Discovery and Validation of Novel Biomarkers for Detection of Epithelial Ovarian Cancer
<p>Overview of the biomarker identification concept. Three independent studies for genes over-expressed in malignant tissue were interrogated (Gene Expression Omnibus (GEO) series GSE29156, GSE40595 and GSE14407). Genes found to be over-expressed in both studies while simultaneously being secreted into the bloodstream were defined as biomarker candidates using the secretome database (DB). The candidates’ expression signatures in tissue and blood were measured by NanoString analysis and enzyme-linked immunosorbent assay (ELISA), respectively and compared to the reported signatures in the CSIOVDB database (Ovarian cancer database of Cancer Science Institute Singapore) to determine whether the measured signatures could be independently replicated. Versican (VCAN), syndecan-3 (SDC3), aurora kinase A (AURKA) and T-cell differentiation protein myelin and lymphocyte (MAL) were confirmed as potential biomarkers, but not claudin-6 (CLDN6) by this analysis.</p> "> Figure 2
<p>Principal component analysis (PCA) of patient-derived malignant and benign samples. Data from malignant and benign samples supported the pathological sample classification as malignant or benign since the sample were separable along the principal component 1 (PC1) of a principal component analysis (PCA) of their pairwise correlation. Their separability allowed identification of differentially expressed biomarker candidates to distinguish between benign and malignant samples.</p> "> Figure 3
<p>Validation of biomarker candidates in tissue and blood. (<b>A</b>) This plot depicts the Log–Fold changes and <span class="html-italic">P</span>-values of differential biomarker expression values between malignant (positive values) and benign tissue (negative values). The top 10 significant (<span class="html-italic">P</span>-value significance ≥ ~1.3) candidate biomarkers are labelled. (<b>B</b>) The distribution of gene expression levels of biomarker candidates matrix metalloproteinase 15 (MMP15), bone morphogenetic protein 7 (BMP7), denticleless E3 ubiquitin protein ligase (DTL), maternal embryonic leucine zipper kinase (MELK), complement factor B (CFB), nuclear orphan receptor (NR2F6), galactoside 2-alpha-L-fucosyltransferase-2 (FUT2), claudin-6 (CLDN6), aurora kinase A (AURKA), interferon-stimulated gene 15 (ISG15), myelin and lymphocyte protein (MAL), fibroblast growth factor 18 (FGF18) in benign and ovarian cancer tissues are shown (<span class="html-italic">p</span> < 0.05). The expression data were obtained by NanoString analysis using the mRNA from tissue samples of patients with benign (<span class="html-italic">N</span> = 10) disease or ovarian cancer (<span class="html-italic">N</span> = 10).</p> "> Figure 4
<p>Reported biomarker expression. Log–Fold change of biomarker candidates are shown for two sets of cohorts; (<b>A</b>) healthy ovarian surface epithelium (OSE) versus ovarian cancer (OVCA) and (<b>B</b>) healthy versus cancerous stromal tissue. <span class="html-italic">P</span>-values higher than 1.3 are significant (horizontal line). Genes have been ranked according to their <span class="html-italic">P</span>-values in the OSE versus OVCA comparison from highest to lowest statistical power. Data have been procured from the CSIOVDB database [<a href="#B39-cells-08-00713" class="html-bibr">39</a>]. Both plots show the same genes but are differently ordered by increasing the <span class="html-italic">P</span>-value. Differentially expressed biomarker candidates that distinguish malignant from healthy tissues are clearly present in plot A. By comparison, significantly fewer biomarkers that distinguish malignant from benign tissue are identifiable on plot B. In particular, the <span class="html-italic">P</span>-values for differential expression are significantly higher on plot B, although VCAN, ISG15, and MAL show a comparable Log–Fold change, which indicates a higher variance, i.e., expression heterogeneity within the groups.</p> "> Figure 5
<p>Gene-expression in ovarian cancer. Gene expression profiles of (<b>A</b>) AURKA and (<b>C</b>) MAL in normal tissue, including ovarian surface epithelium (OSE), stroma and fallopian tube epithelium (FTE), and the ovarian cancer disease state are shown. The correlation of gene expression with the PFS and OS of ovarian cancer patients is presented in (<b>B</b>,<b>D</b>), respectively. Kaplan–Meier plots were generated with samples of low (blue) and high (red) gene expression levels within the CSIOVDB dataset.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microarray Data and In Silico Analysis
2.2. RNA Extraction and Gene Expression Analysis
2.3. Patients Characteristics
2.4. Circulatory Levels of Biomarkers by ELISA
2.5. Statistical Analysis
3. Results
3.1. Overview Biomarker Identification Concept
3.2. Detailed Description of the Identification Workflow
3.3. Assessment of Biomarker Candidates in Tissue and Blood
3.4. Validation of Biomarkers in Serum
3.5. Exploration of Potential Diagnostic Markers Using a Gene Expression Database
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program. Available online: http://seer.cancer.gov (accessed on 8 May 2019).
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köbel, M.; E Kalloger, S.; Boyd, N.; McKinney, S.; Mehl, E.; Palmer, C.; Leung, S.; Bowen, N.J.; Ionescu, D.N.; Rajput, A.; et al. Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies. PLoS Med. 2008, 5, e232. [Google Scholar] [CrossRef] [PubMed]
- Singha, B.; Harper, S.L.; Goldman, A.R.; Bitler, B.G.; Aird, K.M.; Borowsky, M.E.; Cadungog, M.G.; Liu, Q.; Zhang, R.; Jean, S.; et al. CLIC1 and CLIC4 complement CA125 as a diagnostic biomarker panel for all subtypes of epithelial ovarian cancer. Sci. Rep. 2018, 8, 14725. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Bellone, S.; Siegel, E.R.; Altwerger, G.; Menderes, G.; Bonazzoli, E.; Egawa-Takata, T.; Pettinella, F.; Bianchi, A.; Riccio, F.; et al. A novel multiple biomarker panel for the early detection of high-grade serous ovarian carcinoma. Gynecol. Oncol. 2018, 149, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Hilvo, M.; de Santiago, I.; Gopalacharyulu, P.; Schmitt, W.D.; Budczies, J.; Kuhberg, M.; Dietel, M.; Aittokallio, T.; Markowetz, F.; Denkert, C.; et al. Accumulated Metabolites of Hydroxybutyric Acid Serve as Diagnostic and Prognostic Biomarkers of Ovarian High-Grade Serous Carcinomas. Cancer Res. 2016, 76, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Danila, D.C.; Anand, A.; Schultz, N.; Heller, G.; Wan, M.; Sung, C.C.; Dai, C.; Khanin, R.; Fleisher, M.; Lilja, H.; et al. Analytic and clinical validation of a prostate cancer-enhanced messenger RNA detection assay in whole blood as a prognostic biomarker for survival. Eur. Urol. 2014, 65, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.L.; De Boever, C.; Jepsen, K.; Saenz, C.C.; Carson, D.A.; Frazer, K.A. Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy. Proc. Natl. Acad. Sci. 2015, 112, E3050–E3057. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-Q.; Bachvarova, M.; Morin, C.; Plante, M.; Gregoire, J.; Renaud, M.-C.; Sebastianelli, A.; Bachvarov, D. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation. Oncotarget 2014, 5, 544–560. [Google Scholar] [CrossRef]
- Niemi, R.J.; Braicu, E.I.; Kulbe, H.; Koistinen, K.M.; Sehouli, J.; Puistola, U.; Mäenpää, J.U.; Hilvo, M. Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br. J. Cancer 2018, 119, 847–854. [Google Scholar] [CrossRef]
- Parikh, J.R.; Klinger, B.; Xia, Y.; Marto, J.A.; Bluthgen, N. Discovering causal signaling pathways through gene-expression patterns. Nucleic Acids Res. 2010, 38, W109–W117. [Google Scholar] [CrossRef]
- Meng, X.; A Joosse, S.; Müller, V.; Trillsch, F.; Milde-Langosch, K.; Mahner, S.; Geffken, M.; Pantel, K.; Schwarzenbach, H. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429 in ovarian cancer patients. Br. J. Cancer 2015, 113, 1358–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Müller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016, 7, 16923–16935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Karedath, T.; Andrews, S.S.; Al, I.K.; Mohamoud, Y.A.; Querleu, D.; Rafii, A.; Malek, J.A.; Al-Azwani, I.K. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget 2016, 7, 36366–36381. [Google Scholar] [CrossRef] [PubMed]
- Sjövall, K.; Nilsson, B.; Einhorn, N. The Significance of Serum CA 125 Elevation in Malignant and Nonmalignant Diseases. Gynecol. Oncol. 2002, 85, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.; Oram, D.; Fairbanks, J.; Turner, J.; Frost, C.; Grudzinskas, J.G. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. BJOG Int. J. Obstet. Gynaecol. 1990, 97, 922–929. [Google Scholar] [CrossRef]
- Du Bois, A.; Reuss, A.; Pujade-Lauraine, E.; Harter, P.; Ray-Coquard, I.; Pfisterer, J. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 2009, 115, 1234–1244. [Google Scholar] [PubMed]
- Moore, R.G.; Jabre-Raughley, M.; Brown, A.K.; Robison, K.M.; Miller, M.C.; Allard, W.J.; Kurman, R.J.; Bast, R.C.; Skates, S.J. Comparison of a novel multiple marker assay vs the Risk of Malignancy Index for the prediction of epithelial ovarian cancer in patients with a pelvic mass. Am. J. Obstet. Gynecol. 2010, 203, 228-e1–228-e6. [Google Scholar] [CrossRef]
- Kristjansdottir, B.; LeVan, K.; Partheen, K.; Sundfeldt, K. Diagnostic performance of the biomarkers HE4 and CA125 in type I and type II epithelial ovarian cancer. Gynecol. Oncol. 2013, 131, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, A.N.; Fraser, L.S.; Philpott, S.; Manchanda, R.; Burnell, M.; Badman, P.; Hadwin, R.; Rizzuto, I.; Benjamin, E.; Singh, N.; et al. Evidence of Stage Shift in Women Diagnosed With Ovarian Cancer During Phase II of the United Kingdom Familial Ovarian Cancer Screening Study. J. Clin. Oncol. 2017, 35, 1411–1420. [Google Scholar] [CrossRef]
- Jacobs, I.J.; Menon, U.; Ryan, A.; Gentry-Maharaj, A.; Burnell, M.; Kalsi, J.K.; Amso, N.N.; Apostolidou, S.; Benjamin, E.; Cruickshank, D.; et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 2016, 387, 945–956. [Google Scholar] [CrossRef]
- Vathipadiekal, V.; Wang, V.; Wei, W.; Waldron, L.; Drapkin, R.; Gillette, M.; Skates, S.; Birrer, M. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array. Clin. Cancer Res. 2015, 21, 4960–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.M.; Kannan, L.; Geistlinger, L.; Kofia, V.; Safikhani, Z.; Gendoo, D.M.; Parmigiani, G.; Birrer, M.J.; Haibe-Kains, B.; Waldron, L. Consensus on Molecular Subtypes of High-Grade Serous Ovarian Carcinoma. Clin. Cancer Res. 2018, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jing, Y.; Zhang, M.; Zhang, Z.; Ma, P.; Peng, H.; Shi, K.; Gao, W.-Q.; Zhuang, G. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci. Rep. 2015, 5, 16066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–715. [Google Scholar] [CrossRef]
- Labiche, A.; Heutte, N.; Herlin, P.; Chasle, J.; Gauduchon, P.; Elie, N. Stromal Compartment as a Survival Prognostic Factor in Advanced Ovarian Carcinoma. Int. J. Gynecol. Cancer 2010, 20, 28–33. [Google Scholar] [CrossRef]
- Kulbe, H.; Chakravarty, P.; Leinster, D.A.; Charles, K.A.; Kwong, J.; Thompson, R.G.; Coward, J.I.; Schioppa, T.; Robinson, S.C.; Gallagher, W.M. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012, 72, 66–75. [Google Scholar] [CrossRef]
- Hutti, J.E.; Pfefferle, A.D.; Russell, S.C.; Sircar, M.; Perou, C.M.; Baldwin, A.S. Oncogenic PI3K mutations lead to NF-kappaB-dependent cytokine expression following growth factor deprivation. Cancer Res. 2012, 72, 3260–3269. [Google Scholar] [CrossRef]
- De Monte, L.; Reni, M.; Tassi, E.; Clavenna, D.; Papa, I.; Recalde, H.; Braga, M.; Di Carlo, V.; Doglioni, C.; Protti, M.P. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med. 2011, 208, 469–478. [Google Scholar] [CrossRef]
- Ancrile, B.; Lim, K.-H.; Counter, C.M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genome Res. 2007, 21, 1714–1719. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, P.N.; Richardson, C.; Bahrani-Mostafavi, Z.; Tait, D.L.; Mostafavi, M.T. Dysregulation of AKT3 along with a small panel of mRNAs stratifies high-grade serous ovarian cancer from both normal epithelia and benign tumor tissues. Genes Cancer 2017, 8, 784–798. [Google Scholar]
- Bowen, N.J.; Walker, L.D.; Matyunina, L.V.; Logani, S.; A Totten, K.; Benigno, B.B.; McDonald, J.F. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med. Genom. 2009, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Yeung, T.L.; Leung, C.S.; Wong, K.K.; Samimi, G.; Thompson, M.S.; Liu, J.; Zaid, T.M.; Ghosh, S.; Birrer, M.J.; Mok, S.C. TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013, 73, 5016–5028. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Waggott, D.; Chu, K.; Yin, S.; Wouters, B.G.; Liu, F.-F.; Boutros, P.C. NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics 2012, 28, 1546–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.; Isserlin, R.; Jain, S.; et al. A draft map of the human proteome. Nature 2014, 509, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.Z.; Yang, H.; Ye, J.; Low, J.; Choolani, M.; Tan, D.S.P.; Thiery, J.-P.; Huang, R.Y.-J. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype. Oncotarget 2015, 6, 43843–43852. [Google Scholar] [CrossRef] [Green Version]
- Sarojini, S.; Tamir, A.; Lim, H.; Li, S.; Zhang, S.; Goy, A.; Pecora, A.; Suh, K.S. Early Detection Biomarkers for Ovarian Cancer. J. Oncol. 2012, 2012, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Terry, K.L.; Sluss, P.M.; Skates, S.J.; Mok, S.C.; Ye, B.; Vitonis, A.F.; Cramer, D.W. Blood and Urine Markers for Ovarian Cancer: A Comprehensive Review. Dis. Markers 2004, 20, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Wang, F.-Q.; Phalen, A.; Fishman, D.A. Biomarkers for ovarian cancer detection and therapy. Cancer Boil. Ther. 2010, 9, 668–677. [Google Scholar] [CrossRef]
- Simmons, A.R.; Clarke, C.H.; Badgwell, D.B.; Lu, Z.; Sokoll, L.J.; Lu, K.H.; Zhang, Z.; Bast, R.C.; Skates, S.J. Validation of a biomarker panel and longitudinal biomarker performance for early detection of ovarian cancer. Int. J. Gynecol. Cancer 2016, 26, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Havrilesky, L.J.; Whitehead, C.M.; Rubatt, J.M.; Cheek, R.L.; Groelke, J.; He, Q.; Malinowski, D.P.; Fischer, T.J.; Berchuck, A. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol. Oncol. 2008, 110, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Yurkovetsky, Z.; Skates, S.; Lomakin, A.; Nolen, B.; Pulsipher, T.; Modugno, F.; Marks, J.; Godwin, A.; Gorelik, E.; Jacobs, I.; et al. Development of a Multimarker Assay for Early Detection of Ovarian Cancer. J. Clin. Oncol. 2010, 28, 2159–2166. [Google Scholar] [CrossRef] [PubMed]
- Cramer, D.W.; Bast, R.C.; Berg, C.D.; Diamandis, E.P.; Godwin, A.K.; Hartge, P.; Lokshin, A.E.; Lu, K.H.; McIntosh, M.W.; Mor, G.; et al. Ovarian Cancer Biomarker Performance in Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Specimens. Cancer Prev. Res. 2011, 4, 365–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry, K.L.; Schock, H.; Fortner, R.T.; Husing, A.; Fichorova, R.N.; Yamamoto, H.S.; Vitonis, A.F.; Johnson, T.; Overvad, K.; Tjønneland, A.; et al. A prospective evaluation of early detection biomarkers for ovarian cancer in the European EPIC cohort. Clin. Cancer Res. 2016, 22, 4664–4675. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Takahashi, H.; Lin, W.-W.; Descargues, P.; Grivennikov, S.; Kim, Y.; Luo, J.-L.; Karin, M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009, 457, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Nelson, C.M.; Nandadasa, S.; Aramaki-Hattori, N.; Lindner, D.J.; Alban, T.; Inagaki, J.; Ohtsuki, T.; Oohashi, T.; Apte, S.S.; et al. Stromal Versican Regulates Tumor Growth by Promoting Angiogenesis. Sci. Rep. 2017, 7, 17225. [Google Scholar] [CrossRef]
- Shen, X.-H.; Lin, W.-R.; Xu, M.-D.; Qi, P.; Dong, L.; Zhang, Q.-Y.; Ni, S.-J.; Weng, W.-W.; Tan, C.; Huang, D.; et al. Prognostic significance of Versican expression in gastric adenocarcinoma. Oncogenesis 2015, 4, e178. [Google Scholar] [CrossRef]
- Chida, S.; Okayama, H.; Noda, M.; Saito, K.; Nakajima, T.; Aoto, K.; Hayase, S.; Momma, T.; Ohki, S.; Kono, K.; et al. Stromal VCAN expression as a potential prognostic biomarker for disease recurrence in stage II-III colon cancer. Carcinogenesis 2016, 37, 878–887. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, X.; Ma, Y.; Ma, L. Syndecan-1 serves as a marker for the progression of epithelial ovarian carcinoma. Eur. J. Gynaecol. Oncol. 2015, 36. [Google Scholar]
- Masuda, N.; Ogawa, O.; Park, M.; Liu, A.Y.; Goodison, S.; Dai, Y.; Kozai, L.; Furuya, H.; Lotan, Y.; Rosser, C.J.; et al. Meta-analysis of a 10-plex urine-based biomarker assay for the detection of bladder cancer. Oncotarget 2018, 9, 7101–7111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Assoro, A.B.; Haddad, T.; Galanis, E. Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front. Oncol. 2015, 5, 295. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.M.; Jang, B.G.; Hyun, C.L.; Kim, Y.S.; Hyun, J.W.; Chang, W.Y.; Maeng, Y.H. Aurora Kinase A Is a Prognostic Marker in Colorectal Adenocarcinoma. J. Pathol. Transl. Med. 2017, 51, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Katsha, A.; Belkhiri, A.; Goff, L.; El-Rifai, W. Aurora kinase A in gastrointestinal cancers: time to target. Mol. Cancer 2015, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Mobley, A.; Zhang, S.; Bondaruk, J.; Wang, Y.; Majewski, T.; Caraway, N.P.; Huang, L.; Shoshan, E.; Velazquez-Torres, G.; Nitti, G.; et al. Aurora Kinase A is a Biomarker for Bladder Cancer Detection and Contributes to its Aggressive Behavior. Sci. Rep. 2017, 7, 40714. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.S.; Teaberry, V.S.; Bland, A.E.; Huang, Z.; Whitaker, R.S.; Baba, T.; Fujii, S.; Secord, A.A.; Berchuck, A.; Murphy, S.K. Elevated MAL expression is accompanied by promoter hypomethylation and platinum resistance in epithelial ovarian cancer. Int. J. Cancer 2010, 126, 1378–1389. [Google Scholar] [PubMed]
- Zanotti, L.; Romani, C.; Tassone, L.; Todeschini, P.; Tassi, R.A.; Bandiera, E.; Damia, G.; Ricci, F.; Ardighieri, L.; Calza, S.; et al. MAL gene overexpression as a marker of high-grade serous ovarian carcinoma stem-like cells that predicts chemoresistance and poor prognosis. BMC Cancer 2017, 17, 366. [Google Scholar] [CrossRef] [PubMed]
- Berchuck, A.; Iversen, E.S.; Luo, J.; Clarke, J.P.; Horne, H.; Levine, D.A.; Boyd, J.; Alonso, M.A.; Secord, A.A.; Bernardini, M.Q.; et al. Microarray analysis of early stage serous ovarian cancers shows profiles predictive of favorable outcome. Clin. Cancer Res. 2009, 15, 2448–2455. [Google Scholar] [CrossRef]
Clinical Parameters | Tissue | Blood | Serum |
---|---|---|---|
Benign pelvic tumours | |||
Age at first diagnosis (median/range) | 49 (25–68) | 69 (41–92) | 47 (23–79) |
CA125 (U/mL) mean (range) | 72 (12–278) | 18 (6–77) | 28 (5–215) |
He4 (pM) mean (range) | 44 (32–78) | 52 (30–90) | |
Histology (*) | |||
Cystadenoma | 3 (33%) | 2 (20%) | 19 (33.9%) |
Dermoid cyst | 3 (33%) | 2 (20%) | 12 (21.4%) |
Endometriosis | 2 (20%) | 4 (40%) | 8 (14.4%) |
Functional cysts | 2 (20%) | 1 (10%) | 4 (7.1%) |
Myoma uteri | 2 (20%) | 1 (1.8%) | |
Benign Brenner tumour | 1 (1.8%) | ||
Cystadenofibroma | 4 (7.1%) | ||
Fibroma | 2 (3.6%) | ||
Others | 2 (20%) | 5 (8.9%) | |
Ascites | |||
Present | 1 (10%) | 3 (5.4%) | |
Absent | 9 (90%) | 10 (100%) | 52 (92.9%) |
NA | 1 (1.7%) | ||
Ovarian Cancer | |||
Age at first diagnosis (median/range) | 61 (48–79) | 58 (29–86) | 62 (22–79) |
CA125 (U/mL) mean (range) | 1046 (12–6193) | 600 (10–3331) | 1124 (8–11616) |
He4 (pM) mean (range) | 341 (49–1305) | 892 (97–3136) | 637 (47–4676) |
Histology | |||
High grade serous | 6 (60%) | 9 (90%) | 46 (76.7%) |
Low grade serous | 1 (10%) | 1 (1.7%) | |
Endometrioid | 1 (10%) | 9 (15.0%) | |
Mucinous | 1 (10%) | 1 (1.7%) | |
Clear cell | 1 (10%) | 1 (10%) | 2 (3.3%) |
Others | 1 (1.7%) | ||
Grading | |||
G1 | 3 (30%) | 7 (11.7%) | |
G2–3 | 7 (70%) | 10 (100%) | 53 (89.3%) |
FIGO Stage (**) | |||
I–II | 2 (20%) | 12 (20.0%) | |
III–IV | 7 (70%) | 10 (100%) | 48 (80.0%) |
NA | 1 (10%) | ||
Ascites | |||
Present | 6 (60%) | 7 (70%) | 32 (53.3%) |
Absent | 4 (40%) | 3 (30%) | 28 (46.7%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulbe, H.; Otto, R.; Darb-Esfahani, S.; Lammert, H.; Abobaker, S.; Welsch, G.; Chekerov, R.; Schäfer, R.; Dragun, D.; Hummel, M.; et al. Discovery and Validation of Novel Biomarkers for Detection of Epithelial Ovarian Cancer. Cells 2019, 8, 713. https://doi.org/10.3390/cells8070713
Kulbe H, Otto R, Darb-Esfahani S, Lammert H, Abobaker S, Welsch G, Chekerov R, Schäfer R, Dragun D, Hummel M, et al. Discovery and Validation of Novel Biomarkers for Detection of Epithelial Ovarian Cancer. Cells. 2019; 8(7):713. https://doi.org/10.3390/cells8070713
Chicago/Turabian StyleKulbe, Hagen, Raik Otto, Silvia Darb-Esfahani, Hedwig Lammert, Salem Abobaker, Gabriele Welsch, Radoslav Chekerov, Reinhold Schäfer, Duska Dragun, Michael Hummel, and et al. 2019. "Discovery and Validation of Novel Biomarkers for Detection of Epithelial Ovarian Cancer" Cells 8, no. 7: 713. https://doi.org/10.3390/cells8070713
APA StyleKulbe, H., Otto, R., Darb-Esfahani, S., Lammert, H., Abobaker, S., Welsch, G., Chekerov, R., Schäfer, R., Dragun, D., Hummel, M., Leser, U., Sehouli, J., & Braicu, E. I. (2019). Discovery and Validation of Novel Biomarkers for Detection of Epithelial Ovarian Cancer. Cells, 8(7), 713. https://doi.org/10.3390/cells8070713