Monte Carlo-Based Performance Analysis for Underwater Continuous-Variable Quantum Key Distribution
<p>Schematic diagram of an underwater CVQKD system. The sender Alice separates coherent light pulses generated by a laser diode into weak signal pulses and strong LO pulses. Then the signal pulses are loaded with key information by using an amplitude modulator and a phase modulator, and the LO pulses are delayed by a delay line so as to be transmitted together with the signal pulses through time multiplexing. After being transmitted through the seawater, the pulses reach Bob’s telescope. Bob first separates the LO and signal pulses by using a beam splitter, and then randomly measures one of the quadratures of the signal states by homodyne detection, with the help of the LO as a phase reference. The phase modulator in Bob is used to randomly select the quadrature by imposing a <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> phase shift to the LO. The dark spots between Alice and Bob indicate the water components such as phytoplankton, suspended sediments and detritus, and colored dissolved organic matter. AM: amplitude modulator. PM: phase modulator. Tele.: telescope. BS: beam splitter. PD: photodiode. LO: local oscillator.</p> "> Figure 2
<p>Transmittance of four types of water obtained by Beer’s law and Monte Carlo simulation. The solid lines correspond to the transmittance obtained by Monte Carlo simulation, and the dashed lines correspond to the transmittance obtained by Beer’s law. From left to right, the lines correspond, respectively, to turbid harbor water, coastal ocean water, clear ocean water, and pure sea water case. MC: results obtained by Monte Carlo simulation. BL: results calculated by Beer’s law.</p> "> Figure 3
<p>Schematic diagram showing the geometry of the transceiver and the moving trajectory of photons in seawater. <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mi>z</mi> </msub> </mrow> </semantics></math> are the angles between the direction vector of the photon and the x, y, and z-axis, respectively. <math display="inline"><semantics> <msub> <mi>θ</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> represents the maximum initial divergence angle of the beam and FOV represents the field of view of the receiver.</p> "> Figure 4
<p>(<b>a</b>) <math display="inline"><semantics> <msub> <mi>η</mi> <mi>r</mi> </msub> </semantics></math> calculated by Monte Carlo simulation versus different size of receiver aperture under four types of water. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>η</mi> <mi>r</mi> </msub> </semantics></math> calculated by Monte Carlo simulation versus different receiver FOV under four types of water.</p> "> Figure 5
<p>Intensity distributions of the light with a beam width of (<b>a</b>) 1 mm, (<b>b</b>) 2 mm, (<b>c</b>) 3 mm at the reception plane after transmitting through a 10 m clear ocean water. Intensity distributions of the light with a maximum beam divergence angle of (<b>d</b>) 0 mrad, (<b>e</b>) 2 mrad, (<b>f</b>) 5 mrad at the reception plane after transmitting through a 10 m clear ocean water.</p> "> Figure 6
<p>(<b>a</b>) Secret key rate of four types of water obtained by Beer’s law and Monte Carlo simulation. The solid lines correspond to the results obtained by Monte Carlo with considering the receiver parameters, the dashed lines correspond to the results obtained by Beer’s law, and the dot-dashed lines correspond to the results obtained by Monte Carlo without considering the receiver parameters. From left to right, the curves correspond, respectively, to the turbid harbor water case, the coastal ocean water case, the clear ocean water case and the pure see water case. (<b>b</b>) Secret key rate for different beam width <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>0</mn> </msub> </semantics></math> and maximum initial divergence angle <math display="inline"><semantics> <msub> <mi>θ</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Monte Carlo-Based Channel Parameter Characteristics Analysis
2.1. Underwater Channel Modeling Based on Monte Carlo
2.2. Transmittance Analysis
2.3. Detection Efficiency Analysis
3. Performance Analysis for Underwater CVQKD
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CVQKD | Continuous-variable Quantum key Distribution |
MC | Monte Carlo |
BL | Beer’s law |
LO | Local oscillator |
FOV | Field of view |
RTE | Radiative transfer equation |
Appendix A. Major Processes in Monte Carlo Simulation
References
- Lanzagorta, M. Underwater communications. Synth. Lect. Commun. 2012, 5, 1–129. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Gabriel, C.; Hamza, T.; Bourennane, S.; Leon, P.; Rigaud, V. Underwater wireless optical communication; recent advances and remaining challenges. In Proceedings of the 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 6–10 July 2014; pp. 1–4. [Google Scholar]
- Kong, M.; Wang, J.; Chen, Y.; Ali, T.; Sarwar, R.; Qiu, Y.; Wang, S.; Han, J.; Xu, J. Security weaknesses of underwater wireless optical communication. Opt. Express 2017, 25, 21509–21518. [Google Scholar] [CrossRef] [PubMed]
- Pljonkin, A.P.; Gupta, B.B.; Rumyantsev, K.E.; Korovin, I.; Schaefer, G. Features of detection of a single-photon pulse at synchronisation in quantum key distribution systems. In Proceedings of the 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT), Himeji, Japan, 1–3 September 2017; pp. 1–5. [Google Scholar]
- Pljonkin, A. Vulnerability of the synchronization process in the quantum key distribution system. Int. J. Cloud Appl. Comput. 2019, 9, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.D.; Christensen, B.; Kwiat, P.G. Advanced techniques for free-space optical quantum cryptography over water. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII, San Francisco, CA, USA, 15–16 February 2016; Volume 9739, p. 973911. [Google Scholar]
- Ji, L.; Gao, J.; Yang, A.L.; Feng, Z.; Lin, X.F.; Li, Z.G.; Jin, X.M. Towards quantum communications in free-space seawater. Opt. Express 2017, 25, 19795–19806. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, S.; Da Lio, B.; Cozzolino, D.; Bacco, D. Feasibility of Quantum Communications in Aquatic Scenarios. Optik 2020, 216, 164639. [Google Scholar] [CrossRef]
- Qi, B.; Huang, L.L.; Qian, L.; Lo, H.K. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 2007, 76, 052323. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Xu, F.; Curty, M.; Qi, B.; Qian, L.; Lo, H.K. Discrete and continuous variables for measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [Green Version]
- Lance, A.M.; Symul, T.; Sharma, V.; Weedbrook, C.; Ralph, T.C.; Lam, P.K. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 2005, 95, 180503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.H.; Song, H.C.; He, C.S.; Liu, Y.; Zhou, N.R. A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 2014, 89, 035101. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, Q.; Wang, Y.; Huang, D.; Huang, P.; Zeng, G. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 2017, 95, 032304. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.M.; Qi, B.; Zhu, W.; Qian, L.; Lo, H.K.; Youn, S.H.; Lvovsky, A.; Tian, L. A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution. New J. Phys. 2011, 13, 013003. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, P.; Huang, D.; Lin, D.; Zeng, G. Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects. Phys. Rev. A 2016, 93, 022315. [Google Scholar] [CrossRef]
- Liao, Q.; Guo, Y.; Huang, D.; Huang, P.; Zeng, G. Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection. New J. Phys. 2018, 20, 023015. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, C.; Huang, P.; Li, J.; Zhang, L.; Huang, D.; Zeng, G. Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 2018, 97, 052326. [Google Scholar] [CrossRef]
- Ruan, X.; Zhang, H.; Zhao, W.; Wang, X.; Li, X.; Guo, Y. Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel. Appl. Sci. 2019, 9, 4956. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Chen, G.; Li, X.; Liao, Q.; Guo, Y. Performance Improvement of Underwater Continuous-Variable Quantum Key Distribution via Photon Subtraction. Entropy 2019, 21, 1011. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, R.M.; Pessoa, L.M.; Salgado, H.M. Monte Carlo Radiative Transfer Modeling of Underwater Channel. In Wireless Mesh Networks-Security, Architectures and Protocols; IntechOpen: London, UK, 2019. [Google Scholar]
- Garcia-Patron, R.; Cerf, N.J. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 2006, 97, 190503. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 2010, 81, 062314. [Google Scholar] [CrossRef] [Green Version]
- Furrer, F.; Franz, T.; Berta, M.; Leverrier, A.; Scholz, V.B.; Tomamichel, M.; Werner, R.F. Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 2012, 109, 100502. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Khalighi, M.A.; Bourennane, S.; Léon, P.; Rigaud, V. Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 2013, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Haltrin, V.I. Chlorophyll-based model of seawater optical properties. Appl. Opt. 1999, 38, 6826–6832. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Rani, A.; Kumar, A. Study on Scattering Models for UWOC Channel Using Monte Carlo Simulation. In Proceedings of the 2018 3rd International Conference on Contemporary Computing and Informatics (IC3I), Gurgaon, India, 10–12 October 2018; pp. 198–205. [Google Scholar]
- Sahu, S.K.; Shanmugam, P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system. Opt. Commun. 2018, 408, 3–14. [Google Scholar] [CrossRef]
- Shi, P.; Zhao, S.C.; Gu, Y.J.; Li, W.D. Channel analysis for single photon underwater free space quantum key distribution. JOSA A 2015, 32, 349–356. [Google Scholar] [CrossRef]
- Xu, J.; Song, Y.; Yu, X.; Lin, A.; Kong, M.; Han, J.; Deng, N. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser. Opt. Express 2016, 24, 8097–8109. [Google Scholar] [CrossRef]
- Hanson, F.; Radic, S. High bandwidth underwater optical communication. Appl. Opt. 2008, 47, 277–283. [Google Scholar] [CrossRef]
- Cox, W.; Muth, J. Simulating channel losses in an underwater optical communication system. J. Opt. Soc. Am. A 2014, 31, 920–934. [Google Scholar] [CrossRef]
- Cochenour, B.M.; Mullen, L.J.; Laux, A.E. Characterization of the beam-spread function for underwater wireless optical communications links. IEEE J. Ocean. Eng. 2008, 33, 513–521. [Google Scholar] [CrossRef]
- Berrocal, E. Multiple Scattering of Light in Optical Diagnostics of Dense Sprays and Other Complex Turbid Media. Ph.D. Thesis, Cranfield University, Bedford, UK, 2006. [Google Scholar]
- Tang, S.; Dong, Y.; Zhang, X. Impulse Response Modeling for Underwater Wireless Optical Communication Links. IEEE Trans. Commun. 2014, 62, 226–234. [Google Scholar] [CrossRef]
- Hanson, F.; Lasher, M. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber. Appl. Opt. 2010, 49, 3224–3230. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, G.; Stoner, T.; Jernigan, J. Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser. Underw. Photo Opt. Int. Soc. Opt. Photonics 1966, 7, 8–14. [Google Scholar]
- Li, J.; Ma, Y.; Zhou, Q.; Zhou, B.; Wang, H. Monte Carlo study on pulse response of underwater optical channel. Opt. Eng. 2012, 51, 066001-1–066001-5. [Google Scholar] [CrossRef]
- Lodewyck, J.; Bloch, M.; García-Patrón, R.; Fossier, S.; Karpov, E.; Diamanti, E.; Debuisschert, T.; Cerf, N.J.; Tualle-Brouri, R.; McLaughlin, S.W.; et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 2007, 76, 042305. [Google Scholar] [CrossRef] [Green Version]
- Fossier, S.; Diamanti, E.; Debuisschert, T.; Tualle-Brouri, R.; Grangier, P. Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 114014. [Google Scholar] [CrossRef] [Green Version]
- Fossier, S.; Diamanti, E.; Debuisschert, T.; Villing, A.; Tualle-Brouri, R.; Grangier, P. Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 2009, 11, 045023. [Google Scholar] [CrossRef]
- Cox, W.C. Simulation, Modeling, and Design of Underwater Optical Communication Systems. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2012. [Google Scholar]
Water Types | |||
---|---|---|---|
Pure sea water | 0.0405 | 0.0025 | 0.043 |
Clear ocean water | 0.114 | 0.037 | 0.151 |
Coastal ocean water | 0.179 | 0.219 | 0.398 |
Turbid harbor water | 0.366 | 1.824 | 2.190 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Wu, X.; Huang, W.; Liao, Q.; Deng, H.; Wang, Y.; Guo, Y. Monte Carlo-Based Performance Analysis for Underwater Continuous-Variable Quantum Key Distribution. Appl. Sci. 2020, 10, 5744. https://doi.org/10.3390/app10175744
Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y. Monte Carlo-Based Performance Analysis for Underwater Continuous-Variable Quantum Key Distribution. Applied Sciences. 2020; 10(17):5744. https://doi.org/10.3390/app10175744
Chicago/Turabian StyleMao, Yiyu, Xuelin Wu, Wenti Huang, Qin Liao, Han Deng, Yijun Wang, and Ying Guo. 2020. "Monte Carlo-Based Performance Analysis for Underwater Continuous-Variable Quantum Key Distribution" Applied Sciences 10, no. 17: 5744. https://doi.org/10.3390/app10175744
APA StyleMao, Y., Wu, X., Huang, W., Liao, Q., Deng, H., Wang, Y., & Guo, Y. (2020). Monte Carlo-Based Performance Analysis for Underwater Continuous-Variable Quantum Key Distribution. Applied Sciences, 10(17), 5744. https://doi.org/10.3390/app10175744