
- Rajewska, J.; Kowalski, J.; Matys, J.; Dobrzyński, M.; Wiglusz, R.J. The Use of Lactide Polymers in Bone Tissue Regeneration in Dentistry—A Systematic Review. J. Funct. Biomater. 2023, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Rygas, J.; Matys, J.; Wawrzyńska, M.; Szymonowicz, M.; Dobrzyński, M. The Use of Graphene Oxide in Orthodontics—A Systematic Review. J. Funct. Biomater. 2023, 14, 500. [Google Scholar] [CrossRef]
- Wiench, R.; Skaba, D.; Matys, J.; Grzech-Leśniak, K. Efficacy of Toluidine Blue—Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics 2021, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.; Matys, J.; Grzech-Leśniak, K. Effectiveness of lasers and aPDT in elimination of intraoral halitosis: A systematic review based on clinical trials. Lasers Med Sci. 2022, 37, 3403–3411. [Google Scholar] [CrossRef] [PubMed]
- Rajić, V.B.; Miletić, I.; Gurgan, S.; Peroš, K.; Verzak, Ž.; Malčić, A.I. Fluoride Release from Glass Ionomer with Nano Filled Coat and Varnish. Acta Stomatol. Croat. 2018, 52, 307–313. [Google Scholar] [CrossRef]
- Trehan, M.; Yadav, S.; Senthilkumar, A.; Chhabra, C.; Pradhan, S.; Shamsudeen, N.H. Comparative Evaluation of Fluoride Release from Glass Ionomer, Compomer, and Giomer Sealants Following Exposure to Fluoride Toothpaste and Fluoride Varnish: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2022, 15, 736–738. [Google Scholar] [CrossRef]
- Poggio, C.; Andenna, G.; Ceci, M.; Beltrami, R.; Colombo, M.; Cucca, L. Fluoride release and uptake abilities of different fissure sealants. J. Clin. Exp. Dent. 2016, 8, e284–e289. [Google Scholar] [CrossRef] [PubMed]
- Nassar, H.M.; Platt, J.A. Fluoride Release from Two High-Viscosity Glass Ionomers after Exposure to Fluoride Slurry and Varnish. Materials 2019, 12, 3760. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Prskalo, K.; Tauböck, T.T. Effect of adhesive coating on calcium, phosphate, and fluoride release from experimental and commercial remineralizing dental restorative materials. Sci. Rep. 2022, 12, 1072. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Nandlal, B. In vitro evaluation of fluoride release from hydroxyapatite reinforced glass-ionomer with or without protective coating. J. Clin. Diagn Res. 2016, 10, ZC73–ZC75. [Google Scholar] [PubMed]
- Pamir, T.; Tezel, H.; Ozata, F.; Celik, A. Fluoride release from esthetic restorative materials with and without adhesive. Quintessence Int. 2006, 37, 145–150. [Google Scholar] [PubMed]
- Hattab, F.; Amin, W. Fluoride release from glass ionomer restorative materials and the effects of surface coating. Biomaterials 2001, 22, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Kelic, K.; Par, M.; Peros, K.; Sutej, I.; Tarle, Z. Fluoride-Releasing Restorative Materials: The Effect of a Resinous Coat on Ion Release. Acta Stomatol. Croat. 2020, 54, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Mazzaoui, S.A.; Burrow, M.F.; Tyas, M.J. Fluoride Release from Glass-Ionomer Cements and Resin Composites Coated with a Dentin Adhesive. Dent. Mater. 2000, 16, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Ariffin, Z.; Ngo, H.; McIntyre, J. Enhancement of fluoride release from glass ionomer cement following a coating of silver fluoride. Aust. Dent. J. 2006, 51, 328–332. [Google Scholar] [CrossRef]
- Tiwari, S.; Nandlal, B. Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: An in vitro trial. Saudi J. Kidney Dis. Transplant. 2013, 31, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kamatham, R.; Reddy, S.J. Surface coatings on glass-ionomer restorations in Pediatric dentistry—Worthy or not? J. Indian Soc. Pedod. Prev. Dent. 2013, 31, 229–233. [Google Scholar] [CrossRef]
- Kelić, M.; Kilić, D.; Kelić, K.; Šutej, I.; Par, M.; Peroš, K.; Tarle, Z. The Fluoride Ion Release from Ion-Releasing Dental Materials after Surface Loading by Topical Treatment with Sodium Fluoride Gel. J. Funct. Biomater. 2023, 14, 102. [Google Scholar] [CrossRef]
- Wang, L.; Afonso, M.; Buzalaf, R.; Atta, M.T. Effect of one-bottle adhesive systems on the fluoride release of a resin-modified glass ionomer. J. Appl. Oral Sci. 2004, 12, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Seppa, L.; Korhonen, A.; Nuutinen, A.; Seppa, L. ORAL SCIENCES Inhibitory effect on S. mutans by fluoride-treated conventional and resin-reinforced glass-ionomer cements. Em. J. Oral Sci. 1995, 103, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Monteith, V.; Millett, D.; Creanor, S.; Gilmour, W. Fluoride release from orthodontic bonding agents: A comparison of three in vitro models. J. Dent. 1999, 27, 53–61. [Google Scholar] [CrossRef]
- Exterkate, R.; Damen, J.; Cate, J.T. Effect of Fluoride-Releasing Filling Materials on Underlying Dentinal Lesions in vitro. Caries Res. 2005, 39, 509–513. [Google Scholar] [CrossRef]
- Itota, T.; Nakabo, S.; Torii, Y.; Narukami, T.; Doi, J.; Yoshiyama, M. Effect of fluoride-releasing liner on demineralized dentin. Quintessence Int. 2006, 37, 297–303. [Google Scholar]
- Castro, G.W.; Gray, S.E.; Buikema, D.J.; Reagan, S.E. The effect of various surface coatings on fluoride release from glass-ionomer cement. Oper. Dent. 1994, 19, 194–198. [Google Scholar]
- Itota, T.; Nakatsuka, T.; Tanaka, K.; Tashiro, Y.; McCABE, J.F.; Yoshiyama, M. Neutralizing effect by resin-based materials containing silane-coated glass fillers. Dent. Mater. J. 2010, 29, 362–368. [Google Scholar] [CrossRef]
- Kishore, G.V.S.; Sai-Sankar, A.J.; Pratap-Gowd, M.J.S.; Sridhar, M.; Pranitha, K.; Sai-Krishna, V.S. Comparative evaluation of fluoride releasing ability of various restorative materials after the application of surface coating agents—An in-vitro study. J. Clin. Diagn. Res. 2016, 10, ZC38–ZC41. [Google Scholar] [CrossRef] [PubMed]
Study | Studied Material | Type of Coating (Composition) | Experimental Medium | Fluoride Release Measurement Technique | Length of Measurement Period | Amount of Cumulative Fluoride Ion Released (Coated vs. Non-Coated Specimen) |
---|---|---|---|---|---|---|
Rajić et al. [32] | Glass ionomer Equia Forte Fil | 1. Equia Forte Coat (EC) (low-viscosity monomer methyl methacrylate, phosphoric acid ester monomer, and photoinitiator) 2. GC Fuji Varnish (VC) (isopropyl acetate, acetone, corn mint oil, and cinnamaldehyde). | Deionized water | A fluoride ion-selective electrode type 96-09 (Boston, MA, USA) and a microprocessor analyzer ORION EA 940 (Orion Res Inc., USA) | 64 days | Equia + EC (66.01 mg/L) < EQUIA + VC (123.54 mg/L) < EQUIA non-coated (203.22 mg/L) |
Senthilkumar et al. [33] | 1. GIS (Fuji VII), 2. resin sealant (Voco Twinky star), 3. Giomer sealant (Shofu Beautisealant). | 1. Cheerio gel fluoride toothpaste 2. GC Fuji Fluoride Varnish | Synthetic saliva (pH 5.3). | An expandable ion analyzer and a fluoride ion selective electrode | 30 days | After 30 days: 1) (Sealants with toothpaste) giomer > GIS > resin sealant 2) (sealants with varnish) GIS > giomer > resin sealant 3) Without toothpaste and sealant) GIS > giomer > resin sealant |
Poggio et al. [34] | 1. Fuji Triage (glass-ionomer cement) 2. Fissurit FX (composite resin) 3. Grandio Seal (composite resin) | 1. Profluorid Varnish (varnish) 2. MI Paste Plus (varnish) | Deionized water | Combination of fluoride electrode (Orion GP 1 S/N 13824, Orion Research, Inc., Boston, MA, USA) connected to an expandable ion analyzer (Orion 720A, Orion Research Inc., Boston, MA, USA). | 84 days | The GIC-based sealant Fuji Triage/GC > Fissurit FX/Voco > Grandio Seal/Voco The sealants tested were significantly more recharged by exposure to the fluoridated varnish (Profluorid Varnish) than by the CPP-ACPF toothpaste (MI Paste Plus). |
Nassar et al. [35] | 1. GC Fuji IX, GC America, Alsip, IL, USA (F9) 2. 3M ESPE Ketac-fil Plus Aplicap, 3M, St. Paul, MN, USA (KF) | 1. Fluoride slurry 2. Fluoride varnish | Deionized water | Fluoride electrode (Orion Research, Inc., Boston, MA, USA) connected to an ion analyzer | - | 3M ESPE Ketac-fil Plus Aplicap > GC Fuji IX The varnish-coated groups generally exhibited higher fluoride release compared to the non-varnish groups |
Krajangta et al. [17] | 1. KetacTM Fil Plus AplicapTM (CGICs) 2. KetacTM Molar AplicapTM 3. KetacTM Universal AplicapTM (HVGICs) | 1. G-Coat Plus 2. KetacTM Glaze | Deionized water | Fluoride ion-specific electrode (OrionTM 9157BNMD TriodeTM 3-in-1 pH/ATC probe, Thermo Fisher Scientific Inc., Waltham, MA, USA) connected to a digital pH/ISE meter (OrionTM Versa Star ProTM, Thermo Fisher Scientific Inc., Waltham, MA, USA). | 4 weeks | KetacTM Universal AplicapTM (U) > KetacTM Fil Plus AplicapTM (F) > KetacTM Molar AplicapTM (M) generally always: Uncoated > G-Coat Plus > KetacTM Glaze |
Par et al. [36] | The fillers for experimental composites: inert glass, silica, and two types of Bioactive Glass (BG): The conventional BG 45S5 formulation The low-Na F-containing BG 3 commercial restorative materials: Giomer (Beautifl II, Shofu, Kyoto, Japan; shade: A2, LOT: 041923), Reinforced glass-ionomer (ChemFil Rock, Dentsply Sirona, Konstanz, Germany; shade: A2, LOT: 1903000819),3) “alkasite” material (Cention, Ivoclar Vivadent, Schaan, Liechtenstein; shade: universal, LOT: XL7102). | No data | Lactic acid solution of pH = 4.0 | No data | 32 days | No data |
Tiwari et al. [37] | 1. Hydroxyapatite Glass-ionomer Cement (HA-GIC): This was created by replacing 8 weight percent of conventional glass-ionomer with hydroxyapatite powder (HA), mixed with polyacid liquid. | G Coat Plus | Distilled water | Combination ion-selective electrode (ISE) from HACH Company with Sension4 pH/ISE/MV Laboratory Meter. | 21 days | Materials that were not coated released more fluoride. |
Pamir et al. [38] | 1. Hytac Aplitip (polyacid-modified resin composite) 2. Ketac-fil (Conventional glass-ionomer cement) 3. Photac-fil (Resin-modified glass-ionomer cement) 4. Ecusit (resin composite) 5. Ariston pHc (fluoridated resin composite) | Prompt L-Pop (Fluoridated adhesive) | Deionized water | Combination fluoride ion-selective electrode (Orion 96-09 BN) connected to an ion analyzer (Orion Bench Top pH/ISE Meter, 720 A Model). | 28 days | Uncoated materials after 28 days: Ariston pHc > Photac-fil > Ketac-fil > Hytac Aplitip > Ecusit Uncoated materials after 1 day: Ketac-fil > Photac-fil > Ariston pHc > Hytac Aplitip > Ecusit Coated materials after 28 days: Ketac-fil > Photac-fil > Ariston pHc > Hytac Aplitip > Ecusit |
Hattab et al. [39] | 1. conventional glass-ionomer Ketac-Fil (KF; ESPE, Seefeld/Oberbay, Germany) 2. conventional glass-ionomer Fuji II (FJ; G-C Dental Industrial Corp., Tokyo, Japan) 3. cermet Ketac-Silver (KS; ESPE, Seefeld/Oberbay, Germany). | 1. Varnish 2. light-cured bonding resin (Visio-bond) | 1. Deionized Water 2. Artificial saliva (pH was adjusted to 5.5). 3. Deionized water containing hydroxyapatite. | F-specic electrode (Model 96-09-00, Orion Research Inc., Cambridge, MA, USA) coupled with microprocessor ion analyzer (Orion model 901). | 28 days | Non-coated: FJ (405 g/cm) > KF (391 g/cm) > KS (132 g/cm) Coated with Varnish: KF: Reduction in fluoride release by 74.6% KS: Reduction in fluoride release by 65.0% FJ: Reduction in fluoride release by 27.5% Coated with Visio Bond: KF: Reduction in fluoride release by 79.9% FJ: Reduction in fluoride release by 51.1% KS: Reduction in fluoride release by 44.0% Deionized water: Higher fluoride release rates were observed in deionized water, initially rapid, then stabilizing to near-zero order kinetics after two weeks. Artificial saliva: Fluoride release in artificial saliva was significantly lower than in deionized water, with a similar pattern but stabilizing earlier. |
Kelić et al. [40] | 1. Beautifil II (BF) Giomer 2. Cention (CN) Alkasite 3. Fuji IX Extra (FUJ) Glass ionomer 4. Filtek Z250 (FIL) Conventional composite | 1. G-aenial Bond (GB) Universal adhesive 2. Clearfil Universal Bond Quick (CB) Universal fluoride-releasing adhesive 3. GC Fuji Coat LC (FC) Glass-ionomer coat | Deionized water | An ion-selective electrode Orion 9609BNWP was connected to an Expandable Ion Analyzer EA 940 (Orion Research, Beverly, MA, USA) | 168 days | non coated: FUJ > CN > BF Materials treated with GB > > Materials treated with CB FIL emitted fluoride only with the fluoride-emitting adhesive CB. FUJ, on the other hand, exhibited a notable fluoride release increase over time, with uncoated samples releasing 30 times more fluoride than those coated with FC. |
Mazzaoui et al. [41] | 1. Ketac-Molar Aplicap (capsulated self-cured glass ionomer) 2. Fuji IX GP (capsulated self-cured glass ionomer) 3. Fuji II LC (capsulated resin-modified glass ionomer) 4. Photac-Fil (capsulated resin-modified glass ionomer) 5. Ariston pHc (Light-cured resin composite) 6. Solitaire (light-cured resin composite) | Scotchbond Multi-Purpose | Deionized water | Fluoride ion electrode (Orion research electrode, Orion Research Inc., Boston, MA, USA) connected to an ion analyzer (Ion 85 Radiometer, Copenhagen, Denmark) | 28 days | Ariston pHc (uncoated)—85.4 ppm > Photac-Fil (uncoated)—58.0 ppm > Ketac-Molar (uncoated)—44.1 ppm > Ketac Molar (coated)—24.1 ppm > Fuji II LC (uncoated)—26.9 ppm > Fuji IX GP (uncoated)—24.4 ppm > Photac-Fil (coated)—12.5 ppm > Fuji IX GP (coated)—9.9 ppm > Fuji II LC (coated)—6.6 ppm > Ariston pHc (coated)—3.3 ppm > Solitaire (uncoated)—2.3 ppm > Solitaire (coated)—less than 0.2 ppm |
Ariffin et al. [42] | 1. Fuji IX, 2. Fuji VII 3. Vitrebond | 10% AgF solution | 1. deionized distilled water (DDW) 2. acetate buffers (pH 3, 5, 7) | Fluoride-specific ion electrode (Orion, USA). | 9 days | Vitrebond (uncoated) > Fuji VII (uncoated) > Fuji IX (uncoated) > Vitrebond + AgF (coated) > Fuji VII + AgF (coated) > Fuji IX + AgF (coated) In this summary, uncoated Vitrebond exhibited the highest cumulative fluoride release, followed by Fuji VII and Fuji IX. With the application of a 10% AgF coating, there was an increase in fluoride release, but the release patterns varied, with Vitrebond + AgF eventually reaching almost the same levels of cumulative release as the uncoated GIC versions. |
Tiwari et al. [43] | Glass-ionomer Cement (GC Gold Level High-Strength Posterior Restorative Material. GC Corporation Tokyo, Japan) | G Coat Plus (Nanofilled self-adhesive light-cured protective coating) | Distilled water | Sension4 pH/ISE/MV Meter | 21 days | Glass-ionomer cement non-coated > Glass-ionomer Cement coated G Coat Plus |
Rekhlakshimi et al. [44] | Fuji II (Conventional GIC) | 1. Cavity Varnish 2. petroleum jelly | Distilled water | Combination of fluoride electrode (Orion 9609BN, Orion Research Inc) and an ion analyzer (Orion EA 940, Orion Research Inc). | 15 days | Glass-ionomer cement uncoated > glass-ionomer cement coated with petroleum jelly > Glass-ionomer cement coated with varnish |
Kelic et al. [45] | 1. Alkasite composite (Cention) 2. Giomer (Beautifil II) 3. Conventional glass-ionomer cement (GIC) (GC Fuji IX Extra) 4. Conventional composite (Filtek Z250) | 1. Universal Adhesive System (G-aenial Bond) 2. Glass-ionomer coat (GC Fuji Coat LC) 3. Universal Fluoride-Releasing Adhesive System (Clearfil Universal Bond Quick) | Deionized water | Orion 9609BNWP ion-selective electrode (Thermo Fisher Scientific, 22 Alpha Road, Chelmsford, MA 01824, USA) | 168 days | Cention non-coated > Beautiful II non-coated > Fuji IX Extra non coated > Filtek Z250 non coated > Cention coated Clearfil Bond > Beautifil II) (coated) > (Fuji IX Extra) (coated) > Filtek Z250) (coated) |
Wang et al. [46] | Vitremer (P: Fluoro- aluminosilicate glass, potassium persulfate, ascorbic acid L: 50% Polycarboxylic acid copolymer, 20% HEMA, water, 13% carboxylic acid copolymer) | 1. Vitremer Primer (46% HEMA, 39% Ethyl alcohol, 15% Vitrebond copolymer) 2. Single Bond (Water, alcohol, HEMA, BisGMA, DMA, photoinitiator, polyacrylic acid copolymer, itaconic acid) 3. Prime & Bond 2.1 (BisGMA, PENTA-P, photoinitiator, cetylamine hydrofluoride, acetone) | 1. demineralizing solution (Ca 2.0 mM, PO4 2.0 Mm, and acetate buffer 75 mM, pH 4.3, containing Na N3 0.02%) 2. artificial saliva (Ca 1.5 mM, PO4 0.9 mM, KCl 150 mM, and Tris buffer 20 mM, pH 7.0, containing NaN3 0.02%) | Ion-specific electrode (Orion Research, Cambridge, MA, USA, model 9609) | 15 days | Coated with Vitremer Primer > non-coated > coated with Single Bond > coated with Prime and Bond 2.1 Groups coated with Vitremer Primer and Non-Coated released a greater amount with no statistical differences in all periods (p > 0.05). |
Seppä et al. [47] | 1. Ketac-Fil Aplicap® 2. Fuji II LC® 3. Vitremer® 4. Silux Plus | 1. Prisma® Universal Bond3 | 1. Distilled water 2. maleic-acid-KOH buffer, 3. 5% sucrose solution 4. amine fluoride gel (Elmex Gel) | Fluoride-specific electrode (Orion 960 Autochemistry-system, Orion Research, Boston, MA, USA). | 29 days | Ketac-Fil (initially)—highest fluoride release at the beginning but diminishes over time. Vitremer (after 29 days)—fluoride release still high after aging, higher than other materials. Fuji II LC—lower fluoride release compared to Vitremer after aging. |
Monteith et al. [48] | 1. Vitremer (tri-cured resin-modified glass-ionomer cement) 2. Dyract Ortho (a compomer) 3. Right-On No-Mix Adhesive (non-fluoride conventional resin bonding agent) | Nail varnish (Max Factor, Diamond Hard, Proctor and Gamble, UK). | Deionized water | Orion combination fluoride ion-selective electrode (Orion Research Electrode No. 9609BN) attached to an ion analyzer (Orion Research Expandable Ion Analyzer EA940, Boston, MA, USA). | 60 days | Vitremer (Unvarnished Disc Model) > Vitremer (Varnished Disc Model) > Vitremer (Tooth-Bracket Model) > Dyract Ortho (Unvarnished Disc Model) > Dyract Ortho (Varnished Disc Model) > Dyract Ortho (Tooth-Bracket Model) |
Exterkate et al. [49] | 1. Fuji II LC, a convention- al GIC 2. Experimental GIC, RK-141 3. Non-fluoride-releasing disc of polymethylmethacrylate (Vertex) | Nail varnish | 1. Remineralization Buffer: Composed of 1.5 mmol/L CaCl2, 0.9 mmol/L KH2PO4, 130 mmol/L KCl, and 20 mmol/L HEPES at pH 7.0. 2. 1 mL 1 mol/L KOH for 24 h 3. 1.5 mL 0.4 mol/L HCl for 1 h 4. 5 mL 4 mol/L HCl | Gas–liquid chromatography (model CP9001, Varian, Middelburg, The Netherlands). | 10 weeks | Experimental GIC > Conventional GIC |
Itota et al. [50] | 1. Lining cement (LC) (FASG, polyacrylic acid, etc.) 2. RK-141A (FASG, polyacrylic acid, etc.) | 1. Resin liner containing 5 wt% NaF (RF) (bis-GMA, TEGDMA, NaF, etc.) 2. Resin liner without fluoride (bis-GMA, TEGDMA, etc.) | 1. Distilled water 2. Acetic buffer solution (TISAB III), | fluoride-specific electrode attached to an ion meter | 10 weeks | Highest: RF—268.0 ppm (1 week), 450.6 ppm (5 weeks), and 523.2 ppm (10 weeks) LC—54.4 ppm (1 week), 130.4 ppm (5 weeks), and 176.6 ppm (10 weeks) RK—50.2 ppm (1 week), 154.0 ppm (5 weeks), and 230.8 ppm (10 weeks), |
Castro et al. [51] | 1. Ketac-Fil Aplicap 2. Variglass | 1. Visiobond (ESPE-Premier) 2. Scotchbond II LC Dental Adhesive (3M Dental Products, St Paul, MN) 3. Ketac Varnish (ESPE-Premier) | Fluoride-free distilled water | Combination Fluoride Electrode and an Orion Digital Ionalizer (Orion Research Inc., Cambridge, MA 02139, USA) | 4 weeks | Non-coated > Visibond (57% of the non-coated group) > Scotchbond (39% of the non-coated group) > Variglass (37% of the non-coated group) > Ketac varnish (26% of the non-coated group) |
Itota et al. [52] | Experimental dental resin-based material, which included a filler made of fluoro-boro-alumino-silicate glass | 3-Methacryloxypropyltrimethoxysilane (KBM-503, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan) (MS) 2. 3-aminopropyltrimethoxysilane (KBM-903, Shin-Etsu Chemical Co., Ltd.) (AS) | Deionized water | fluoride-specific electrode attached to an ion meter (Model 290A, Orion Research Inc., Boston, MA, USA). | 10 weeks | group AS: Highest at 1 and 10 weeks. Fluoride emission was similar for the control and MS groups; no notable difference. |
Kishore et al. [53] | 1. conventional GIC 2. Zirconomer | 1. G-Coat Plus (GC Corporation, Tokyo, Japan) 2. Petroleum jelly (Vaseline, Hindustan Lever Ltd., Mumbai, Maharashtra, India) | Deionized distilled water | Fluoride electrode (Orion 9609BN, Orion Research Inc., USA) with a combination of ion analyzer (Orion EA 940, Orion Research Inc., USA) | 15 days | Zirconomer non-coated > conventional GIC non-coated > Zirconomer + G-Coat Plus > conventional GIC + G-Coat Plus > Zirconomer + petroleum jelly > conventional GIC + petroleum jelly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarczuk, D.; Tokarczuk, O.; Kiryk, J.; Kensy, J.; Szablińska, M.; Dyl, T.; Dobrzyński, W.; Matys, J.; Dobrzyński, M. Fluoride Release by Restorative Materials after the Application of Surface Coating Agents: A Systematic Review. Appl. Sci. 2024, 14, 4956. https://doi.org/10.3390/app14114956
Tokarczuk D, Tokarczuk O, Kiryk J, Kensy J, Szablińska M, Dyl T, Dobrzyński W, Matys J, Dobrzyński M. Fluoride Release by Restorative Materials after the Application of Surface Coating Agents: A Systematic Review. Applied Sciences. 2024; 14(11):4956. https://doi.org/10.3390/app14114956
Chicago/Turabian StyleTokarczuk, Dominik, Oskar Tokarczuk, Jan Kiryk, Julia Kensy, Magdalena Szablińska, Tomasz Dyl, Wojciech Dobrzyński, Jacek Matys, and Maciej Dobrzyński. 2024. "Fluoride Release by Restorative Materials after the Application of Surface Coating Agents: A Systematic Review" Applied Sciences 14, no. 11: 4956. https://doi.org/10.3390/app14114956
APA StyleTokarczuk, D., Tokarczuk, O., Kiryk, J., Kensy, J., Szablińska, M., Dyl, T., Dobrzyński, W., Matys, J., & Dobrzyński, M. (2024). Fluoride Release by Restorative Materials after the Application of Surface Coating Agents: A Systematic Review. Applied Sciences, 14(11), 4956. https://doi.org/10.3390/app14114956