Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer
<p>Details of patients enlisted in the study. (<b>A</b>) Neoadjuvant chemotherapy and interval surgery; NACT cohort (n = 13) and Primary surgery, PDS cohort (n = 9); (<b>B</b>) Relapse treatment aEOC patients (n = 15).</p> "> Figure 2
<p>Circulating cell (CC) integrity over 6 days in EDTA tubes (<b>A</b>; 2 days), Streck tubes (<b>B</b>; 3 days), PAXgene tubes (<b>C</b>, 6 days) and Roche (<b>D</b>, 6 days) as assessed by Imagestream™. Chanel 1: brightfield, Channel 5: DRAQ5™ nuclear staining (red).</p> "> Figure 3
<p>Circulating cells from an ovarian cancer patient blood sample based on staining in a scatter image generated by the Imagestream™. The micrograph shows images of single cells from ovarian cancer patients with: (<b>A</b>): positive staining for CK and nuclear staining (DRAQ5) identifying a potential circulating ovarian cell (CC), (<b>B</b>): negative staining for CK but positive for DRAQ5 identifying a potential white blood cell (WBC), (<b>C</b>): combination of 2 potential WBCs (CK<sup>−</sup>) with a circulating ovarian CC (CK<sup>+</sup>); all three were stained positive for DRAQ5, (<b>D</b>): positive staining for CK, negative for CD45 and nuclear staining (DRAQ5) identifying a CC, (<b>E</b>): negative staining for CK, positive for CD45 and nuclear staining (DRAQ5) identifying a WBC, (<b>F</b>): a combination of 2 cells; one WT1 positive and one negative, both negative for CD45, but positive for nuclear staining (DRAQ5) identifying two potentially different CCs, but not WBCs.</p> "> Figure 4
<p>Enumeration of CCs in controls against ovarian cancer (OC) patients: (<b>A</b>): CK<sup>+</sup>; * <span class="html-italic">p</span> < 0.05, and (<b>B</b>) WT1<sup>+</sup>, * <span class="html-italic">p</span> < 0.05. ROC curve analysis was used to measure sensitivity and specificity, an AUC of 0.78 (*** <span class="html-italic">p</span> < 0.0001) was calculated for CK<sup>+</sup> (<b>C</b>), and an AUC of 0.82 (*** <span class="html-italic">p</span> = 0.0006) was calculated for WT1<sup>+</sup> (<b>D</b>). Enumeration of CCs in OC patients prior to any treatment at all (NACT), following primary surgery only (post-PDS), or relapse and comparison to healthy controls. (<b>E</b>): CK<sup>+</sup>/CD45<sup>−</sup>/DRAQ5™<sup>+</sup> and (<b>F</b>) WT1<sup>+</sup>/CD45<sup>−</sup>/DRAQ5™<sup>+</sup>, ** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Depiction of CC levels (blue markers) and CA125 (orange markers) for 4 aEOC patients over time (measured in days), in a cohort treated with chemotherapy (arrows).</p> "> Figure 6
<p>Different sizes of WBCs (<b>A</b>: 8µM; <b>B</b>: 10µM), CK<sup>+</sup> CCs (<b>C</b>: 7µM, <b>D</b>: 8.5 µM), WT1<sup>+</sup> CCs (<b>E</b>: 7µM; <b>F</b>: 8µM). (<b>G</b>): No apparent differences in size were detectable when combined CK<sup>+</sup> and WT1<sup>+</sup> CCs were measured and compared to controls. However, WT1<sup>+</sup> CCs were larger compared to CK<sup>+</sup> CCs; but not by a great margin (<b>H</b>; * <span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Oncomine analysis for VEGFA (<b>A</b>), HJURP (<b>B</b>), CCNE2 (<b>C</b>) and RAD51 (<b>D</b>) mRNA expression, using the Bonome ovarian dataset; Human Genome U133A Array (Normal benign controls (Lane 0) n = 10, and Ovarian Carcinoma (Lane 1) n = 185), demonstrate a significant upregulation for all four genes in the cancer cohort compared to controls: VEGFA (210512_s_at): (<span class="html-italic">p</span> = 1.24 × 10<sup>−13</sup>; fold change = 1.670), HJURP (218726_at): (<span class="html-italic">p</span> = 9.10 × 10<sup>−10</sup>; fold change = 2.347), CCNE2 (211814_s_at): (<span class="html-italic">p</span> = 5.80 × 10<sup>−6</sup>; fold change = 1.286) and RAD51 (205023_at): (<span class="html-italic">p</span> = 1.08 × 10<sup>−4</sup>; fold change = 1.475). Overall Survival (OS) plotted as a Kaplan Meier, shows poorer overall survival in the high expression group of OC patients for all 4 genes tested. More specifically: VEGFA (210512_s_at; (<b>E</b>): (<span class="html-italic">p</span> = 0.027, Low = 482 High = 1174), HJURP (218726_at; (<b>F</b>): (<span class="html-italic">p</span> = 0.015, Low = 459 High = 1197), CCNE2 (205034_at; (<b>G</b>): (<span class="html-italic">p</span> = 0.00046, Low = 686 High = 970), and RAD51 (205023_at; (<b>H</b>): (<span class="html-italic">p</span> = 0.023, Low = 554 High = 1102).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Patients
2.3. Clinical Cohorts
2.4. CA125 Measurements
2.5. Preparing Blood Samples for Imagestream™
2.6. Fixing Cells
2.7. Staining Cells
2.8. Imagestream™
2.9. RNA Extraction/cDNA Synthesis
2.10. qPCR TATAA
2.11. Statistical Analysis
3. Results
3.1. Identification of Ovarian Cancer Cells Mixed with Blood In Reconstruction Experiments Using AE1/AE3 and WT1
3.2. Validation of Blood Collection Tubes for CC Integrity
3.3. Expression of AE1/AE3 (CK+), WT1, and CD45 in Enriched Blood Samples of Ovarian Cancer Patients
3.4. NACT, post-PDS, and Relapse Cohorts
3.5. Correlation of CC with CA125
3.6. Changes in Sizes of CCs
3.7. Relapse Cohort-Looking beyond CCs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, H.W.; Warkiani, M.E.; Khoo, B.L.; Li, Z.R.; Soo, R.A.; Tan, D.S.W.; Lim, W.T.; Han, J.; Bhagat, A.A.S.; Lim, C.T. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dent, B.M.; Ogle, L.F.; O’donnell, R.L.; Hayes, N.; Malik, U.; Curtin, N.J.; Boddy, A.V.; Plummer, E.R.; Edmondson, R.J.; Reeves, H.L.; et al. High-resolution imaging for the detection and characterisation of circulating tumour cells from patients with oesophageal, hepatocellular, thyroid and ovarian cancers. Int. J. Cancer 2016, 138, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Sieuwerts, A.; Kraan, J.; vam der Spoel, P.; Elstrodt, F.; Schutte, M.; Martens, J. Anti-Epithelial Cell Adhesion Molecule Antibodies and the Detection of Circulating Normal-Like Breast Tumor Cells. J. Natl. Cancer Inst. 2009, 101, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Trzpis, M.; McLaughlin, P.M.; de Leij, L.M.F.H.; Harmsen, M.C. Epithelial Cell Adhesion Molecule—More than a carcinoma marker and adhesion molecule. Am. J. Pathol. 2007, 171, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer 2009, 9, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, L.; Kasimir-Bauer, S.; Lianidou, E.S. Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA. Clin. Chem. Lab. Med. 2018, 56, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Marrinucci, D.; Bethel, K.; Kolatkar, A.; Luttgen, M.; Malchiodi, M.; Baehring, F.; Voigt, K.; Lazar, D.; Nieva, J.; Bazhenova, L.; et al. Fluid Biopsy in Patients with Metastatic Prostate, Pancreatic and Breast Cancers. Phys. Biol. 2012, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.G.; Velasco, C.R.; Li, J.; Kolatkar, A.; Luttgen, M.; Bethel, K.; Duggan, B.; Kuhn, P.; McCarty, O. Optical Quantification of Cellular Mass, Volume, and Density of Circulating Tumor Cells Identified in an Ovarian Cancer Patient. Front. Oncol. 2012, 2, 1–8. [Google Scholar] [CrossRef]
- Rogers-Broadway, K.-R.; Kumar, J.; Sisu, C.; Wander, G.; Mazey, E.; Jeyaneethi, J.; Pados, G.; Tsolakidis, D.; Klonos, E.; Grunt, T.; et al. Differential expression of mTOR components in endometriosis and ovarian cancer: Effects of rapalogues and dual kinase inhibitors on mTORC1 and mTORC2 stoichiometry. Int. J. Mol. Med. 2019, 43, 47–56. [Google Scholar] [CrossRef]
- Travis, W.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol. 2012, 25, 18–30. [Google Scholar] [CrossRef]
- Nel, I.; Baba, H.A.; Ertle, J.; Weber, F.; Sitek, B.; Eisenacher, M. Individual Profiling of Circulating Tumor Cell Composition and Therapeutic Outcome in Patients with Hepatocellular Carcinoma. Transl. Oncol. 2013, 6, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.; Sollis, K.; Glover, H.; Crowe, S.; Landay, A.; Cheng, B.; Barnett, D.; Denny, T.; Spira, T.; Stevens, W.; et al. CD4 enumeration technologies: A systematic review of test performance for determining eligibility for antiretroviral therapy. PLoS ONE 2015, 10, e0115019. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Everds, N.; Schultze, E.A.; Irizarry, A.; Hall, R.; Provencher, A.; Aulbach, A. Deciphering Sources of Variability in Clinical Pathology: It’s Not Just about the Numbers. Toxicol. Pathol. 2017, 45, 90–93. [Google Scholar] [CrossRef]
- Kobel, M.; Rahimi, K.; Rambau, P.; Naugler, C.; Le Page, C.; Meunier, L. An Immunohistochemical Algorithm for Ovarian Carcinoma Typing. Int. J. Gynaecol. Pathol. 2016, 35, 430–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rekhi, B.; Deodhar, K.; Menon, S.; Maheshwari, A.; Bajpai, J.; Ghosh, J.; Shylasree, S.; Gupta, S. Napsin A and WT 1 are useful immunohistochemical markers for differentiating clear cell carcinoma ovary from high-grade serous carcinoma. J. Pathol. Microbiol. Immunol. 2017, 126, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P.; Burlini, A.; Pruneri, G.; Goldhirsch, A.; Martinelli, G.; Bertolini, F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001, 96, 3658–3662. [Google Scholar] [CrossRef]
- Park, S.R.; Speranza, G.; Piekarz, R.; Wright, J.; Kinders, R.J.; Wang, L. A multi-histology trial of fostamatinib in patients with advanced colorectal, non-small cell lung, head and neck, thyroid, and renal cell carcinomas, and pheochromocytomas. Cancer Chemother. Pharmacol. 2013, 71, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Kummar, S.; Guiterrez, M.E.; Chen, A.; Turkbey, I.; Allen, D. Phase I Trial of Vandetanib and Bevacizumab Evaluating the VEGF and EGF Signal Transduction Pathways in Adults with Solid Tumours and Lymphomas. Eur. J. Cancer 2011, 47, 997–1005. [Google Scholar] [CrossRef]
- Beereport, L.V.; Mehra, N.; Vermaat, S.P.J.; Zonnenberg, B.A.; Gebbink, M.F.G.B.; Voest, E.E. Increased levels of viable circuating endothelial cells are an indicator of progressive disease in cancer patients. Ann. Oncol. 2004, 15, 139–145. [Google Scholar] [CrossRef]
- Antony, J.; Thiery, J.-P.; Huang, R. Epithelial-to-mesenchymal transition: Lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys. Biol. 2019, 16, 041004. [Google Scholar] [CrossRef]
- Jazedje, T.; Perin, P.; Czeresnia, C.; Maluf, M.; Halpern, S.; Secco, M.; Bueno, D. Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J. Transl. Med. 2009, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Sundfeldt, K. Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol. Cell. Endocrinol. 2003, 202, 89–96. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, E.; Quinn, M. Epithelial–Mesenchymal Interconversions in Normal Ovarian Surface Epithelium and Ovarian Carcinomas: An Exception to the Norm. J. Cell. Physiol. 2007, 207, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Bardia, A.; Wittner, B.; Stott, S.; Smas, M.; Ting, D. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339, 580–584. [Google Scholar] [CrossRef]
- Rosso, M.; Majem, B.; Devis, L.; Lapyckyj, L.; Besso, M.J.; Llaurado, M. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness. PLoS ONE 2017, 12, e0184439. [Google Scholar] [CrossRef]
- Dawson, S.J.; Tsui, D.D.W.; Murtaza, M.; Biggs, H.; Rueda, O.M. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Freidin, M.; Freydina, D.; Leung, M.; Fernandez, A.-M.; Nicholson, A.; Lim, E. Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies. Clin. Chem. 2015, 61, 1299–1304. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, J.; Chudasama, D.; Roberts, C.; Kubista, M.; Sjöback, R.; Chatterjee, J.; Anikin, V.; Karteris, E.; Hall, M. Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer. Cells 2019, 8, 732. https://doi.org/10.3390/cells8070732
Kumar J, Chudasama D, Roberts C, Kubista M, Sjöback R, Chatterjee J, Anikin V, Karteris E, Hall M. Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer. Cells. 2019; 8(7):732. https://doi.org/10.3390/cells8070732
Chicago/Turabian StyleKumar, Juhi, Dimple Chudasama, Charlotte Roberts, Mikael Kubista, Robert Sjöback, Jayanta Chatterjee, Vladimir Anikin, Emmanouil Karteris, and Marcia Hall. 2019. "Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer" Cells 8, no. 7: 732. https://doi.org/10.3390/cells8070732
APA StyleKumar, J., Chudasama, D., Roberts, C., Kubista, M., Sjöback, R., Chatterjee, J., Anikin, V., Karteris, E., & Hall, M. (2019). Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer. Cells, 8(7), 732. https://doi.org/10.3390/cells8070732