Dynamics of a Prey–Predator Model with Group Defense for Prey, Cooperative Hunting for Predator, and Lévy Jump
<p>We select the following parameter values: <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>c</mi> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>5</mn> <mo>,</mo> <mi>δ</mi> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>0.1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>h</mi> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>9</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The predator <span class="html-italic">y</span> dies out and the prey <span class="html-italic">x</span> persists in the sense of time average.</p> "> Figure 2
<p><math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The predator <span class="html-italic">y</span> persists in the sense of time average and the prey <span class="html-italic">x</span> dies out.</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>9</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Then, both the predator <span class="html-italic">y</span> and the prey <span class="html-italic">x</span> die out.</p> "> Figure 4
<p>We select the following parameter values: <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>30</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Then, both the predator <span class="html-italic">y</span> and the prey <span class="html-italic">x</span> persist in the sense of time average.</p> "> Figure 5
<p><math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>30</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. When letting <span class="html-italic">c</span> decrease so that the group defense becomes larger, the predator perishes.</p> "> Figure 6
<p><math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>30</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>15</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Increasing <span class="html-italic">q</span> makes the cooperative hunting intensity increase, and the prey perishes.</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>0.12</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>0.21</mn> </mrow> </semantics></math>. The distribution of the sample path in the phase space.</p> ">
Abstract
:1. Introduction
2. Existence and Uniqueness of a Global Positive Solution
3. Existence and Demise of Biological Populations
4. Stationary Distribution without Lévy Noise
- (1)
- When , we have
- (2)
- When , we have
- (3)
- When , we have
- (4)
- When , we have
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leslie, P. Some further notes on the use of matrices in population mathematic. Biometrica 1948, 35, 213–245. [Google Scholar] [CrossRef]
- Leslie, P.; Gower, J.C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 1960, 47, 219–234. [Google Scholar] [CrossRef]
- Aziz-Alaoui, M.; Okiye, M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 2003, 16, 1069–1075. [Google Scholar] [CrossRef]
- Ble, G.; Castellanos, V. Stable limit cycles in an intraguild predation model with general functional responses. Math. Methods Appl. Sci. 2021, 45, 2219–2233. [Google Scholar] [CrossRef]
- Islam, Y.; Shah, F. Functional Response of Harmonia axyridis to the Larvae of Spodoptera litura: The Combined Effect of Temperatures and Prey Instars. Front. Plant Sci. 2022, 13, 849574. [Google Scholar] [CrossRef]
- Ble, G.; Guzman-Arellano, C. Coexistence in a four-species food web model with general functional responses. Chaos Solitons Fractals 2021, 153, 111555. [Google Scholar] [CrossRef]
- Fu, C.; Xu, T.; Wen, S.; Zhang, S.; Liu, F.; Du, C.H.; Zhang, L. Predation Behaviors and Functional Responses of Picromerus lewisi to the Larvae of Ostrinia furnacalis. Chin. J. Biol. Control 2022, 37, 956–962. [Google Scholar]
- Nisal, A.; Diwekar, U.; Hanumante, N.; Shastri, Y.; Cabezas, H. Integrated model for food-energy-water (FEW) nexus to study global sustainability: The main generalized global sustainability model (GGSM). PLoS ONE 2022, 17, e0267403. [Google Scholar] [CrossRef]
- Ali, I.; Rasool, G.; Alrashed, S. Numerical simulations of reaction–diffusion equations modeling prey–predator interaction with delay. Int. J. Biomath. 2018, 11, 1850054. [Google Scholar] [CrossRef]
- Scheel, D.; Packer, C. Group hunting behaviour of lions: A search for cooperation. Anim. Behav. 1991, 41, 697–709. [Google Scholar] [CrossRef]
- Heinsohn, R.; Packer, C. Complex cooperative strategies in group-territorial African lions. Science 1995, 269, 1260–1262. [Google Scholar] [CrossRef]
- Schmidt, P.; Mech, L. Wolf pack size and food acquisition. Am. Nat. 1997, 269, 513–517. [Google Scholar] [CrossRef]
- Bowman, R. Apparent cooperative hunting in Florida Scrub-Jays. Wilson Bull. 2003, 115, 197–199. [Google Scholar] [CrossRef]
- Hannah, K.C. An apparent case of cooperative hunting in immature Northern Shrikes. Wilson Bull. 2005, 117, 407–409. [Google Scholar] [CrossRef]
- Chow, Y.; Jang, S. Cooperative hunting in a discrete predator-prey system. J. Biol. Dyn. 2019, 13, 247–264. [Google Scholar] [CrossRef]
- Andrews, J. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968, 10, 707–723. [Google Scholar] [CrossRef]
- Sokol, W.; Howell, J. Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng. 1980, 23, 2039–2049. [Google Scholar] [CrossRef]
- Shen, C. Permanence and global attractivity of the food-chain system with Holling IV type functional response. Appl. Math. Comput. 2007, 194, 179–185. [Google Scholar] [CrossRef]
- Bai, D.; Tang, J. Global Dynamics of a Predator–Prey System with Cooperative Hunting. Appl. Sci. 2023, 13, 8178. [Google Scholar] [CrossRef]
- Du, Y.; Niu, B.; Wei, J. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Am. Inst. Math. Sci. 2022, 27, 5845–5881. [Google Scholar] [CrossRef]
- Yao, W.; Li, X. Complicate bifurcation behaviors of a discrete predator–prey model with group defense and nonlinear harvesting in prey. Appl. Anal. 2022, 102, 2567–2582. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, H. Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105807. [Google Scholar] [CrossRef]
- Pal, S.; Pal, N.; Samanta, S. Chattopadhyay, J. Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Ecol. Complex. 2019, 16, 5146–5179. [Google Scholar]
- Qi, H.; Meng, X.; Hayat, T.; Hobiny, A. Stationary distribution of a stochastic predator-prey model with hunting cooperation. Appl. Math. Lett. 2022, 124, 107662. [Google Scholar] [CrossRef]
- Liu, M.; Du, C.; Deng, M. Persistence and extinction of a modified Leslie–Gower Holling-type II stochastic predator–prey model with impulsive toxicant input in polluted environments. Nonlinear Anal. Hybrid Syst. 2018, 27, 177–190. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, D. Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes. J. Math. 2016, 9, 121–138. [Google Scholar] [CrossRef]
- Yu, M.; Lo, W. Dynamics of microorganism cultivation with delay and stochastic perturbation. Nonlinear Dyn. 2020, 101, 501–519. [Google Scholar]
- Higham, D. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001, 433, 525–546. [Google Scholar] [CrossRef]
- Slimani, S.; de Fitte, P. Dynamics of a prey-predator system with modified Leslie-Gower and holling type II schemes incorporating a prey refuge. Discret. Contin. Dyn. Syst.-Ser. B 2019, 24, 5003–5039. [Google Scholar]
- Han, B.; Jiang, D. Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect. Chaos Solitons Fractals 2022, 162, 112458. [Google Scholar] [CrossRef]
- Qiao, M.; Yuan, S. Analysis of a stochastic predator-prey model with prey subject to disease and Lévy noise. Stochastics Dyn. 2019, 19, 1950038. [Google Scholar] [CrossRef]
- He, X.; Liu, M.; Xu, X. Analysis of stochastic disease including predator-prey model with fear factor and Lévy jump. Math. Biosci. Eng. 2023, 20, 1750–1773. [Google Scholar] [CrossRef] [PubMed]
- Lipster, R. A strong law of large numbers for local martingales. Stochastics 1980, 3, 217–228. [Google Scholar]
- Khasminskii, R.; Klebaner, F. Long term behavior of solutions of the Lotka-Volterra system under small random perturbations. Ann. Appl. Probab. 2001, 11, 952–963. [Google Scholar] [CrossRef]
- Khasminskii, R. Stochastic Stability of Differential Equations. In Stochastic Modeling and Applied Probability; Springer: Berlin/Heidelberg, Germany, 2012; pp. 99–136. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Liu, M.; Xu, X. Dynamics of a Prey–Predator Model with Group Defense for Prey, Cooperative Hunting for Predator, and Lévy Jump. Axioms 2023, 12, 878. https://doi.org/10.3390/axioms12090878
Chen H, Liu M, Xu X. Dynamics of a Prey–Predator Model with Group Defense for Prey, Cooperative Hunting for Predator, and Lévy Jump. Axioms. 2023; 12(9):878. https://doi.org/10.3390/axioms12090878
Chicago/Turabian StyleChen, Hengfei, Ming Liu, and Xiaofeng Xu. 2023. "Dynamics of a Prey–Predator Model with Group Defense for Prey, Cooperative Hunting for Predator, and Lévy Jump" Axioms 12, no. 9: 878. https://doi.org/10.3390/axioms12090878
APA StyleChen, H., Liu, M., & Xu, X. (2023). Dynamics of a Prey–Predator Model with Group Defense for Prey, Cooperative Hunting for Predator, and Lévy Jump. Axioms, 12(9), 878. https://doi.org/10.3390/axioms12090878