Evaluation of Thermodynamic and Chemical Kinetic Models for Hypersonic and High-Temperature Flow Simulation
<p>Grid for Cylindrical Flow Field.</p> "> Figure 2
<p>Temperature distribution around the flow field considering Gupta model under different conditions.</p> "> Figure 2 Cont.
<p>Temperature distribution around the flow field considering Gupta model under different conditions.</p> "> Figure 3
<p>Temperature distribution along the stagnation line under different conditions.</p> "> Figure 3 Cont.
<p>Temperature distribution along the stagnation line under different conditions.</p> "> Figure 4
<p>Pressure distribution along the stagnation line under different conditions.</p> "> Figure 4 Cont.
<p>Pressure distribution along the stagnation line under different conditions.</p> "> Figure 5
<p>Number density of atom nitrogen along the stagnation line for one temperature model with different chemical kinetic model.</p> "> Figure 5 Cont.
<p>Number density of atom nitrogen along the stagnation line for one temperature model with different chemical kinetic model.</p> "> Figure 6
<p>Number density of electron along the stagnation line for two temperature model with different chemical kinetic model.</p> "> Figure 6 Cont.
<p>Number density of electron along the stagnation line for two temperature model with different chemical kinetic model.</p> "> Figure 7
<p>Wall heat fluxes for three cases calculated by different models.</p> "> Figure 7 Cont.
<p>Wall heat fluxes for three cases calculated by different models.</p> "> Figure 8
<p>Wall pressure distribution predicted by different models for the three cases.</p> ">
Abstract
:1. Introduction
2. Mathematical and Physical Models
2.1. Governing Equations
2.2. Chemical Reaction Models
2.3. Vibrational-Electronic Energy Equation Source Term
2.4. Transport Properties
2.4.1. Viscosity
2.4.2. Mass Diffusion Coefficient
2.4.3. Thermal Conductivity
2.5. HyFLOW
3. Results and Discussions
3.1. Temperature
3.2. Species
3.3. Wall Heat Flux and Pressure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Rate Coefficients for Chemical Kinetic Models
No. | Reactions | Af,r | Bf,r | Cf,r | Ab,r | Bb,r | Cb,r |
---|---|---|---|---|---|---|---|
1 | O2 + M1 = 2O + M1 | 3.60 1012 | −1.00 | 5.95 1014 | 3.00 103 | −0.50 | 0 |
2 | O2 + O = 3O | 9.00 1013 | −1.00 | 5.95 1014 | 7.50 104 | −0.50 | 0 |
3 | 2O2 = 2O + O2 | 3.24 1013 | −1.00 | 5.95 1014 | 2.70 104 | −0.50 | 0 |
4 | O2 + N2 = 2O + N2 | 7.20 1012 | −1.00 | 5.95 1014 | 6.00 103 | −0.50 | 0 |
5 | N2 + M2 = 2N + M2 | 1.90 1011 | −0.50 | 1.13 105 | 1.10 104 | −0.50 | 0 |
6 | N2 + N = 3N | 4.09 1016 | −1.50 | 1.13 105 | 2.27 109 | −1.50 | 0 |
7 | 2N2 = 2N + N2 | 4.70 1011 | −0.50 | 1.13 105 | 2.72 104 | −0.50 | 0 |
8 | NO + M3 = N + O + M3 | 3.90 1014 | −1.50 | 7.55 104 | 1.00 108 | −1.50 | 0 |
9 | NO + M4 = N + O + M4 | 7.80 1014 | −1.50 | 7.55 104 | 2.00 108 | −1.50 | 0 |
10 | O + NO = N + O2 | 3.20 103 | 1.00 | 1.97 104 | 1.30 104 | 1.00 | 3580 |
11 | O + N2 = NO + N | 7.00 107 | 0.0 | 3.80 104 | 1.56 107 | 0 | 0 |
12 | O + N = NO+ + e− | 1.40 | 1.50 | 3.19 104 | 6.70 1015 | −1.50 | 0 |
13 | O2 + N2 = NO + NO+ + e− | 1.38 1014 | −1.84 | 1.41 105 | 1.00 1012 | −2.50 | 0 |
14 | NO + N2 = N2 + NO+ + e− | 2.20 109 | −0.35 | 1.08 105 | 2.20 1014 | −2.50 | 0 |
15 | O2 + NO = O2 + NO+ + e− | 8.80 109 | −0.35 | 1.08 105 | 8.80 1014 | −2.50 | 0 |
16 | O + e− = O+ + e− + e− | 3.60 1025 | −2.91 | 1.58 105 | 2.20 1028(8) | −4.50 | 0 |
17 | N + e− = N+ + e− + e− | 1.10 1026 | −3.14 | 1.69 105 | 2.20 1028(8) | −4.50 | 0 |
18 | N + NO+ = NO + N+ | 1.00 1013 | −0.93 | 6.10 104 | 4.80 108 | 0 | 0 |
19 | O + NO+ = O2 + N+ | 1.34 107 | 0.31 | 7.73 104 | 1.00 108(7) | 0 | 0 |
20 | O + NO+ = NO + O+ | 3.63 109 | −0.60 | 5.08 104 | 1.50 107(17) | 0 | 0 |
21 | N2 + O+ = O + | 3.40 1013 | −2.00 | 2.30 104 | 2.48 1013 | −2.20 | 0 |
22 | N2 + N+ = N + | 2.02 105 | 0.81 | 1.30 104 | 7.80 105 | 0.50 | 0 |
23 | N + N = | 1.40 107 | 0 | 6.78 104 | 1.50 1016 | −1.50 | 0 |
24 | O + O = + e− | 1.60 1011 | −0.98 | 8.08 104 | 8.00 1015 | −1.50 | 0 |
25 | O2 + NO+ = NO + | 1.80 109 | 0.17 | 3.30 104 | 1(2).80 107 | 0.50 | 0 |
26 | O + = O2 + O+ | 2.92 1012 | −1.11 | 2.80 104 | 7.80 105 | 0.50 | 0 |
No. | Reactions | Af,r | Bf,r | Cf,r | Ab,r | Bb,r | Cb,r |
---|---|---|---|---|---|---|---|
1 | O2 + M1 = 2O + M1 | 3.61 1012 | −1.00 | 5.94 1014 | 3.01 103 | −0.5 | 0 |
2 | N2 + M2 = 2N + M2 | 1.92 1011 | −0.50 | 1.13 105 | 1.10 104 | −0.50 | 0 |
3 | N2 + N = 3N | 4.15 1016 | −1.50 | 1.13 105 | 2.32 109 | −1.50 | 0 |
4 | NO + M3 = N + O + M3 | 3.97 1014 | −1.50 | 7.56 104 | 1.01 108 | −1.50 | 0 |
5 | O + NO = N + O2 | 3.18 103 | 1.00 | 1.97 104 | 9.63 104 | 0.50 | 3600 |
6 | O + N2 = NO + N | 6.75 107 | 0 | 3.75 104 | 1.50 107 | 0 | 0 |
7 | O + N = NO+ + e− | 9.03 103 | 0.50 | 3.24 104 | 1.80 1013 | −1.00 | 0 |
8 | O2 + N2 = NO + NO+ + e− | 1.38 1014 | −1.84 | 1.41 105 | 1.00 1012 | −2.50 | 0 |
9 | NO + M4 = M4 + NO+ + e− | 2.20 109 | −0.35 | 1.08 105 | 2.20 1014 | −2.50 | 0 |
10 | O + e− = O+ + e− + e− | 3.60 1025 | −2.91 | 1.58 105 | 2.20 108 | −4.50 | 0 |
11 | N + e− = N+ + e− + e− | 1.10 1026 | −3.14 | 1.69 104 | 2.20 108 | −4.50 | 0 |
12 | N + NO+ = NO + N+ | 1.00 1013 | −0.93 | 6.10 104 | 4.80 108 | 0 | 0 |
13 | O + NO+ = O2 + N+ | 1.34 107 | 0.31 | 7.73 104 | 1.00 108 | 0 | 0 |
14 | O + NO+ = NO + O+ | 3.63 109 | −0.60 | 5.08 104 | 1.50 107 | 0 | 0 |
15 | N2 + O+ = | 3.40 1013 | −2.00 | 2.30 104 | 2.48 1013 | −2.20 | 0 |
16 | N2 + N+ = | 2.02 105 | 0.81 | 1.30 104 | 7.80 105 | 0.50 | 0 |
17 | N + N = +e− | 1.40 107 | 0 | 6.78 104 | 1.50 1016 | −1.50 | 0 |
18 | O + O = + e− | 1.60 1011 | −0.98 | 8.08 104 | 8.02 1015 | −1.50 | 0 |
19 | O2 + NO+ = | 1.80 109 | 0.17 | 3.30 104 | 1.80 107 | 0.50 | 0 |
20 | O + = O2 + O+ | 2.92 1012 | −1.11 | 2.80 104 | 7.80 105 | 0.50 | 0 |
No. | Reactions (5-Species) | Af,r | Bf,r | Cf,r |
---|---|---|---|---|
1 | O2 + M1 = O + O + M1 | 1.0 1016 | −1.50 | 59,360 |
2 | O2 + M2 = O + O + M2 | 2.0 1015 | −1.50 | 59,360 |
3 | N2 + M1 = N + N + M1 | 3.0 1016 | −1.60 | 113,200 |
4 | N2 + M2 = N + N + M2 | 7.0 1015 | −1.60 | 113,200 |
5 | NO + M3 = N + O + M3 | 1.1 1011 | 0 | 75,500 |
6 | NO + M4 = N + O + M4 | 5.0 109 | 0 | 75,500 |
7 | O + NO = N + O2 | 8.4 106 | 0 | 19,400 |
8 | O + N2 = NO + N | 5.7 106 | 0.42 | 42,938 |
No. | Reactions (7-Species) | Af,r | Bf,r | Cf,r |
---|---|---|---|---|
1 | O2 + M1 = O + O + M1 | 1.00 × 1016 | −1.50 | 59,360 |
2 | O2 + M2 = O + O + M2 | 2.00 × 1015 | −1.50 | 59,360 |
3 | N2 + M1 = N + N + M1 | 3.00 × 1016 | −1.60 | 113,200 |
4 | N2 + M2 = N + N + M2 | 7.00 × 1015 | −1.60 | 113,200 |
5 | NO + M3 = N + O + M3 | 1.10 × 1011 | 0 | 75,500 |
6 | NO + M4 = N + O + M4 | 5.00 × 109 | 0 | 75,500 |
7 | O + NO = N + O2 | 7.95 × 106 | −2.00 | 75,500 |
8 | O + N2 = NO + N | 8.40 × 106 | 0 | 19,400 |
9 | NO + M5 = N + O + M5 | 5.70 × 1017 | 0.42 | 42,938 |
10 | O + N = NO+ + e− | 5.30 × 106 | 0 | 31,900 |
No. | Reactions (11-Species) | Af,r | Bf,r | Cf,r |
---|---|---|---|---|
1 | O2 + M1 = O + O + M1 | 1.00 × 1016 | −1.50 | 59,360 |
2 | O2 + M2 = O + O + M2 | 2.00 × 1015 | −1.50 | 59,360 |
3 | N2 + M1 = N + N + M1 | 3.00 × 1016 | −1.60 | 113,200 |
4 | N2 + M2 = N + N + M2 | 7.00 × 1015 | −1.60 | 113,200 |
5 | NO + M3 = N + O + M3 | 1.10 × 1011 | 0 | 75,500 |
6 | NO + M4 = N + O + M4 | 5.00 × 109 | 0 | 75,500 |
7 | O + NO = N + O2 | 7.95 × 106 | −2.00 | 75,500 |
8 | O + N2 = NO + N | 8.40 × 106 | 0 | 19,400 |
9 | NO + M5 = N + O + M5 | 5.70 × 1017 | 0.42 | 42,938 |
10 | O + N = NO+ + e− | 5.30 × 106 | 0 | 31,900 |
11 | + e− | 4.40 × 101 | 1.50 | 67,500 |
12 | + e− | 1.10 × 107 | 0 | 80,600 |
13 | = O2 + O+ | 4.00 × 106 | −0.09 | 18,000 |
14 | 9.85 × 106 | −0.18 | 12,100 | |
15 | O + NO+ = NO + O+ | 2.75 × 107 | 0.01 | 51,000 |
16 | 9.00 × 105 | 0.36 | 22,800 | |
17 | 2.40 × 106 | 0.41 | 32,600 | |
18 | + O | 7.20 × 107 | 0 | 35,500 |
19 | O + e− = O+ + e− + e− | 3.90 × 1027 | −3.78 | 158,500 |
20 | N + e− = N+ + e− + e− | 2.50 × 1027 | −3.82 | 168,200 |
References
- Ye, Y. Advances and prospects in hypersonic aerodynamics. Chin. Sci. Bull. 2015, 60, 1095–1103. [Google Scholar] [CrossRef]
- Bertin, J.J.; Cummings, R.M. Critical Hypersonic Aerothermodynamic Phenomena. Annu. Rev. Fluid Mech. 2006, 38, 129–157. [Google Scholar] [CrossRef]
- Starkey, R.P. Hypersonic vehicle telemetry blackout analysis. J. Spacecr. Rocket. 2015, 52, 426–438. [Google Scholar] [CrossRef]
- Weidner, J. Hypersonic propulsion-Breaking the thermal barrier. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 1993, 207, 47–59. [Google Scholar] [CrossRef]
- Anderson, J.D. Hypersonic and High Temperature Gas Dynamics, 2nd ed.; AIAA: Reston, VA, USA, 2006; pp. 13–23. [Google Scholar]
- Hao, J.; Wang, J.; Lee, C. Assessment of vibration–dissociation coupling models for hypersonic nonequilibrium simulations. Aerosp. Sci. Technol. 2017, 67, 433–442. [Google Scholar] [CrossRef]
- Candler, G.V. Rate Effects in Hypersonic Flows. Annu. Rev. Fluid Mech. 2019, 51, 379–402. [Google Scholar] [CrossRef]
- Park, C. Assessment of two-temperature kinetic model for ionizing air. J. Thermophys. Heat Transf. 1989, 3, 233–244. [Google Scholar] [CrossRef]
- Park, C. Review of chemical-kinetic problems of future NASA missions. I-Earth entries. J. Thermophys. Heat Transf. 1993, 7, 385–398. [Google Scholar] [CrossRef]
- Gupta, R.N.; Yos, J.M.; Thompson, R.A.; Lee, K.-P. A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30,000 K; NASA-RP-1232; NASA Langley Research Center: Washington, DC, USA, 1990.
- Dunn, M.G.; Kang, S. Theoretical and Experimental Studies of Reentry Plasmas; NASA-CR-2232; NASA Langley Research Center: Washington, DC, USA, 1973.
- Jiang, H.; Liu, J.; Luo, S.; Huang, W.; Wang, J.; Liu, M. Thermochemical non-equilibrium effects on hypersonic shock wave/turbulent boundary-layer interaction. Acta Astronaut. 2022, 192, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Yan, C.; Zheng, Y.; Li, E. Assessment of chemical kinetic models on hypersonic flow heat transfer. Int. J. Heat Mass Transf. 2017, 111, 356–366. [Google Scholar] [CrossRef]
- Weizhong, D.; Mingsong, D.; Tiesuo, G.; Tao, J. The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate. Acta Aerodyn. Sin. 2013, 31, 692–698. [Google Scholar]
- Zhao, Y.; Huang, H. Numerical study of hypersonic surface heat flux with different air species models. Acta Astronaut. 2020, 169, 84–93. [Google Scholar] [CrossRef]
- Dobrov, Y.; Gimadiev, V.; Karpenko, A.; Volkov, K. Numerical simulation of hypersonic flow with non-equilibrium chemical reactions around sphere. Acta Astronaut. 2022, 194, 468–479. [Google Scholar] [CrossRef]
- Mo, F.; Gao, Z.; Jiang, C.; Lee, C.-H. Progress in the numerical study on the aerodynamic and thermal characteristics of hypersonic vehicles: High-temperature chemical non-equilibrium effect. SCIENTIA SINICA Phys. Mech. Astron. 2021, 51, 104703. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Ding, M. Framework design of NNW-HyFLOW hypersonic flow simulation software. Acta Aeronaut. Et. Astronaut. Sin. 2021, 42, 625718. [Google Scholar]
- Gnoffo, P.A. Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium; NASA-TP-2867; NASA Langley Research Center: Washington, DC, USA, 1989.
- Wilke, C.R. A viscosity equation for gas mixtures. J. Chem. Phys. 1950, 18, 517–519. [Google Scholar] [CrossRef]
- Sutherland, W. LII. The viscosity of gases and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1893, 36, 507–531. [Google Scholar] [CrossRef]
- Blottner, F.G.; Johnson, M.; Ellis, M. Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA, 1971.
- Candler, G. The Computation of Weakly Ionized Hypersonic Flows in Chemical Nonequilibrium. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1988. [Google Scholar]
- Gupta, R. Navier-Stokes and viscous shock-layer solutions for radiating hypersonic flows. In Proceedings of the 22nd Thermophysics Conference, Honolulu, HI, USA, 8–10 June 1987; p. 1576. [Google Scholar]
- Kim, J.G.; Jo, S.M. Modification of chemical-kinetic parameters for 11-air species in re-entry flows. Int. J. Heat Mass Transf. 2021, 169, 120950. [Google Scholar] [CrossRef]
Thermodynamic Model | Chemical Kinetic Model | |
---|---|---|
One-temperature | Park [9] | 5-species |
7-species | ||
11-species | ||
Two-temperature [8] | Gupta [10] | 5-species |
7-species | ||
11-species | ||
Dunn-Kang [11] | 5-species | |
7-species | ||
11-species |
H (km) | V∞ (km/s) | Ma | ρ∞ (kg/m3) | p∞ (Pa) | T∞ (K) | Tw (K) |
---|---|---|---|---|---|---|
71.02 | 11.31 | 38.94 | 8.57 × 10−5 | 5.20 | 210 | 810 |
59.62 | 10.97 | 34.34 | 3.86 × 10−4 | 28.20 | 254 | 1560 |
48.37 | 9.83 | 29.05 | 1.32 × 10−3 | 108.00 | 285 | 1520 |
Ma = 29.05 | Dunn-Kang (1T/2T) | Gupta (1T/2T) | Park (1T/2T) | Perfect Gas | |||||||
Species | 5S | 7S | 11S | 5S | 7S | 11S | 5S | 7S | 11S | \ | |
δ (mm) | 1T 2T | 141 145 | 141 145 | 140 144 | 141 145 | 141 145 | 140 143 | 143 147 | 143 147 | 141 145 | 380 |
ρ/ρ∞ | 1T 2T | 14.17 13.10 | 14.19 13.26 | 14.62 14.09 | 14.17 13.01 | 14.22 13.29 | 14.62 14.09 | 14.08 13.15 | 14.11 13.23 | 14.52 13.96 | 5.92 |
p/p∞ | 1T 2T | 1015 1012 | 1013 1013 | 1016 1016 | 1015 1012 | 1016 1013 | 1017 1017 | 1015 1013 | 1016 1014 | 1017 1016 | 974 |
Ma = 34.34 | Dunn-Kang (1T/2T) | Gupta (1T/2T) | Park (1T/2T) | Perfect Gas | |||||||
Species | 5S | 7S | 11S | 5S | 7S | 11S | 5S | 7S | 11S | \ | |
δ (mm) | 1T 2T | 173 203 | 173 192 | 146 151 | 173 203 | 172 191 | 145 151 | 174 200 | 173 193 | 149 155 | 377 |
ρ/ρ∞ | 1T 2T | 9.76 7.79 | 9.81 8.50 | 12.38 12.05 | 9.76 7.77 | 9.81 8.49 | 12.38 12.05 | 9.76 7.89 | 9.78 8.27 | 12.06 11.70 | 5.26 |
p/p∞ | 1T 2T | 1251 1237 | 1251 1241 | 1262 1261 | 1251 1237 | 1251 1240 | 1262 1261 | 1251 1238 | 1251 1239 | 1256 1260 | 1208 |
Ma = 38.94 | Dunn-Kang (1T/2T) | Gupta (1T/2T) | Park (1T/2T) | Perfect Gas | |||||||
Species | 5S | 7S | 11S | 5S | 7S | 11S | 5S | 7S | 11S | \ | |
δ (mm) | 1T 2T | 185 217 | 184 206 | 137 142 | 184 220 | 183 208 | 137 142 | 187 223 | 186 216 | 141 147 | 372 |
ρ/ρ∞ | 1T 2T | 9.88 8.38 | 9.93 8.97 | 13.94 13.68 | 9.87 8.32 | 9.93 8.86 | 13.94 13.68 | 9.89 8.07 | 9.90 8.54 | 13.60 13.98 | 5.57 |
p/p∞ | 1T 2T | 1799 1784 | 1799 1787 | 1819 1819 | 1798 1783 | 1798 1786 | 1818 1818 | 1799 1780 | 1800 1783 | 1818 1819 | 1738 |
Cases | Model | Species | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | N | O | NO | e− | NO+ | N+ | O+ | ||||
Ma = 29.05 | freestream | 0.767 | 0.233 | \ | \ | \ | \ | \ | \ | \ | \ | \ |
Gupta-5S | 3.4 × 10−3 | 3.2 × 10−6 | 0.763 | 0.233 | 1.4 × 10−4 | \ | \ | \ | \ | \ | \ | |
Gupta-7S | 2.9 × 10−3 | 2.5 × 10−6 | 0.762 | 0.231 | 1.2 × 10−4 | 8.1 × 10−8 | 4.4 × 10−3 | \ | \ | \ | \ | |
Gupta-11S | 1.0 × 10−2 | 6.5 × 10−6 | 0.752 | 0.223 | 3.4 × 10−4 | 4.9 × 10−7 | 4.9 × 10−4 | 4.2 × 10−3 | 1.0 × 10−4 | 9.2 × 10−3 | 6.0 × 10−6 | |
Ma = 38.94 | freestream | 0.767 | 0.233 | \ | \ | \ | \ | \ | \ | \ | \ | \ |
Gupta-5S | 5.1 × 10−6 | 4.7 × 10−8 | 0.767 | 0.233 | 7.6 × 10−7 | \ | \ | \ | \ | \ | \ | |
Gupta-7S | 8.3 × 10−7 | 1.3 × 10−8 | 0.761 | 0.226 | 2.1 × 10−7 | 2.5 × 10−7 | 1.4 × 10−2 | \ | \ | \ | \ | |
Gupta-11S | 1.5 × 10−4 | 1.4 × 10−7 | 0.697 | 0.136 | 7.7 × 10−6 | 6.1 × 10−6 | 5.0 × 10−5 | 7.0 × 10−2 | 2.7 × 10−5 | 9.7 × 10−2 | 6.5 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Yang, X.; Wang, J.; Zheng, Y.; Zhou, Y. Evaluation of Thermodynamic and Chemical Kinetic Models for Hypersonic and High-Temperature Flow Simulation. Appl. Sci. 2023, 13, 9991. https://doi.org/10.3390/app13179991
Zhao W, Yang X, Wang J, Zheng Y, Zhou Y. Evaluation of Thermodynamic and Chemical Kinetic Models for Hypersonic and High-Temperature Flow Simulation. Applied Sciences. 2023; 13(17):9991. https://doi.org/10.3390/app13179991
Chicago/Turabian StyleZhao, Wei, Xinglian Yang, Jingying Wang, Yongkang Zheng, and Yue Zhou. 2023. "Evaluation of Thermodynamic and Chemical Kinetic Models for Hypersonic and High-Temperature Flow Simulation" Applied Sciences 13, no. 17: 9991. https://doi.org/10.3390/app13179991
APA StyleZhao, W., Yang, X., Wang, J., Zheng, Y., & Zhou, Y. (2023). Evaluation of Thermodynamic and Chemical Kinetic Models for Hypersonic and High-Temperature Flow Simulation. Applied Sciences, 13(17), 9991. https://doi.org/10.3390/app13179991