Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties
<p>Schematic diagram of growth of ZnO nanorods (NRs) on a textured Si wafer.</p> "> Figure 2
<p>Field emission scanning electron microscopy (FESEM) image of the top view of ZnO NRs of treatment times (<b>a</b>) 3 h, (<b>b</b>) 4 h, (<b>c</b>) 5 h, and (<b>d</b>) 6 h on bare Si substrate and (<b>e</b>) 3 h, (<b>f</b>) 4 h, (<b>g</b>) 5 h, and (<b>h</b>) 6 h on textured Si substrate.</p> "> Figure 3
<p>FESEM image of (<b>a</b>) top and (<b>b</b>) cross-sectional view of ZnO NRs for 5 h.</p> "> Figure 4
<p>XRD Analysis of ZnO NRs on the surface of Si at (<b>a</b>) 3 h, (<b>b</b>) 4 h, and (<b>c</b>) 5 h treatment time.</p> "> Figure 5
<p>(<b>a</b>) Photoluminescence and (<b>b</b>) Raman spectrum, with an inset image of ZnO NRs on a Si wafer for 5 h of treatment time.</p> "> Figure 6
<p>UV-Vis spectra in reflectance mode of the bare Si wafer, textured Si wafer, and vertically arranged ZnO NRs on textured Si wafers.</p> "> Figure 7
<p>(<b>a</b>) Refractive index and (<b>b</b>) extinction coefficient plots of the bare Si wafer, textured Si wafer, and vertically arranged ZnO NRs on textured Si wafers.</p> "> Figure 8
<p>(<b>a</b>) I-V curve with a power curve and (<b>b</b>) incident photon-to-electron conversion efficiency (IPCE) curve of Si solar cells based on ZnO NRs antireflection (AR).</p> "> Figure 9
<p>Influence of variation in the length of ZnO NRs AR on diffusion length.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Vertically Arranged ZnO NRs AR on c-Si Wafer
2.2. PC1D Modeling Tool
2.3. Characterizations
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, F.; Baek, S.-H.; Kim, J.H. Novel approach for fabrication of buried contact silicon nanowire solar cells with improved performance. Sol. Energy 2016, 137, 122–128. [Google Scholar] [CrossRef]
- Schmidt, J.; Peibst, R.; Brendel, R. Surface passivation of crystalline silicon solar cells: Present and future. Sol. Energy Mater. Sol. Cells 2018, 187, 39–54. [Google Scholar] [CrossRef]
- Hamedani, Y.; Macha, P.; Bunning, T.J.; Naik, R.R.; Vasudev, M.C. Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future. Chemical Vapor Deposition—Recent Advances and Applications in Optical, Solar Cells and Solid State Devices. IntechOpen 2016, 10, 1–35. [Google Scholar]
- Shah, D.K.; Han, S.Y.; Akhtar, M.S.; Yang, O.-B.; Kim, C.Y. Effect of Ag doping in Double Antireflection Layer on Crystalline Silicon Solar Cells. J. Nanosci. Nanotechnol. Lett. 2019, 11, 159–167. [Google Scholar] [CrossRef]
- Ameen, S.; Malik, A.R.; Kosa, S.A.; Alamry, K.A.; Akhtar, M.S.; Shin, H.-S.; Seo, H.-K.; Asiri, A.M.; Nazeeruddin, M.K. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. Chemsuschem 2016, 9, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.K.; Son, Y.-H.; Lee, H.-R.; Akhtar, M.S.; Yang, O.-B.; Kim, C.Y. A stable gel electrolyte based on poly butyl acrylate (PBA)-co-poly acrylonitrile (PAN) for solid-state dye-sensitized solar cells. Chem. Phys. Lett. 2020, 754, 137756. [Google Scholar] [CrossRef]
- Remache, L.; Fourmond, E.; Mahdjoub, A.; Dupuis, J.; Lemiti, M. Self-cleaning coatings: Structure, fabrication and application. Mater. Sci. Eng. B 2011, 176, 45–48. [Google Scholar] [CrossRef]
- Mahadik, D.B.; Lakshmi, R.V.; Barshilia, H.C. High performance single layer nano-porous antireflection coatings on glass by sol–gel process for solar energy applications. Sol. Energy Mater. Sol. Cells 2015, 140, 61–68. [Google Scholar] [CrossRef]
- Liu, B.; Qiu, S.; Chen, N.; Du, G.; Sun, J. Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells. Mater. Sci. Semicond. Process. 2013, 16, 1014–1021. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, J.; Foss, S.E.; Haug, H.; Nordseth, Ø.; Marstein, E.S.; Wang, W. SiOy Nx/SiNx stack anti-reflection coating with PID-resistance for crystalline silicon solar cells. Energy Procedia 2015, 77, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.-C.; Luo, D.; Li, Y.; Liu, Z. Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates. Trans. Nonferr. Met. Soc. China 2009, 19, 359–363. [Google Scholar] [CrossRef]
- Wang, L.; Han, P.; Zhang, Z.; Zhang, C.; Xu, B. Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: The first-principles study. Comput. Mater. Sci. 2013, 77, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Ameen, S.; Akhtar, M.S.; Shin, H.S. ZnO hollow nano-baskets for mineralization of cationic dye. Mater. Lett. 2016, 183, 329–333. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Shin, H.S. Highly dense ZnO nanowhiskers for the low level detection of p-hydroquinone. Mater. Lett. 2015, 155, 82–86. [Google Scholar] [CrossRef]
- Kim, K.-S.; Kim, H.W. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Phys. B Condens. Matter 2003, 328, 368–371. [Google Scholar] [CrossRef]
- Liu, R.; Vertegel, A.A.; Bohannan, E.W.; Sorenson, T.A.; Switzer, J.A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 2001, 13, 508–512. [Google Scholar] [CrossRef]
- Greene, L.E.; Law, M.; Tan, D.H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.-E.; Vehse, M.; Sergeev, O.; Maydell, K.; Agert, C. ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells. Sol. Energy Mater. Sol. Cells 2014, 125, 305–309. [Google Scholar] [CrossRef]
- Kato, S.; Kurokawa, Y.; Gotoh, K.; Soga, T. Silicon Nanowire Heterojunction Solar Cells with an Al2O3 Passivation Film Fabricated by Atomic Layer Deposition. Nanoscale Res. Lett. 2019, 14, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Xiu, F.; Lin, H.; Fang, M.; Dong, G.; Yip, S.; Ho, J.C. Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications. Pure Appl. Chem. 2014, 86, 557–573. [Google Scholar] [CrossRef]
- Muskens, O.L.; Rivas, J.G.; Algra, R.E.; Bakkers, E.P.A.M.; Lagendijk, A. Design of Light Scattering in Nanowire Materials for Photovoltaic Applications. Nano Lett. 2008, 8, 2638–2642. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Schubert, M.; Kim, J.; Schubert, E.F.; Chen, M.; Lin, S.Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Chen, J.Y.; Sun, K.W. Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 930–934. [Google Scholar] [CrossRef]
- Feng, Z.; Jia, R.; Dou, B.; Li, H.; Jin, Z.; Liu, X.; Wu, C. Enhanced properties of silicon nano-textured solar cells enabled by controlled ZnO nanorods coating. Sol. Energy 2015, 115, 770–776. [Google Scholar] [CrossRef]
- Baek, S.; Noh, B.; Shin, J.; Kim, J.H. Optical and photovoltaic properties of silicon wire solar cells with controlled ZnO nanorods antireflection coating. J. Mater. Sci. 2012, 47, 4138–4145. [Google Scholar] [CrossRef]
- Baquedano, E.; Torné, L.; Caño, P.; Postigo, P. Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses. Nanomaterials 2017, 7, 437. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Guo, B.; Li, S.; Fu, J.; Zhang, L.; Lin, G.; Yang, Q.; Cheng, Q. Plasma-produced ZnO nanorod arrays as an antireflective layer in c-Si solar cells. J. Mater. Sci. 2019, 54, 4011–4023. [Google Scholar] [CrossRef]
- Baek, S.-H.; Kim, S.-B.; Shin, J.-K.; Kim, J.-H. Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes. Sol. Energy Mater. Sol. Cells 2012, 96, 251–256. [Google Scholar] [CrossRef]
- Subhan, F.E.; Khan, A.D.; Hilal, F.E.; Khan, A.D.; Khan, S.D.; Ullah, R.; Imran, M.; Noman, M. Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings. RSC Adv. 2020, 10, 11836–11843. [Google Scholar] [CrossRef] [Green Version]
- Jannat, A.; Lee, W.; Akhtar, M.S.; Li, Z.Y.; Yang, O.-B. New and Effective Anti-Reflection Coating of SiC-SiO2 Nanocomposite for P-Type Silicon Solar Cell. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference, New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- Jung, J.; Jannat, A.; Akhtar, M.S.; Yang, O.-B. Sol–Gel Deposited Double Layer TiO2 and Al2O3 Anti-Reflection Coating for Silicon Solar Cell. J. Nanosci. Nanotechnol. 2018, 18, 1274–1278. [Google Scholar] [CrossRef]
- Hashmi, G.; Akand, A.R.; Hoq, M.; Rahman, H. Study of the Enhancement of the Efficiency of the Monocrystalline Silicon Solar Cell by Optimizing Effective Parameters Using PC1D Simulation. Silicon 2018, 10, 1653–1660. [Google Scholar] [CrossRef]
- Belarbi, M.; Benyoucef, A.; Benyoucef, B. Simulation of the Solar Cells with PC1D, Application to Cells Based on Silicon. Adv. Energy Int. J. (AEIJ) 2014, 1, 3–13. [Google Scholar]
- KC, D.; Wagle, R.; Gaib, R.; Shrivastava, A.; Mishra, L.N. Modelling and simulation of AlGaAs/GaAs solar cell. Am. J. Eng. Res. 2020, 9, 218–223. [Google Scholar]
- Ullah, H.; Iqbal, A.; Zakria, M.; Mahmood, A. Structural and spectroscopic analysis of wurtzite (ZnO)1−x(Sb2O3)x composite semiconductor. Prog. Nat. Sci. Mater. Int. 2015, 25, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-Y.; Akhtar, M.S.; Jang, I.-S.; Yang, O.-B. ZnO nanoflakes nanomaterials via hydrothermal process for dye sensitized solar cells. Mater. Lett. 2018, 230, 92–95. [Google Scholar] [CrossRef]
- Elani, U.A.I. The effective carrier lifetime measurement in silicon: The conductivity modulation method. J. King Saud Univ. Sci. 2010, 22, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Amalathas, A.P.; Alkaisi, M.M. Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 2019, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Ziang, X.; Shifeng, L.; Laixiang, Q.; Shuping, P.; Wei, W.; Yu, Y.; Li, Y.; Zhijian, C.; Shufeng, W.; Honglin, D.; et al. Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mater. Express 2015, 5, 29–43. [Google Scholar] [CrossRef]
- Salman, K.A. Effect of surface texturing processes on the performance of crystalline silicon solar cell. Sol. Energy 2017, 147, 228–231. [Google Scholar] [CrossRef]
- Bandic, Z.Z.; Bridger, P.M.; Piquette, E.C.; McGill, T.C. Electron diffusion length and lifetime in p-type GaN. Appl. Phys. Lett. 1998, 73, 3276–3278. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Zhou, X.; Liu, Z.; Jiang, F.; Yu, Q. An in-depth analysis of the silicon solar cell key parameters’ optimal magnitudes using PC1D simulations. Optik 2018, 164, 105–113. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Device area | 16 cm2 |
Front surface texture depth | 0–5 μm |
Front reflectance | 2–4% |
Thickness of Si solar cell | 120 μm |
Dielectric constant | 11.9 |
Energy band gap | 1.124 eV |
Background doping P-type | 1.513 × 1016 cm−3 |
First front diffusion N-type | 2.87 × 1020 cm−3 |
Refractive index | 3.58 |
Excitation mode | Transient |
Temperature | 25 °C |
Other parameters | Internal model of PC1D |
Primary light source | AM 1.5D spectrum |
Bulk recombination | 10 μs |
Constant intensity | 0.1 W/cm2 |
Reaction Time (h) | ZnO NRs Length (μm) | Reflectance (%) | Simulated PV Properties | |||||
---|---|---|---|---|---|---|---|---|
Isc (A) | Voc (V) | Imax (A) | Vmax (V) | Fill Factor | Efficiency (%) | |||
3 | 0.75 | 12.360 | 0.4803 | 0.5889 | 0.455443 | 0.505304 | 81.36 | 14.38 |
4 | 1.00 | 12.690 | 0.4796 | 0.5886 | 0.454993 | 0.504741 | 81.35 | 14.35 |
5 | 1.10 | 9.580 | 0.4970 | 0.5894 | 0.469686 | 0.507107 | 81.31 | 14.88 |
6 | 0.90 | 14.95 | 0.4653 | 0.5870 | 0.441221 | 0.503526 | 81.34 | 13.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, D.K.; KC, D.; Akhtar, M.S.; Kim, C.Y.; Yang, O.-B. Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties. Appl. Sci. 2020, 10, 6062. https://doi.org/10.3390/app10176062
Shah DK, KC D, Akhtar MS, Kim CY, Yang O-B. Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties. Applied Sciences. 2020; 10(17):6062. https://doi.org/10.3390/app10176062
Chicago/Turabian StyleShah, Deb Kumar, Devendra KC, M. Shaheer Akhtar, Chong Yeal Kim, and O-Bong Yang. 2020. "Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties" Applied Sciences 10, no. 17: 6062. https://doi.org/10.3390/app10176062
APA StyleShah, D. K., KC, D., Akhtar, M. S., Kim, C. Y., & Yang, O.-B. (2020). Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties. Applied Sciences, 10(17), 6062. https://doi.org/10.3390/app10176062