A Self-Stabilizing Phase Decoder for Quantum Key Distribution
<p>Unbalanced-arm Michelson interferometer with two quarter-wave plate reflectors (QWPRs) as mirrors, a polarization maintaining coupler (PMC), a phase shifter (PS), and PM optical fibers.</p> "> Figure 2
<p>The forward light (or incident light) and backward light (or output light) after the reflection by a QWPR, where the angle between the direction of <span class="html-italic">X</span>-polarization state, and the slow axis of the QWP (<span class="html-italic">x</span>-direction) is 45 degrees.</p> "> Figure 3
<p>Double Q–M interferometers on Alice’s and Bob’s side, respectively, connected with each other by optical fiber quantum channel. LD: laser, Cir: optical circulator, PMC: polarization maintaining coupler, PS: phase shifter, QWPR: quarter-wave plate reflector, SPD: avalanche diode single photon detector, <span class="html-italic">L<sub>i</sub></span> (<span class="html-italic">i</span> = <span class="html-italic">a</span> or <span class="html-italic">b</span>): the long arm operator of the Q–M interferometer on Alice’s or Bob’s side, <span class="html-italic">S<sub>i</sub></span> (<span class="html-italic">i</span> = <span class="html-italic">a</span> or <span class="html-italic">b</span>): the short arm operator of the Q–M interferometer on Alice’s or Bob’s side.</p> "> Figure 4
<p>(<b>a</b>) schematic diagram of the Q–M interferometer based time-bin phase encoding intrinsic-stabilization QKD system. The Q–M interferometers are shown in red dashed boxes. LD<sub>1</sub>–LD<sub>4</sub>: lasers, Cir<sub>1</sub> and Cir<sub>2</sub>: optical circulators, PMC<sub>1</sub> and PMC<sub>2</sub>: polarization maintaining couplers, BS<sub>1</sub>–BS<sub>4</sub>: beam splitters, PS: phase shifter, DWDM: dense wavelength division multiplexer, VOA: variable optical attenuator, SPD<sub>1</sub>–SPD<sub>4</sub>: avalanche diode single photon detectors; (<b>b</b>) the geographic distribution of the quantum channel with a 60.6 km standard telecommunication optical fiber.</p> "> Figure 5
<p>Temporal fluctuation of the key generation performance. (<b>a</b>) the quantum bit error rate as a function of time; (<b>b</b>) the safe key rate as a function of time, where every point is the average safe key rate in one minute.</p> ">
Abstract
:1. Introduction
2. The Q–M Interferometer Scheme and Theoretical Analysis
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.K.; Zhao, Y. Quantum Cryptography. In Computational Complexity: Theory, Techniques, and Applications; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 2453–2477. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Mayers, D. Unconditional Security in Quantum Cryptography. J. ACM 2001, 48, 351–406. [Google Scholar] [CrossRef]
- Lo, H.K.; Chau, H.F. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000, 85, 441–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, W.Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003, 67, 057901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boaron, A.; Boso, G.; Rusca, D.; Vulliez, C.; Autebert, C.; Caloz, M.; Perrenoud, M.; Gras, G.; Bussières, F.; Li, M.J.; et al. Secure Quantum Key Distribution over 421 km of Optical Fiber. Phys. Rev. Lett. 2018, 121, 190502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, C. The darpa quantum network. In Quantum Communications and Cryptography; CRC Press: Boca Raton, FL, USA, 2018; pp. 91–110. [Google Scholar]
- Poppe, A.; Peev, M.; Maurhart, O. Outline of the SECOQC quantum-key-distribution network in Vienna. Int. J. Quantum Inf. 2008, 6, 209–218. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Yin, Z.Q.; Li, H.W.; He, D.Y.; Li, Y.H.; Zhou, Z.; Song, X.T.; Li, F.Y.; Wang, D.; et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 2014, 22, 21739–21756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.Y.; Liang, H.; Liu, Y.; Cai, W.Q.; Ju, L.; Liu, W.Y.; Wang, J.; Yin, H.; Chen, K.; Chen, Z.B.; et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Opt. Express 2009, 17, 6540–6549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.F.; Mo, X.F.; Gui, Y.Z.; Guo, G.C. Stability of phase modulated quantum key distribution systems. Appl. Phys. Lett. 2005, 86, 221103. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.; Herzog, T.; Huttner, B.; Tittel, W.; Zbinden, H.; Gisin, N. ‘Plug and play’ systems for quantum cryptography. Appl. Phys. Lett. 1997, 70, 793–795. [Google Scholar] [CrossRef]
- Mo, X.F.; Zhu, B.; Han, Z.F.; Gui, Y.Z.; Guo, G.C. Faraday-Michelson system for quantum cryptography. Opt. Lett. 2005, 30, 2632–2634. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Fang, X.T.; Pan, J.W. A Decoding Device for Time-bin Phase Encoding QKD System. Chinese Patent 201710365576.1, 22 May 2017. [Google Scholar]
- Xu, H.X.; Song, Y.Q.; Mo, X.F.; Dai, Y.T.; Wang, C.L.; Wang, S.H.; Zhang, R. Photonic integrated phase decoder scheme for high-speed, efficient and stable quantum key distribution system. arXiv 2019, arXiv:1910.08327. [Google Scholar]
- Yoshida-Dierolf, M. Operator algebra for birefringence and mirror reflection. Opt. Commun. 2002, 203, 79–85. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, W.; Zhang, Z.; Gao, M.; Ma, Z.; Ma, X. Decoy state quantum key distribution with biased basis choice. Sci. Rep. 2013, 203, 2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, S.; Huang, Y.; Song, Y.; Wang, C. A Self-Stabilizing Phase Decoder for Quantum Key Distribution. Appl. Sci. 2020, 10, 1661. https://doi.org/10.3390/app10051661
Xu H, Wang S, Huang Y, Song Y, Wang C. A Self-Stabilizing Phase Decoder for Quantum Key Distribution. Applied Sciences. 2020; 10(5):1661. https://doi.org/10.3390/app10051661
Chicago/Turabian StyleXu, Huaxing, Shaohua Wang, Yang Huang, Yaqi Song, and Changlei Wang. 2020. "A Self-Stabilizing Phase Decoder for Quantum Key Distribution" Applied Sciences 10, no. 5: 1661. https://doi.org/10.3390/app10051661
APA StyleXu, H., Wang, S., Huang, Y., Song, Y., & Wang, C. (2020). A Self-Stabilizing Phase Decoder for Quantum Key Distribution. Applied Sciences, 10(5), 1661. https://doi.org/10.3390/app10051661