The Technological Obsolescence of Virtual Reality Learning Environments
<p>Classification of the VRLEs analyzed in this study: (i) former versions, VRLE-1 (left-hand side); and (ii) more recently developed versions, VRLE-2 (right-hand side).</p> "> Figure 2
<p>Workflow followed during the VRLEs lifecycle, based on previous works.</p> "> Figure 3
<p>Illustration of previously developed VRLEs-1: (<b>a</b>) VRLE-1 system dedicated to TPD calculations and (<b>b</b>) VRLE-1 system focused on CL approximations.</p> "> Figure 4
<p>Screenshots of the VRLEs subsequently developed (VRLEs-2): (<b>a</b>) VRLE-2 system dedicated to TPD studies and (<b>b</b>) VRLE-2 system designed for CL investigations.</p> "> Figure 5
<p>Procedure used to implement the VRLEs in the classroom.</p> "> Figure 6
<p>KPIs values of the VRLE of TPD over a period of academic years (former version, VRLE-1, and later version, VRLE-2).</p> "> Figure 7
<p>KPIs values of the VRLE of CL over another period of academic years (former version, VRLE-1, and later version, VRLE-2).</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Virtual Reality Learning Environments
2.1. Development of the VRLEs
2.2. Description of the VRLEs
3. Application in the Classroom
- The instructor teaches master classes, during which he/she addresses among others, both the theory and solution of practical exercises concerning TPD or CL problems. This stage lasts approximately two weeks (8–10 class hours) for teaching binary and ternary phase diagrams, and one week (2–4 hours) to explain the concepts related to CL.
- The use of VRLE in the classroom under the supervision of the instructor (0.5–1 hour). In addition, the student can continue using the VRLE on his/her personal computer after class as needed.
- Solution of exercises related to CL in groups of 2–4 students (in the case of TPD there is no solution of exercises). The duration of the solution process of these exercises, plus the corresponding correction by the instructor, typically involves 2 hours in the classroom.
- Survey fulfillment by students. These surveys aim to evaluate specific KPIs of the VRLEs: motivation, degree of interactivity, ease of use and usefulness (Table 1).
- Analysis of the data obtained through the above surveys.
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehman, M.M.; Ramil, J.F. Software evolution—Background, theory, practice. In Information Processing Letters; Elsevier Science: Amsterdam, The Netherlands, 2003; Volume 88, pp. 33–44. [Google Scholar]
- Neamtiu, I.; Xie, G.; Chen, J. Towards a better understanding of software evolution: An empirical study on open-source software. J. Softw. Evol. Process 2013, 25, 193–218. [Google Scholar] [CrossRef] [Green Version]
- Sommerville, I. Software Engineering, 7th ed.; Pearson Addison Wesley: Boston, MA, USA, 2004. [Google Scholar]
- González-Barahona, J.M.; Robles, G.; Michlmayr, M.; Amor, J.J.; German, D.M. Macro-level software evolution: A case study of a large software compilation. Empir. Softw. Eng. 2009, 14, 262–285. [Google Scholar] [CrossRef] [Green Version]
- Koch, S. Software evolution in open source projects—A large-scale investigation. J. Softw. Maint. Evol. 2007, 19, 361–382. [Google Scholar] [CrossRef]
- Cosmo, R.; Ruscio, D.; Pelliccione, P.; Pierantonio, A.; Zacchiroli, S. Supporting software evolution in component-based FOSS systems. Sci. Comput. Program. 2011, 76, 1144–1160. [Google Scholar] [CrossRef]
- Arbuckle, T. Studying software evolution using artefacts’ shared information content. Sci. Comput. Program. 2011, 76, 1078–1097. [Google Scholar] [CrossRef] [Green Version]
- Ambros, M.; Lanza, M. Visual software evolution reconstruction. J. Softw. Maint. Evol. 2009, 21, 217–232. [Google Scholar] [CrossRef]
- Lehman, M.M. Programs, cities, students—Limits to growth? Programming methodology. In Texts and Monographs in Computer Science; Gries, D., Ed.; Springer: New York, NY, USA, 1978; pp. 42–69. [Google Scholar]
- Lehman, M.M. Programs, life cycles, and laws of software evolution. Proc. IEEE 1980, 68, 1060–1076. [Google Scholar] [CrossRef]
- Lehman, M.M. Laws of software evolution revisited. In Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5th European Workshop on Software Process Technology, EWSPT, Nancy, France, 9–11 October 1996; Montangero, C., Ed.; Springer: New York, NY, USA, 1996; Volume 1149, pp. 108–124. [Google Scholar]
- Barry, E.J.; Kemerer, C.F.; Slaughter, S.A. How software process automation affects software evolution: A longitudinal empirical analysis. J. Softw. Maint. Evol. 2007, 19, 1–31. [Google Scholar] [CrossRef]
- Israeli, A.; Feitelson, D.G. The Linux kernel as a case study in software evolution. J. Syst. Softw. 2010, 83, 485–501. [Google Scholar] [CrossRef] [Green Version]
- González-Barahona, J.M.; Robles, G.; Herraiz, I.; Ortega, F. Studying the laws of software evolution in a long-lived FLOSS project. J. Softw. Evol. Process 2014, 26, 589–612. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.P.; Almeida, E.S. Evaluating Lehman’s laws of software evolution for software product lines. IEEE Softw. 2016, 33, 90–93. [Google Scholar] [CrossRef]
- Oliveira, R.P.; Santos, A.R.; Almeida, E.S.; da Silva Gomes, G.S. Evaluating Lehman’s laws of software evolution within software product lines industrial projects. J. Syst. Softw. 2017, 131, 347–365. [Google Scholar] [CrossRef]
- Kemerer, C.F.; Slaughter, S. An empirical approach to studying software evolution. IEEE Trans. Softw. Eng. 1999, 25, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Chapin, N.; Hale, J.E.; Khan, K.M.; Ramil, J.F.; Tan, W.G. Types of software evolution and software maintenance. J. Softw. Maint. Evol. 2001, 13, 3–30. [Google Scholar] [CrossRef]
- Lehman, M.M.; Ramil, J.F. Software evolution and software evolution processes. Ann. Softw. Eng. 2002, 14, 275–309. [Google Scholar] [CrossRef]
- Bennett, K.H.; Rajlich, V.T.; Wilde, N. Software evolution and the staged model of the software lifecycle. Adv. Comput. 2002, 56, 1–54. [Google Scholar]
- Rocchi, P. An essay on the origin of software evolution. IEEE Trans. Hum. Mach. Syst. 2014, 44, 281–285. [Google Scholar] [CrossRef]
- Huang, H.M.; Liaw, S.S. An analysis of learners’ intentions toward virtual reality learning based on constructivist and technology acceptance approaches. Int. Rev. Res. Open Distance Learn. 2018, 19, 91–115. [Google Scholar] [CrossRef] [Green Version]
- Aiello, P.; D’Elia, F.; Di Tore, S.; Sibilio, M. A constructivist approach to virtual reality for experiential learning. E Learn. Digit. Media 2012, 9, 317–324. [Google Scholar] [CrossRef]
- Concannon, B.; Esmail, S.; Roberts, M. Head-mounted display virtual reality in post-secondary education and skill training. Front. Educ. 2019, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 2017, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. A virtual resource for enhancing the spatial comprehension of crystal lattices. Educ. Sci. 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Rubio, M.P.; Prieto, F.; Lorenzo, M. Enhancing the teaching-learning of materials mechanical characterization by using virtual reality. J. Mater. Educ. 2016, 38, 63–74. [Google Scholar]
- Doblack, B.N.; Flores, C.; Matlock, T.; Dávila, L.P. The emergence of immersive low-cost 3D virtual reality environments for interactive learning in materials science and engineering. Mater. Res. Soc. Symp. Proc. 2011, 1320, mrsf10-1320-xx04-01. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.; Matlock, T.; Dávila, L.P. Enhancing materials research through innovative 3D environments and interactive manuals for data visualization and analysis. Mater. Res. Soc. Symp. Proc. 2012, 1472, mrss12-1472-zz01-03. [Google Scholar] [CrossRef] [Green Version]
- Meagher, K.A.; Doblack, B.N.; Ramirez, M.; Dávila, L.P. Scalable nanohelices for predictive studies and enhanced 3D visualization. J. Vis. Exp. 2014, 93, e51372. [Google Scholar] [CrossRef] [Green Version]
- Doblack, B.N.; Allis, T.; Dávila, L.P. Novel 3D/VR interactive environment for MD simulations, visualization and analysis. J. Vis. Exp. 2014, 94, e51384. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Extremera, J.; Rubio, M.P.; Dávila, L.P. Meaningful learning through virtual reality learning environments: A case study in materials engineering. Appl. Sci. 2019, 9, 4625. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Lorenzo, M.; Rubio, M.P. On the use of virtual environments in engineering education. Int. J. Qual. Assur. Eng. Technol. Educ. 2016, 5, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, J.; Austin-Stalcup, K.A.; Anderson, E.E.; Chandrashekar, N.; Majkowski, A. Elements of a realistic virtual laboratory experience in materials science: Development and evaluation. Int. J. Eng. Educ. 2005, 21, 534–545. [Google Scholar]
- Vergara, D.; Rubio, M.P. The application of didactic virtual tools in the instruction of industrial radiography. J. Mater. Educ. 2015, 37, 17–26. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. A virtual environment for enhancing the understanding of ternary phase diagrams. J. Mater. Educ. 2015, 37, 93–101. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 2014, 572, 582–585. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 2017, 143, 05016009. [Google Scholar] [CrossRef]
- Salinas, I.; Gimenez, M.H.; Cuenca-Gotor, V.P.; Seiz-Ortiz, R.; Monsoriu, J.A. Design and evaluation of a three-dimensional virtual laboratory on vector operations. Comput. Appl. Eng. Educ. 2019, 27, 690–697. [Google Scholar] [CrossRef]
- Rodríguez-Martín, M.; Rodríguez-Gonzálvez, P.; Sánchez-Patrocinio, A.; Sánchez, J.R. Short CFD simulation activities in the context of fluid-mechanical learning in a multidisciplinary student body. Appl. Sci. 2019, 9, 4809. [Google Scholar] [CrossRef] [Green Version]
- Violante, M.G.; Vezzetti, E. Virtual interactive e-learning application: An evaluation of the student satisfaction. Comput. Appl. Eng. Educ. 2015, 23, 72–91. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Yeh, S.C.; Li, M.; Yao, E. The introduction of a novel virtual reality training system for gynecology learning and its user experience research. IEEE Access 2019, 7, 43637–43653. [Google Scholar] [CrossRef]
- Iacob, R.; Popescu, D.; Noel, F.; Masclet, C. Implementation and evaluation of a model processing pipeline for assembly simulation. Assem. Autom. 2017, 37, 400–410. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. New virtual application for improving the students’ understanding of ternary phase diagrams. Key Eng. Mater. 2014, 572, 578–581. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. On the use of PDF-3D to overcome spatial visualization difficulties linked with ternary phase diagrams. Educ. Sci. 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; McKenzie, F.D.; Chaturvedi, S.K.; Prabhakaran, R.; Yoon, J.; Katsioloudis, P.J.; Garcia, H. Design and comparison of immersive interactive learning and instructional techniques for 3D virtual laboratories. Presence Teleoperators Virtual Environ. 2015, 24, 93–112. [Google Scholar] [CrossRef]
- Rubio, M.P.; Vergara, D.; Rodríguez, S.; Extremera, J. Virtual reality learning environments in materials engineering: Rockwell hardness test. In Advances in Intelligent Systems and Computing; Di Mascio, T., Ed.; Springer: Cham, Switzerland, 2019; pp. 106–113. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M.; Rodríguez, S. On the importance of the design of virtual reality learning environments. Adv. Intell. Syst. Comput. 2020, 1007, 146–152. [Google Scholar]
- Jakob, W.; Arbree, A.; Moon, J.T.; Bala, K.; Marschner, S. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 2010, 29, 1–13. [Google Scholar] [CrossRef]
- Valcasara, N. Unreal Engine Game Development Blueprints; Packt Publishing: Birmingham, UK, 2015; ISBN 1784397776, 9781784397777. [Google Scholar]
- Vergara, D.; Sánchez, M.; Garcinuño, A.; Rubio, M.P.; Extremera, J.; Gómez, A.I. Spatial comprehension of crystal lattices through virtual reality applications. In Proceedings of the ICERI2019, Seville, Spain, 11–13 November 2019; pp. 1291–1295. [Google Scholar]
- Vergara, D.; Rodríguez-Martín, M.; Rubio, M.P.; Ferrer-Marín, J.; Núñez-García, F.J.; Moralejo-Cobo, L. Technical staff training in ultrasonic non-destructive testing using virtual reality Formación de personal técnico en ensayos no destructivos por ultrasonidos mediante realidad virtual. Dyna 2018, 93, 150–154. [Google Scholar] [CrossRef]
- Mirauda, D.; Capece, N.; Erra, U. StreamflowVL: A virtual fieldwork laboratory that supports traditional hydraulics engineering learning. Appl. Sci. 2019, 9, 4972. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Lorenzo, M.; Rubio, M.P. Virtual environments in materials science and engineering: The students’ opinion. In Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education; Lim, H., Ed.; IGI Global: Hershey, PA, USA, 2015; pp. 148–165. [Google Scholar]
Question | Number | KPI |
---|---|---|
Rate from 1 to 10 the following features of the VRLE (1 the lowest rate and 10 the highest) | 1 | Motivation felt when using the VRLE |
2 | Interactivity level of the VRLE | |
3 | Ease of use of the VRLE | |
4 | Usefulness of the didactic tool |
VRLE-1 | Academic Year | Number of Students | Question 1 | Question 2 | Question 3 | Question 4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | σ | Mean | σ | Mean | σ | Mean | σ | |||
TPD | 2013–2014 | 22 | 8.6 | 0.50 | 7.5 | 0.96 | 7.1 | 0.75 | 9.7 | 0.48 |
CL | - - | - - | - - | - - | - - | - - | - - | - - | ||
TPD | 2014–2015 | 20 | 8.5 | 0.61 | 7.2 | 0.89 | 7.2 | 0.83 | 9.7 | 0.47 |
CL | 7.5 | 0.61 | 9.0 | 0.85 | 9.0 | 0.74 | 9.7 | 0.59 | ||
TPD | 2015–2016 | 20 | 8.1 | 0.72 | 6.5 | 0.89 | 7.0 | 0.73 | 9.7 | 0.49 |
CL | 7.5 | 0.69 | 8.5 | 0.76 | 8.8 | 0.75 | 9.6 | 0.60 | ||
TPD | 2016–2017 | 20 | 7.5 | 0.87 | 6.2 | 0.77 | 7.1 | 0.79 | 9.7 | 0.47 |
CL | 7.3 | 0.73 | 8.2 | 0.82 | 9.1 | 0.65 | 9.8 | 0.44 | ||
TPD | 2017–2018 | 21 | - - | - - | - - | - - | - - | - - | - - | - - |
CL | 6.9 | 1.00 | 7.5 | 1.03 | 8.9 | 0.76 | 9.7 | 0.46 |
VRLE-2 | Academic Year | Number of Students | Question 1 | Question 2 | Question 3 | Question 4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | σ | Mean | σ | Mean | σ | Mean | σ | |||
TPD | 2017–2018 | 21 | 9.2 | 0.75 | 8.3 | 0.60 | 7.4 | 0.80 | 9.7 | 0.46 |
CL | - - | - - | - - | - - | - - | - - | - - | - - | ||
TPD | 2018–2019 | 21 | 9.1 | 0.74 | 8.3 | 0.64 | 7.3 | 0.73 | 9.8 | 0.44 |
CL | 9.5 | 0.46 | 9.8 | 0.33 | 9.2 | 0.58 | 9.8 | 0.54 | ||
TPD | 2019–2020 | 11 | 8.8 | 0.75 | 8.2 | 0.60 | 7.6 | 0.66 | 9.6 | 0.50 |
CL | 9.6 | 0.38 | 9.8 | 0.34 | 9.3 | 0.34 | 9.7 | 0.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara, D.; Extremera, J.; Rubio, M.P.; Dávila, L.P. The Technological Obsolescence of Virtual Reality Learning Environments. Appl. Sci. 2020, 10, 915. https://doi.org/10.3390/app10030915
Vergara D, Extremera J, Rubio MP, Dávila LP. The Technological Obsolescence of Virtual Reality Learning Environments. Applied Sciences. 2020; 10(3):915. https://doi.org/10.3390/app10030915
Chicago/Turabian StyleVergara, Diego, Jamil Extremera, Manuel Pablo Rubio, and Lilian P. Dávila. 2020. "The Technological Obsolescence of Virtual Reality Learning Environments" Applied Sciences 10, no. 3: 915. https://doi.org/10.3390/app10030915
APA StyleVergara, D., Extremera, J., Rubio, M. P., & Dávila, L. P. (2020). The Technological Obsolescence of Virtual Reality Learning Environments. Applied Sciences, 10(3), 915. https://doi.org/10.3390/app10030915