Operational Performance and Energy Efficiency of MEX 3D Printing with Polyamide 6 (PA6): Multi-Objective Optimization of Seven Control Settings Supported by L27 Robust Design
<p>Work procedure: (<b>a</b>) methodology steps of the experiments; (<b>b</b>) experimental procedure highlights; (<b>c</b>) robust design algorithm.</p> "> Figure 2
<p>Values for 3D printing parameters and the compression test sample’s geometry made in accordance with ASTM D695 specifications are shown. The right side of the figure shows (<b>a</b>) a TGA graph of the weight loss versus temperature for the particular PA6 utilized in the study and (<b>b</b>) a DSC graph.</p> "> Figure 3
<p>(<b>a</b>) A 3D printed specimen’s compression test stages up to delamination failure due to buckling (Runs 19), (<b>b</b>) graphical representation and microscopic examination of the fractured surface, (<b>c</b>,<b>d</b>) Micrographs of two corresponding samples’ upper- and lower-fractured surfaces (Run 11, 12) that failed by shear sliding.</p> "> Figure 4
<p>Microscopic images of specimens created using several 3D printing parameters. The specimen’s 3D printing raster deposition angle is displayed in every case. On the graphic on the left side, the white arrow indicates the surface of the sample that was captured and presented in the microscope images on the right side.</p> "> Figure 5
<p>Specimen failure during compression testing.</p> "> Figure 6
<p>Box plots showing the relationship between the response and the work’s control parameters: (<b>a</b>) Printing time vs. PS, LT, ORA; (<b>b</b>) Part weight versus ID, RDA, ORA; (<b>c</b>) Compressive strength versus ID, ORA, RDA; (<b>d</b>) EPC versus PS, LT, ORA.</p> "> Figure 7
<p>MEP for printing time and part weight versus control settings.</p> "> Figure 8
<p>MEP vs. the work’s control parameters for compressive strength and energy.</p> "> Figure 9
<p>Plots of the compressive strength and the energy in relation to the work’s control factors.</p> "> Figure 10
<p>Response versus Control Parameters of (<b>a</b>) Part Weight versus ID and RDA; (<b>b</b>) Compressive Strength versus ID and ORA; (<b>c</b>) Energy versus PS and LT; (<b>d</b>) Printing Time versus LT and PS; (<b>e</b>) Compressive Strength versus LT and NT; (<b>f</b>) Energy versus ORA and BT.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
- Existing research lacks extensive data, particularly when it comes to multi-parametric tests. Due to the high cost of 3D printing, and the need for a more robust compression test apparatus, there is a shortage of such scientific findings. Given that compressive mechanical stress occurs frequently over the operational life of 3D-printed working components, the paucity of compression test results documentation is evident [82].
- The compressive samples’ increased volume enabled the monitoring and documentation of their weight, printing time, and power consumption and resulted in measures that are accurate and trustworthy.
2. Materials and Methods
2.1. Compression Experiments
2.2. Methodology for the Analysis of Variance (ANOVA) and Experimental Design
3. Results
3.1. Evaluation of Compressive Failure Modes and Morphological Traits
3.2. Experimental Results and Taguchi Design
- The ORA control parameter exhibits synergistic relationships with the LT and PS and antagonistic relationships with the other control parameters.
- The RDA control parameter exhibits a synergistic relationship with the PS and antagonistic relationships with the other control parameters.
- The LT control parameter exhibits a synergistic relationship with the PS, NT, and BT and antagonistic relationships with the other control parameters.
- The ID control parameter exhibits a synergistic relationship with the PS, NT, and BT and antagonistic relationships with the other control parameters.
- The PS control parameter exhibits a synergistic relationship with the ID, LT, and RDA and antagonistic relationships with the other control parameters.
- The NT control parameter exhibits a synergistic relationship with the LT and ID and antagonistic relationships with the other control parameters.
- The BT control parameter exhibits a synergistic relationship with the ID and LT and antagonistic relationships with the other control parameters.
- For compressive strength:
- The ORA control parameter exhibits synergistic relationships with the NT and antagonistic relationships with the other control parameters.
- The RDA control parameter exhibits a synergistic relationship with the NT and antagonistic relationships with the other control parameters.
- The LT control parameter exhibits antagonistic relationships with all the control parameters.
- The ID control parameter exhibits a synergistic relationship with the NT and antagonistic relationships with the other control parameters.
- The PS control parameter exhibits antagonistic relationships with all the control parameters.
- The NT control parameter exhibits a synergistic relationship with the ORA and ID and antagonistic relationships with the other control parameters.
- The BT control parameter exhibits antagonistic relationships with all the control parameters.
3.3. Regression Analysis
- The F-value for the weight response factor is 45.20 (>4), the p-value is almost zero, and the calculated values for the regression parameters are higher than 79.82%. These measures show that the Equation (7) prediction model is adequate for forecasting the weight response factor.
- The F-value for the printing time response factor is 96.61 (>4), the p-value is nearly zero, and the calculated values for the regression parameters are higher than 89.69%. These measures show that the Equation (8) prediction model is adequate for forecasting the printing time response factor.
- The F-value for the compressive strength response factor is 67.08 (>4), the P-value is nearly zero, and the calculated values for the regression parameters are higher than 85.66%. These measures show that Equation (9), which serves as the prediction model, is adequate for forecasting the compressive strength response factor.
- The F-value for the compression modulus of elasticity response factor is 43.86 (>4), the p-value is nearly zero, and the calculated values for the regression parameters are higher than 79.31%. Based on these metrics, it can be concluded that Equation (10)’s prediction model is adequate for forecasting the compression modulus of the elasticity response factor.
- The F-value for the compression toughness response factor is 59.30 (>4), the p-value is nearly zero, and the calculated values for the regression parameters are higher than 84.02%. These measures demonstrate that Equation (11)’s prediction model is adequate for forecasting the compression toughness response factor.
- The EPC response factor’s F-value is 168.97 (>4). The regression factor values are computed to be greater than 93.89%, and the p-value is almost zero. According to these statistics, the prediction model outlined in Equation (12) is appropriate for predicting the EPC response factor.
- The F-value for the SPE response factor is 233.02 (>4), the p-value is nearly zero, and the regression factor values were computed to be larger than 95.51%. These metrics show that Equation (13) in the prediction model is adequate for forecasting the SPE response factor.
- The F-value for the SPP response factor is 34.29 (>4), the p-value is nearly zero, and the estimated values for the regression parameter are higher than 74.69%. These measures show that the Equation (14) prediction model is adequate for forecasting the SPP response factor.
- The ORA, ORA2, LT, LT2, PS, and PS2 parameters for printing time pass the 1.98 margins, making them statistically significant factors for the particular response factor. The calculated MAPE value of 19.61% is a respectable outcome. Additionally, the Durbin-Watson metric was estimated at 0.4, demonstrating a positive autocorrelation in the prediction residuals.
- ORA2, PS, PS2, NT, NT2, BT, and BT2 were the statistically significant characteristics for the part weight. MAPE was computed at 5.05%, which is a highly acceptable result and confirms the model’s dependability. The prediction residuals show a positive autocorrelation, according to the 0.96 Durbin-Watson factor calculation.
- The statistically significant parameters for compressive strength include ORA, RDA, RDA2, LT, LT2, ID, ID2, NT, and NT2. MAPE was computed at 47.53%, which is a moderate result and shows that the expected accuracy of the model in the prediction is not very good. The residuals of the forecast show a positive autocorrelation, according to the Durbin-Watson factor calculation, which came out to be 1.04.
- The statistically significant factors for the EPC are ORA, ORA2, LT, LT2, ID, ID2, PS, PS2, NT, NT2, and BT2. MAPE was determined to be 15.63%, which is a respectable outcome. The residuals of the forecast show a positive autocorrelation, according to the Durbin-Watson factor calculation, which came up at 0.69.
3.4. Confirmation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, S.T.; Zhu, Z.; Dhokia, V.; Shokrani, A. Process Planning for Additive and Subtractive Manufacturing Technologies. CIRP Ann. 2015, 64, 467–470. [Google Scholar] [CrossRef]
- Peng, T.; Kellens, K.; Tang, R.; Chen, C.; Chen, G. Sustainability of Additive Manufacturing: An Overview on Its Energy Demand and Environmental Impact. Addit. Manuf. 2018, 21, 694–704. [Google Scholar] [CrossRef]
- MacDonald, E.; Wicker, R. Multiprocess 3D Printing for Increasing Component Functionality. Science 2016, 353, aaf2093. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Role of Additive Manufacturing Applications towards Environmental Sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4, 312–322. [Google Scholar] [CrossRef]
- Mani, M.; Lyons, K.W.; Gupta, S.K. Sustainability Characterization for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Despeisse, M. The Role of Additive Manufacturing in Improving Resource Efficiency and Sustainability. 2015. Available online: https://link.springer.com/chapter/10.1007/978-3-319-22759-7_15 (accessed on 5 July 2023).
- Colorado, H.A.; Velásquez, E.I.G.; Monteiro, S.N. Sustainability of Additive Manufacturing: The Circular Economy of Materials and Environmental Perspectives. J. Mater. Res. Technol. 2020, 9, 8221–8234. [Google Scholar] [CrossRef]
- Niaki, M.K.; Torabi, S.A.; Nonino, F. Why Manufacturers Adopt Additive Manufacturing Technologies: The Role of Sustainability. J. Clean. Prod. 2019, 222, 381–392. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; Montagna, F.; Esposito Corcione, C. Fused Filament Fabrication and Computer Numerical Control Milling in Cultural Heritage Conservation. Materials 2023, 16, 3038. [Google Scholar] [CrossRef]
- Marchewka, J.; Laska, J. Processing of Poly-l-Lactide and Poly(l-Lactide-Co-Trimethylene Carbonate) Blends by Fused Filament Fabrication and Fused Granulate Fabrication Using RepRap 3D Printer. Int. J. Adv. Manuf. Technol. 2020, 106, 4933–4944. [Google Scholar] [CrossRef] [Green Version]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Shirinbayan, M.; Benfriha, K.; Tcharkhtchi, A. Geometric Accuracy and Mechanical Behavior of PA6 Composite Curved Tubes Fabricated by Fused Filament Fabrication (FFF). Adv. Eng. Mater. 2022, 24, 2101056. [Google Scholar] [CrossRef]
- Harding, O.J.; Griffiths, C.A.; Rees, A.; Pletsas, D. Methods to Reduce Energy and Polymer Consumption for Fused Filament Fabrication 3D Printing. Polymers 2023, 15, 1874. [Google Scholar] [CrossRef] [PubMed]
- Khosravani, M.R.; Reinicke, T. On the Environmental Impacts of 3D Printing Technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Shuaib, M.; Haleem, A.; Kumar, S.; Javaid, M. Impact of 3D Printing on the Environment: A Literature-Based Study. Sustain. Oper. Comput. 2021, 2, 57–63. [Google Scholar] [CrossRef]
- Ajay, J.; Rathore, A.S.; Song, C.; Zhou, C.; Xu, W. Don’t Forget Your Electricity Bills! An Empirical Study of Characterizing Energy Consumption of 3D Printers. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, Hong Kong, China, 4–5 August 2016; Association for Computing Machinery: New York, NY, USA. [Google Scholar]
- Annibaldi, V.; Rotilio, M. Energy Consumption Consideration of 3D Printing. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, 4–6 June 2019; pp. 243–248. [Google Scholar]
- Vidakis, N.; Kechagias, J.D.; Petousis, M.; Vakouftsi, F.; Mountakis, N. The Effects of FFF 3D Printing Parameters on Energy Consumption. Mater. Manuf. 2022, 38, 915–932. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Karapidakis, E.; Mountakis, N.; David, C.; Sagris, D. Energy Consumption versus Strength in MEΧ 3D Printing of Polylactic Acid. Adv. Ind. Manuf. Eng. 2023, 6, 100119. [Google Scholar] [CrossRef]
- Petousis, M.; Vidakis, N.; Mountakis, N.; Karapidakis, E.; Moutsopoulou, A. Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency. Polymers 2023, 15, 1232. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Moutsopoulou, A.; Karapidakis, E. Energy Consumption vs. Tensile Strength of Poly [Methyl Methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings. Polymers 2023, 15, 845. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; David, C.N.; Sagris, D.; Mountakis, N.; Karapidakis, E. Mechanical Performance over Energy Expenditure in MEX 3D Printing of Polycarbonate: A Multiparametric Optimization with the Aid of Robust Experimental Design. J. Manuf. Mater. Process 2023, 7, 38. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.; Sheng, H.; Gao, M.; Zhang, S.; Tan, J. Energy Efficiency Optimization for Ecological 3D Printing Based on Adaptive Multi-Layer Customization. J. Clean. Prod. 2020, 245, 118826. [Google Scholar] [CrossRef]
- Idrissi, M.A.E.Y.E.; Laaouina, L.; Jeghal, A.; Tairi, H.; Zaki, M. Energy Consumption Prediction for Fused Deposition Modelling 3D Printing Using Machine Learning. Appl. Syst. Innov. 2022, 5, 86. [Google Scholar] [CrossRef]
- Peng, T.; Sun, W. Energy Modelling for FDM 3D Printing from a Life Cycle Perspective. Int. J. Manuf. Res. 2017, 12, 83–98. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Liebscher, M.; Mechtcherine, V.; Tzounis, L. On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers. Polymers 2020, 12, 2924. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Maravelakis, E.; Zaoutsos, S.; Kechagias, J.D. Mechanical Response Assessment of Antibacterial PA12/TiO2 3D Printed Parts: Parameters Optimization through Artificial Neural Networks Modeling. Int. J. Adv. Manuf. Technol. 2022, 121, 785–803. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N.; Petousis, M. Parameter Effects and Process Modeling of FFF-TPU Mechanical Response. Mater. Manuf. Process. 2021, 38, 341–351. [Google Scholar] [CrossRef]
- Petousis, M.; Mountakis, N.; Vidakis, N. Optimization of Hybrid Friction Stir Welding of PMMA: 3D-Printed Parts and Conventional Sheets Welding Efficiency in Single- and Two-Axis Welding Traces. Int. J. Adv. Manuf. Technol. 2023, 127, 2401–2423. [Google Scholar] [CrossRef]
- Vidakis, N.; David, C.N.; Petousis, M.; Sagris, D.; Mountakis, N. Optimization of Key Quality Indicators in Material Extrusion 3D Printing of Acrylonitrile Butadiene Styrene: The Impact of Critical Process Control Parameters on the Surface Roughness, Dimensional Accuracy, and Porosity. Mater. Today Commun. 2022, 34, 105171. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Papadakis, V.; Moutsopoulou, A. Mechanical Strength Predictability of Full Factorial, Taguchi, and Box Behnken Designs: Optimization of Thermal Settings and Cellulose Nanofibers Content in PA12 for MEX AM. J. Mech. Behav. Biomed. Mater. 2023, 142, 105846. [Google Scholar] [CrossRef]
- DePalma, K.; Walluk, M.R.; Murtaugh, A.; Hilton, J.; McConky, S.; Hilton, B. Assessment of 3D Printing Using Fused Deposition Modeling and Selective Laser Sintering for a Circular Economy. J. Clean. Prod. 2020, 264, 121567. [Google Scholar] [CrossRef]
- Rouf, S.; Raina, A.; Haq, M.I.U.; Naveed, N.; Jeganmohan, S.; Farzana Kichloo, A. 3D Printed Parts and Mechanical Properties: Influencing Parameters, Sustainability Aspects, Global Market Scenario, Challenges and Applications. Adv. Ind. Eng. Polym. Res. 2022, 5, 143–158. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Tanveer, Q.; Mishra, G.; Mishra, S.; Sharma, R. Effect of Infill Pattern and Infill Density on Mechanical Behaviour of FDM 3D Printed Parts- a Current Review. Mater. Today Proc. 2022, 62, 100–108. [Google Scholar] [CrossRef]
- Christiyan, K.G.J.; Chandrasekhar, U.; Venkateswarlu, K. A Study on the Influence of Process Parameters on the Mechanical Properties of 3D Printed ABS Composite. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 12109. [Google Scholar] [CrossRef]
- Vanaei, H.R.; Raissi, K.; Deligant, M.; Shirinbayan, M.; Fitoussi, J.; Khelladi, S.; Tcharkhtchi, A. Toward the Understanding of Temperature Effect on Bonding Strength, Dimensions and Geometry of 3D-Printed Parts. J. Mater. Sci. 2020, 55, 14677–14689. [Google Scholar] [CrossRef]
- Chockalingam, K.; Jawahar, N.; Praveen, J. Enhancement of Anisotropic Strength of Fused Deposited ABS Parts by Genetic Algorithm. Mater. Manuf. Process. 2016, 31, 2001–2010. [Google Scholar] [CrossRef]
- Lee, B.H.; Abdullah, J.; Khan, Z.A. Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object. J. Mater. Process Technol. 2005, 169, 54–61. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Anitha, R.; Arunachalam, S.; Radhakrishnan, P. Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling. J. Mater. Process Technol. 2001, 118, 385–388. [Google Scholar] [CrossRef]
- Yao, T.; Deng, Z.; Zhang, K.; Li, S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Compos. B Eng. 2019, 163, 393–402. [Google Scholar] [CrossRef]
- Aloyaydi, B.; Sivasankaran, S.; Mustafa, A. Investigation of Infill-Patterns on Mechanical Response of 3D Printed Poly-Lactic-Acid. Polym. Test. 2020, 87, 106557. [Google Scholar] [CrossRef]
- Somireddy, M.; Czekanski, A.; Singh, C.V. Development of Constitutive Material Model of 3D Printed Structure via FDM. Mater. Today Commun. 2018, 15, 143–152. [Google Scholar] [CrossRef]
- Ziemian, C.; Sharma, M.; Ziemian, S. Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling. In Mechanical Engineering; IntechOpen: London, UK, 2012; Volume 2, ISBN 978-953-51-0505-3. [Google Scholar]
- Ziemian, S.; Okwara, M.; Ziemian, C.W. Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene. Rapid Prototyp. J. 2015, 21, 270–278. [Google Scholar] [CrossRef]
- Ziemian, C.W.; Ziemian, R.D.; Haile, K.V. Characterization of Stiffness Degradation Caused by Fatigue Damage of Additive Manufactured Parts. Mater. Des. 2016, 109, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Terekhina, S.; Tarasova, T.; Egorov, S.; Skornyakov, I.; Guillaumat, L.; Hattali, M.L. The Effect of Build Orientation on Both Flexural Quasi-Static and Fatigue Behaviours of Filament Deposited PA6 Polymer. Int. J. Fatigue 2020, 140, 105825. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Huang, A. Fatigue Analysis of FDM Materials. Rapid Prototyp. J. 2013, 19, 291–299. [Google Scholar] [CrossRef]
- Safai, L.; Cuellar, J.S.; Smit, G.; Zadpoor, A.A. A Review of the Fatigue Behavior of 3D Printed Polymers. Addit. Manuf. 2019, 28, 87–97. [Google Scholar] [CrossRef]
- Casavola, C.; Cazzato, A.; Moramarco, V.; Pappalettera, G. Residual Stress Measurement in Fused Deposition Modelling Parts. Polym. Test. 2017, 58, 249–255. [Google Scholar] [CrossRef]
- Equbal, A.; Sood, A.K.; Mahapatra, S.S. Prediction of Dimensional Accuracy in Fused Deposition Modelling: A Fuzzy Logic Approach. Int. J. Product. Qual. Manag. 2010, 7, 22–43. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Terekhina, S.; Skornyakov, I.; Tarasova, T.; Egorov, S. Effects of the Infill Density on the Mechanical Properties of Nylon Specimens Made by Filament Fused Fabrication. Technologies 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Jap, N.S.F.; Pearce, G.M.; Hellier, A.K.; Russell, N.; Parr, W.C.; Walsh, W.R. The Effect of Raster Orientation on the Static and Fatigue Properties of Filament Deposited ABS Polymer. Int. J. Fatigue 2019, 124, 328–337. [Google Scholar] [CrossRef]
- Luzanin, O.; Plancak, M.; Lužanin, O.; Movrin, D.; Plančak, M. Effect of Layer. Thickness, Deposition Angle, and Infill on Maximum Flexural Force in FDM-Built Specimens. J. Technol. Plast. 2014, 39. [Google Scholar]
- McKeen, L.W. 8-Polyamides (Nylons). In Film Properties of Plastics and Elastomers, 4th ed.; McKeen, L.W., Ed.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 187–227. ISBN 978-0-12-813292-0. [Google Scholar]
- Jiang, Y.; Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benfriha, K.; Ahmadifar, M.; Shirinbayan, M.; Tcharkhtchi, A. Effect of Process Parameters on Thermal and Mechanical Properties of Polymer-Based Composites Using Fused Filament Fabrication. Polym. Compos. 2021, 42, 6025–6037. [Google Scholar] [CrossRef]
- Russo, S.; Casazza, E. Ring-Opening Polymerization of Cyclic Amides (Lactams). Polym. Sci. A Compr. Ref. 2012, 4, 331–396. [Google Scholar] [CrossRef]
- Fang, X.; Simone, C.D.; Vaccaro, E.; Huang, S.J.; Scola, D.A. Ring-Opening Polymerization of ϵ-Caprolactam and ϵ-Caprolactone via Microwave Irradiation. J. Polym. Sci. A Polym. Chem. 2002, 40, 2264–2275. [Google Scholar] [CrossRef]
- Rwei, S.-P.; Ranganathan, P.; Chiang, W.-Y.; Lee, Y.-H. Synthesis of Low Melting Temperature Aliphatic-Aromatic Copolyamides Derived from Novel Bio-Based Semi Aromatic Monomer. Polymers 2018, 10, 793. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, Z.; Benfriha, K.; Shirinbayan, M.; Ahmadifar, M.; Tcharkhtchi, A. Mathematical Modeling and Optimization of Fused Filament Fabrication (FFF) Process Parameters for Shape Deviation Control of Polyamide 6 Using Taguchi Method. Polymers 2021, 13, 3697. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Ranjan, N.; Penna, R.; Fraternali, F. On the Recyclability of Polyamide for Sustainable Composite Structures in Civil Engineering. Compos. Struct. 2018, 184, 704–713. [Google Scholar] [CrossRef]
- Azoti, W.L.; Elmarakbi, A. Multiscale Modelling of Graphene Platelets-Based Nanocomposite Materials. Compos. Struct. 2017, 168, 313–321. [Google Scholar] [CrossRef]
- Spadea, S.; Farina, I.; Carrafiello, A.; Fraternali, F. Recycled Nylon Fibers as Cement Mortar Reinforcement. Constr. Build. Mater. 2015, 80, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Compos. B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Ma, Y.; Ueda, M.; Yokozeki, T.; Sugahara, T.; Yang, Y.; Hamada, H. A Comparative Study of the Mechanical Properties and Failure Behavior of Carbon Fiber/Epoxy and Carbon Fiber/Polyamide 6 Unidirectional Composites. Compos. Struct. 2017, 160, 89–99. [Google Scholar] [CrossRef]
- Ahmadifar, M.; Benfriha, K.; Shirinbayan, M. Thermal, Tensile and Fatigue Behaviors of the PA6, Short Carbon Fiber-Reinforced PA6, and Continuous Glass Fiber-Reinforced PA6 Materials in Fused Filament Fabrication (FFF). Polymers 2023, 15, 507. [Google Scholar] [CrossRef]
- Mazurkiewicz, M.; Kluczyński, J.; Jasik, K.; Sarzyński, B.; Szachogłuchowicz, I.; Łuszczek, J.; Torzewski, J.; Śnieżek, L.; Grzelak, K.; Małek, M. Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Process. Materials 2022, 15, 5079. [Google Scholar] [CrossRef]
- Hadi, A.; Kadauw, A.; Zeidler, H. The Effect of Printing Temperature and Moisture on Tensile Properties of 3D Printed Glass Fiber Reinforced Nylon 6. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Bhattacharyya, A.R.; Pötschke, P.; Häußler, L.; Fischer, D. Reactive Compatibilization of Melt Mixed PA6/SWNT Composites: Mechanical Properties and Morphology. Macromol. Chem. Phys. 2005, 206, 2084–2095. [Google Scholar] [CrossRef]
- Dal Conte, U.F.; Villegas, I.F.; Tachon, J. Ultrasonic Plastic Welding of CF/PA6 Composites to Aluminium: Process and Mechanical Performance of Welded Joints. J. Compos. Mater. 2019, 53, 2607–2621. [Google Scholar] [CrossRef]
- Mahmud, M.B.; Anstey, A.; Shaayegan, V.; Lee, P.C.; Park, C.B. Enhancing the Mechanical Performance of PA6 Based Composites by Altering Their Crystallization and Rheological Behavior via In-Situ Generated PPS Nanofibrils. Compos. B Eng. 2020, 195, 108067. [Google Scholar] [CrossRef]
- He, Q.; Wang, H.; Fu, K.; Ye, L. 3D Printed Continuous CF/PA6 Composites: Effect of Microscopic Voids on Mechanical Performance. Compos. Sci. Technol. 2020, 191, 108077. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Maniadi, A.; Velidakis, E.; Mountakis, N.; Kechagias, J.D. Sustainable Additive Manufacturing: Mechanical Response of Polyamide 12 over Multiple Recycling Processes. Materials 2021, 14, 466. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Korlos, A.; Papadakis, V.; Moutsopoulou, A. Trilateral Multi-Functional Polyamide 12 Nanocomposites with Binary Inclusions for Medical Grade Material Extrusion 3D Printing: The Effect of Titanium Nitride in Mechanical Reinforcement and Copper/Cuprous Oxide as Antibacterial Agents. J. Funct. Biomater. 2022, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Michailidis, N.; Grammatikos, S.; David, C.N.; Mountakis, N.; Argyros, A.; Boura, O. Development and Optimization of Medical-Grade MultiFunctional Polyamide 12-Cuprous Oxide Nanocomposites with Superior Mechanical and Antibacterial Properties for Cost-Effective 3D Printing. Nanomaterials 2022, 12, 534. [Google Scholar] [CrossRef]
- Petousis, M.; Moutsopoulou, A.; Korlos, A.; Papadakis, V.; Mountakis, N.; Tsikritzis, D.; Ntintakis, I.; Vidakis, N. The Effect of Nano Zirconium Dioxide (ZrO2)-Optimized Content in Polyamide 12 (PA12) and Polylactic Acid (PLA) Matrices on Their Thermomechanical Response in 3D Printing. Nanomaterials 2023, 13, 1906. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Liang, Z.; Liu, Y. The Influence of Fused Deposition Modeling Parameters on the Properties of PA6/PA66 Composite Specimens by the Taguchi Method and Analysis of Variance. 3D Print. Addit. Manuf. 2023. [Google Scholar] [CrossRef]
- Farsi, M.; Asefnejad, A.; Baharifar, H. A Hyaluronic Acid/PVA Electrospun Coating on 3D Printed PLA Scaffold for Orthopedic Application. Prog. Biomater. 2022, 11, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Vairis, A.; Savvakis, K.; Maniadi, A. On the Compressive Behavior of an FDM Steward Platform Part. J. Comput. Des. Eng. 2017, 4, 339–346. [Google Scholar] [CrossRef]
- Phadke, M.S. Quality Engineering Using Robust Design, 1st ed.; Hoboken, N., Ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1995; ISBN 0137451679. [Google Scholar]
- Tsu, K.-L. An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design. IIE Trans. 1992, 24, 44–57. [Google Scholar] [CrossRef]
- Antony, J.; Antony, F.J. Teaching the Taguchi Method to Industrial Engineers. Work. Study 2001, 50, 141–149. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Kechagias, J.D. Parameter Effects and Process Modelling of Polyamide 12 3D-Printed Parts Strength and Toughness. Mater. Manuf. Process. 2022, 37, 1358–1369. [Google Scholar] [CrossRef]
- Mostafa, K.G.; Montemagno, C.; Qureshi, A.J. Strength to Cost Ratio Analysis of FDM Nylon 12 3D Printed Parts. Procedia Manuf. 2018, 26, 753–762. [Google Scholar] [CrossRef]
- de Toro, E.V.; Sobrino, J.C.; Martínez, A.M.; Eguía, V.M.; Pérez, J.A. Investigation of a Short Carbon Fibre-Reinforced Polyamide and Comparison of Two Manufacturing Processes: Fused Deposition Modelling (FDM) and Polymer Injection Moulding (PIM). Materials 2020, 13, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Run | ORA | RDA | LT | ID | PS | NT | BT |
---|---|---|---|---|---|---|---|
1 | 0.0 | 0.0 | 0.1 | 60.0 | 20.0 | 230 | 30.0 |
2 | 0.0 | 0.0 | 0.1 | 60.0 | 40.0 | 250 | 50.0 |
3 | 0.0 | 0.0 | 0.1 | 60.0 | 60.0 | 270 | 70.0 |
4 | 0.0 | 45.0 | 0.2 | 80.0 | 20.0 | 230 | 30.0 |
5 | 0.0 | 45.0 | 0.2 | 80.0 | 40.0 | 250 | 50.0 |
6 | 0.0 | 45.0 | 0.2 | 80.0 | 60.0 | 270 | 70.0 |
7 | 0.0 | 90.0 | 0.3 | 100.0 | 20.0 | 230 | 30.0 |
8 | 0.0 | 90.0 | 0.3 | 100.0 | 40.0 | 250 | 50.0 |
9 | 0.0 | 90.0 | 0.3 | 100.0 | 60.0 | 270 | 70.0 |
10 | 45.0 | 0.0 | 0.2 | 100.0 | 20.0 | 250 | 70.0 |
11 | 45.0 | 0.0 | 0.2 | 100.0 | 40.0 | 270 | 30.0 |
12 | 45.0 | 0.0 | 0.2 | 100.0 | 60.0 | 230 | 50.0 |
13 | 45.0 | 45.0 | 0.3 | 60.0 | 20.0 | 250 | 70.0 |
14 | 45.0 | 45.0 | 0.3 | 60.0 | 40.0 | 270 | 30.0 |
15 | 45.0 | 45.0 | 0.3 | 60.0 | 60.0 | 230 | 50.0 |
16 | 45.0 | 90.0 | 0.1 | 80.0 | 20.0 | 250 | 70.0 |
17 | 45.0 | 90.0 | 0.1 | 80.0 | 40.0 | 270 | 30.0 |
18 | 45.0 | 90.0 | 0.1 | 80.0 | 60.0 | 230 | 50.0 |
19 | 90.0 | 0.0 | 0.3 | 80.0 | 20.0 | 270 | 50.0 |
20 | 90.0 | 0.0 | 0.3 | 80.0 | 40.0 | 230 | 70.0 |
21 | 90.0 | 0.0 | 0.3 | 80.0 | 60.0 | 250 | 30.0 |
22 | 90.0 | 45.0 | 0.1 | 100.0 | 20.0 | 270 | 50.0 |
23 | 90.0 | 45.0 | 0.1 | 100.0 | 40.0 | 230 | 70.0 |
24 | 90.0 | 45.0 | 0.1 | 100.0 | 60.0 | 250 | 30.0 |
25 | 90.0 | 90.0 | 0.2 | 60.0 | 20.0 | 270 | 50.0 |
26 | 90.0 | 90.0 | 0.2 | 60.0 | 40.0 | 230 | 70.0 |
27 | 90.0 | 90.0 | 0.2 | 60.0 | 60.0 | 250 | 30.0 |
Run | Weight (g) | sB (MPa) | E (MPa) | Toughness (MJ/m3) |
---|---|---|---|---|
1 | 5.62 ± 0.15 | 11.66 ± 1.92 | 224.78 ± 25.77 | 1.30 ± 0.17 |
2 | 5.49 ± 0.11 | 14.42 ± 0.81 | 224.41 ± 4.44 | 1.68 ± 0.12 |
3 | 5.53 ± 0.07 | 18.19 ± 0.81 | 258.81 ± 12.40 | 2.17 ± 0.09 |
4 | 6.74 ± 0.18 | 13.63 ± 0.66 | 249.80 ± 7.99 | 1.40 ± 0.10 |
5 | 6.35 ± 0.13 | 21.82 ± 2.43 | 300.78 ± 29.62 | 2.55 ± 0.40 |
6 | 6.38 ± 0.17 | 24.12 ± 1.62 | 243.90 ± 11.32 | 3.15 ± 0.24 |
7 | 6.64 ± 0.29 | 26.73 ± 3.92 | 286.52 ± 27.15 | 2.80 ± 0.53 |
8 | 8.41 ± 0.41 | 31.76 ± 4.32 | 318.56 ± 38.38 | 3.91 ± 1.01 |
9 | 8.36 ± 0.11 | 30.31 ± 1.19 | 261.54 ± 10.04 | 3.86 ± 0.07 |
10 | 8.15 ± 0.12 | 31.50 ± 1.52 | 281.00 ± 27.99 | 4.08 ± 0.23 |
11 | 6.40 ± 0.08 | 34.49 ± 0.36 | 290.70 ± 20.54 | 4.54 ± 0.16 |
12 | 8.00 ± 0.12 | 22.81 ± 2.36 | 229.48 ± 24.95 | 3.14 ± 0.33 |
13 | 5.53 ± 0.04 | 9.99 ± 0.72 | 66.49 ± 9.12 | 1.35 ± 0.06 |
14 | 5.44 ± 0.13 | 10.39 ± 0.83 | 76.96 ± 1.77 | 1.44 ± 0.07 |
15 | 5.72 ± 0.56 | 3.04 ± 1.91 | 28.18 ± 13.62 | 0.33 ± 0.29 |
16 | 7.24 ± 0.41 | 17.20 ± 1.02 | 128.45 ± 17.33 | 2.16 ± 0.18 |
17 | 7.10 ± 0.13 | 17.60 ± 0.79 | 145.80 ± 11.10 | 2.25 ± 0.13 |
18 | 6.84 ± 0.17 | 12.46 ± 1.97 | 99.42 ± 15.86 | 1.64 ± 0.16 |
19 | 6.10 ± 0.52 | 0.57 ± 0.19 | 52.46 ± 35.37 | 0.06 ± 0.01 |
20 | 6.02 ± 0.12 | 5.29 ± 4.43 | 173.53 ± 103.52 | 0.55 ± 0.36 |
21 | 6.19 ± 0.27 | 1.24 ± 0.52 | 60.27 ± 39.53 | 0.16 ± 0.04 |
22 | 7.64 ± 0.16 | 36.99 ± 2.21 | 321.08 ± 50.55 | 4.91 ± 0.27 |
23 | 7.12 ± 0.16 | 18.07 ± 4.24 | 206.92 ± 61.23 | 2.40 ± 0.58 |
24 | 8.18 ± 0.18 | 26.97 ± 4.27 | 323.68 ± 32.31 | 3.40 ± 0.70 |
25 | 5.65 ± 0.05 | 5.91 ± 1.13 | 66.93 ± 5.70 | 0.84 ± 0.18 |
26 | 5.22 ± 0.06 | 9.93 ± 1.88 | 86.75 ± 17.95 | 1.29 ± 0.23 |
27 | 5.52 ± 0.09 | 11.82 ± 2.11 | 108.24 ± 19.73 | 1.62 ± 0.31 |
Run | Printing Time (s) | EPC (MJ) | SPE (MJ/g) | SPP (kW/g) |
---|---|---|---|---|
1 | 8755.00 ± 253.07 | 0.935 ± 0.039 | 0.166 ± 0.005 | 0.019 ± 0.001 |
2 | 3965.00 ± 171.75 | 0.719 ± 0.029 | 0.131 ± 0.006 | 0.033 ± 0.002 |
3 | 3145.20 ± 156.99 | 0.713 ± 0.034 | 0.129 ± 0.007 | 0.041 ± 0.003 |
4 | 3500.00 ± 165.61 | 0.787 ± 0.052 | 0.117 ± 0.010 | 0.033 ± 0.003 |
5 | 2620.00 ± 88.87 | 0.431 ± 0.029 | 0.068 ± 0.005 | 0.026 ± 0.002 |
6 | 2040.00 ± 89.17 | 0.467 ± 0.011 | 0.073 ± 0.001 | 0.036 ± 0.002 |
7 | 3775.00 ± 83.68 | 0.468 ± 0.028 | 0.071 ± 0.004 | 0.019 ± 0.001 |
8 | 1950.00 ± 64.68 | 0.359 ± 0.025 | 0.043 ± 0.003 | 0.022 ± 0.002 |
9 | 1430.00 ± 45.45 | 0.361 ± 0.015 | 0.043 ± 0.002 | 0.030 ± 0.001 |
10 | 7030.00 ± 367.74 | 1.583 ± 0.071 | 0.194 ± 0.010 | 0.028 ± 0.002 |
11 | 4615.40 ± 164.19 | 0.504 ± 0.035 | 0.079 ± 0.006 | 0.017 ± 0.001 |
12 | 3280.00 ± 211.83 | 0.576 ± 0.036 | 0.072 ± 0.004 | 0.022 ± 0.002 |
13 | 4155.00 ± 251.41 | 0.901 ± 0.059 | 0.163 ± 0.010 | 0.039 ± 0.003 |
14 | 2380.00 ± 59.30 | 0.252 ± 0.016 | 0.046 ± 0.004 | 0.020 ± 0.002 |
15 | 1915.00 ± 74.52 | 0.323 ± 0.017 | 0.057 ± 0.004 | 0.030 ± 0.002 |
16 | 10,980.00 ± 540.65 | 1.804 ± 0.079 | 0.250 ± 0.020 | 0.023 ± 0.003 |
17 | 7739.80 ± 285.72 | 1.009 ± 0.046 | 0.142 ± 0.006 | 0.018 ± 0.001 |
18 | 5970.00 ± 188.00 | 1.052 ± 0.073 | 0.154 ± 0.014 | 0.026 ± 0.002 |
19 | 2652.00 ± 135.27 | 0.396 ± 0.028 | 0.065 ± 0.005 | 0.025 ± 0.002 |
20 | 1345.00 ± 54.80 | 0.288 ± 0.022 | 0.048 ± 0.003 | 0.036 ± 0.002 |
21 | 1020.00 ± 40.79 | 0.144 ± 0.009 | 0.023 ± 0.001 | 0.023 ± 0.000 |
22 | 10,030.20 ± 357.64 | 1.300 ± 0.102 | 0.170 ± 0.013 | 0.017 ± 0.002 |
23 | 5258.00 ± 195.42 | 0.972 ± 0.028 | 0.137 ± 0.007 | 0.026 ± 0.001 |
24 | 3911.20 ± 179.09 | 0.468 ± 0.033 | 0.057 ± 0.004 | 0.015 ± 0.001 |
25 | 3360.00 ± 133.82 | 0.504 ± 0.029 | 0.089 ± 0.006 | 0.027 ± 0.001 |
26 | 1825.00 ± 85.67 | 0.360 ± 0.016 | 0.069 ± 0.003 | 0.038 ± 0.003 |
27 | 1379.80 ± 82.81 | 0.180 ± 0.006 | 0.033 ± 0.001 | 0.024 ± 0.002 |
Run | ORA | RDA | LT | ID | PS | NT | BT |
---|---|---|---|---|---|---|---|
28 | 0 | 65.5 | 0.15 | 100 | 38.6 | 267.6 | 70 |
29 | 90 | 10.0 | 0.30 | 60 | 53.9 | 270.0 | 30 |
Run | Weight (g) | sB (MPa) | E (MPa) | Toughness (MJ/m3) |
---|---|---|---|---|
28 | 7.12 ± 0.19 | 36.94 ± 1.58 | 422.58 ± 20.59 | 5.06 ± 0.19 |
29 | 5.32 ± 0.15 | 3.26 ± 0.55 | 67.18 ± 3.53 | 0.56 ± 0.04 |
Run | Printing Time (s) | EPC (MJ) | SPE (MJ/g) | SPP (kW/g) |
---|---|---|---|---|
28 | 4745.80 ± 164.74 | 0.780 ± 0.037 | 0.120 ± 0.005 | 0.023 ± 0.001 |
29 | 822.80 ± 94.73 | 0.119 ± 0.009 | 0.022 ± 0.002 | 0.028 ± 0.005 |
Run | 28 | 29 | |
---|---|---|---|
Actual | sB (MPa) | 36.94 | 3.26 |
EPC (MJ) | 0.78 | 0.12 | |
Predicted | sB (MPa) | 41.30 | 3.56 |
EPC (MJ) | 0.75 | Vague | |
Absolute Error | sB (%) | 11.79 | 8.95 |
EPC (%) | 3.97 | Vague |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, C.; Sagris, D.; Petousis, M.; Nasikas, N.K.; Moutsopoulou, A.; Sfakiotakis, E.; Mountakis, N.; Charou, C.; Vidakis, N. Operational Performance and Energy Efficiency of MEX 3D Printing with Polyamide 6 (PA6): Multi-Objective Optimization of Seven Control Settings Supported by L27 Robust Design. Appl. Sci. 2023, 13, 8819. https://doi.org/10.3390/app13158819
David C, Sagris D, Petousis M, Nasikas NK, Moutsopoulou A, Sfakiotakis E, Mountakis N, Charou C, Vidakis N. Operational Performance and Energy Efficiency of MEX 3D Printing with Polyamide 6 (PA6): Multi-Objective Optimization of Seven Control Settings Supported by L27 Robust Design. Applied Sciences. 2023; 13(15):8819. https://doi.org/10.3390/app13158819
Chicago/Turabian StyleDavid, Constantine, Dimitrios Sagris, Markos Petousis, Nektarios K. Nasikas, Amalia Moutsopoulou, Evangelos Sfakiotakis, Nikolaos Mountakis, Chrysa Charou, and Nectarios Vidakis. 2023. "Operational Performance and Energy Efficiency of MEX 3D Printing with Polyamide 6 (PA6): Multi-Objective Optimization of Seven Control Settings Supported by L27 Robust Design" Applied Sciences 13, no. 15: 8819. https://doi.org/10.3390/app13158819
APA StyleDavid, C., Sagris, D., Petousis, M., Nasikas, N. K., Moutsopoulou, A., Sfakiotakis, E., Mountakis, N., Charou, C., & Vidakis, N. (2023). Operational Performance and Energy Efficiency of MEX 3D Printing with Polyamide 6 (PA6): Multi-Objective Optimization of Seven Control Settings Supported by L27 Robust Design. Applied Sciences, 13(15), 8819. https://doi.org/10.3390/app13158819