Organizational Evolution during Performance Meritocracy of AlSi0.5CrxCo0.2Ni Lightweight High Entropy Alloys
<p>XRD patterns of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni (x = 1.0, 1.2, 1.4, 1.6, and 1.8) high entropy alloys; (<b>a</b>) The phase composition of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni HEAs, (<b>b</b>) The enlarged image of the strongest diffraction peak.</p> "> Figure 2
<p>Microstructures of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni high entropy alloys; (<b>a</b>) x = 1.0, (<b>b</b>) x = 1.2, (<b>c</b>) x = 1.4, (<b>d</b>) x = 1.6, and (<b>e</b>) x = 1.8.</p> "> Figure 3
<p>EDS elemental mapping of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni high entropy alloys; (<b>a</b>) x = 1.0, (<b>b</b>) x = 1.4, (<b>c</b>) x = 1.8.</p> "> Figure 4
<p>EPMA analysis of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni high entropy alloys; (<b>a</b>) x = 1.0, (<b>b</b>) x = 1.4, (<b>c</b>) x = 1.8.</p> "> Figure 5
<p>Hardness of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni (x = 1.0, 1.2, 1.4, 1.6, and 1.8) high entropy alloys.</p> "> Figure 6
<p>Potentiodynamic polarization curves of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni (x = 1.0, 1.2, 1.4, 1.6, and 1.8) high entropy alloys.</p> "> Figure 7
<p>Nyquist plots (<b>a</b>) and Bode plots (<b>b</b>) of the electrode interface for AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni (x = 1.0, 1.2, 1.4, 1.6, and 1.8) high entropy alloys, respectively; the insert in <a href="#crystals-12-01828-f007" class="html-fig">Figure 7</a>a is the electrical equivalent circuits fitting the EIS experimental data (3.5 wt.% NaCl solution).</p> "> Figure 8
<p>Corrosion microstructures of AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni high entropy alloys obtained by SEM; (<b>a</b>) x = 1.0, (<b>b</b>) x = 1.2, (<b>c</b>) x = 1.4, (<b>d</b>) x = 1.6, and (<b>e</b>) x = 1.8.</p> "> Figure 9
<p>XPS fine spectra for AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni high entropy alloys (x = 1.0, 1.4, and 1.6).</p> "> Figure 10
<p>XPS semi-quantitative analysis for chemical compositions (at.%) for AlSi<sub>0.5</sub>Cr<sub>x</sub>Co<sub>0.2</sub>Ni high entropy alloys (x = 1.0, 1.4, and 1.6).</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Characterization and Testing
3. Results and Discussion
3.1. Phase Analysis and Microstructures of AlSi0.5CrxCo0.2Ni HEAs
3.2. Hardness Analysis of AlSi0.5CrxCo0.2Ni HEAs
3.3. Corrosion Resistance of AlSi0.5CrxCo0.2Ni HEAs
4. Conclusions
- (1)
- AlSi0.5CrxCo0.2Ni HEAs were formed of A2 (Cr-rich), B2 (Ni-Al), and Cr3Si phases; the saturation concentration of Cr3Si was about 27 at.%, as determined by XRD. The addition of Cr could increase the crystallite size of HEAs.
- (2)
- With the addition of Cr content in the AlSi0.5CrxCo0.2Ni HEAs, the dendrites became larger and the Cr3Si phase increased. Al, Co, and Ni tended to be enriched together, while Cr and Si were easy to form the Cr3Si phase.
- (3)
- The hardness test of AlSi0.5CrxCo0.2Ni HEAs revealed that, with the increase of Cr content, the progressively more Cr3Si phase and rising crystallite size maintained a high hardness value for HEAs (average HV 981.2).
- (4)
- The electrochemical investigation demonstrated that increasing the Cr content of Al-Si-Cr-Co-Ni HEAs was an effective way for improving their overall performances, with the premise being that the amount of post-added Cr must exceed a particular threshold.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, J.; Geng, K.; Hu, S. Fabrication of FeCoCrNiMnAl0.5-FeCoCrNiMnAl Gradient HEA Coating by Laser Cladding Technique. Surf. Coat. Technol. 2021, 412, 127077. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and Properties of High-Entropy Alloy Films and Coatings: A Review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, M.; Sun, J.; Li, G.; Zheng, R.; Xiao, W.; Ma, C. Excellent Thermal Stability and Mechanical Properties of Bulk Nanostructured FeCoNiCu High Entropy Alloy. Mater. Sci. Eng. A 2022, 835, 142670. [Google Scholar] [CrossRef]
- Polat, G.; Tekin, M.; Kotan, H. Role of Yttrium Addition and Annealing Temperature on Thermal Stability and Hardness of Nanocrystalline CoCrFeNi High Entropy Alloy. Intermetallics 2022, 146, 107589. [Google Scholar] [CrossRef]
- Mishra, R.K.; Shahi, R.R. Effect of Annealing on Phase Formation and Their Correlation with Magnetic Characteristics of TiFeNiCrCo HEA. Mater. Today Proc. 2019, 18, 1422–1429. [Google Scholar] [CrossRef]
- Dvurečenskij, A.; Cigáň, A.; Lobotka, P.; Radnóczi, G.; Škrátek, M.; Benyó, J.; Kováčová, E.; Majerová, M.; Maňka, J. Colloids of HEA Nanoparticles in an Imidazolium-Based Ionic Liquid Prepared by Magnetron Sputtering: Structural and Magnetic Properties. J. Alloy. Compd. 2022, 896, 163089. [Google Scholar] [CrossRef]
- Yadav, S.; Zhang, Q.; Behera, A.; Haridas, R.S.; Agrawal, P.; Gong, J.; Mishra, R.S. Role of Binder Phase on the Microstructure and Mechanical Properties of a Mechanically Alloyed and Spark Plasma Sintered WC-FCC HEA Composites. J. Alloy. Compd. 2021, 877, 160265. [Google Scholar] [CrossRef]
- Muftah, W.; Allport, J.; Vishnyakov, V. Corrosion Performance and Mechanical Properties of FeCrSiNb Amorphous Equiatomic HEA Thin Film. Surf. Coat. Technol. 2021, 422, 127486. [Google Scholar] [CrossRef]
- Feng, R.; Gao, M.; Lee, C.; Mathes, M.; Zuo, T.; Chen, S.; Hawk, J.; Zhang, Y.; Liaw, P. Design of Light-Weight High-Entropy Alloys. Entropy 2016, 18, 333. [Google Scholar] [CrossRef] [Green Version]
- Senkov, O.N.; Senkova, S.V.; Woodward, C.; Miracle, D.B. Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis. Acta Mater. 2013, 61, 1545–1557. [Google Scholar] [CrossRef]
- Sadeghi, M.; Niroumand, B. Design and Characterization of a Novel MgAlZnCuMn Low Melting Point Light Weight High Entropy Alloy (LMLW-HEA). Intermetallics 2022, 151, 107658. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Li, B.; Cao, T.; Wang, B.; Wang, L.; Ren, Y.; Liang, J.; Xue, Y. Lightweight Zr1.2V0.8NbTixAly High-Entropy Alloys with High Tensile Strength and Ductility. Mater. Sci. Eng. A 2021, 814, 141234. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Hao, X.; Zhang, X.; Liu, H. Lightweight Refractory High Entropy Alloy Coating by Laser Cladding on Ti-6Al-4V Surface. Vacuum 2021, 183, 109823. [Google Scholar] [CrossRef]
- Tan, M.; Meng, L.; Lin, C.; Ke, L.; Liu, Y.; Qu, J.; Qi, T. Variation of Microstructures and Properties of Co0.2CrAlNi High Entropy Alloy Doped Si. J. Alloy. Compd. 2022, 927, 167081. [Google Scholar] [CrossRef]
- Wu, P.; Gan, K.; Yan, D.; Fu, Z.; Li, Z. A Non-Equiatomic FeNiCoCr High-Entropy Alloy with Excellent Anti-Corrosion Performance and Strength-Ductility Synergy. Corros. Sci. 2021, 183, 109341. [Google Scholar] [CrossRef]
- Yan, X.; Guo, H.; Yang, W.; Pang, S.; Wang, Q.; Liu, Y.; Liaw, P.K.; Zhang, T. Al0.3CrxFeCoNi High-Entropy Alloys with High Corrosion Resistance and Good Mechanical Properties. J. Alloy. Compd. 2021, 860, 158436. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, S.; Chen, J.; Li, X.; Niu, Z.; Wei, R.; Wang, T.; Zhang, T.; Guan, S.; Li, F.; et al. Corrosion in Cr-Fe-Co-Ni-Nb Hypoeutectic and Hypereutectic High Entropy Alloys. Mater. Today Commun. 2022, 31, 103612. [Google Scholar] [CrossRef]
- Aliyu, A.; Srivastava, C. Corrosion Behavior and Protective Film Constitution of AlNiCoFeCu and AlCrNiCoFeCu High Entropy Alloy Coatings. Surf. Interfaces 2021, 27, 101481. [Google Scholar] [CrossRef]
- Cai, Y.P.; Wang, G.J.; Ma, Y.J.; Cao, Z.H.; Meng, X.K. High Hardness Dual-Phase High Entropy Alloy Thin Films Produced by Interface Alloying. Scr. Mater. 2019, 162, 281–285. [Google Scholar] [CrossRef]
- Jumaev, E.; Hong, S.H.; Kim, J.T.; Park, H.J.; Kim, Y.S.; Mun, S.C.; Park, J.Y.; Song, G.; Lee, J.K.; Min, B.H.; et al. Chemical Evolution-Induced Strengthening on AlCoCrNi Dual-Phase High-Entropy Alloy with High Specific Strength. J. Alloy. Compd. 2019, 777, 828–834. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, Z.; Yao, Z.; Liu, Y.; Lin, S.; He, M.; Lu, S.; Wu, X. A High-Corrosion-Resistant High-Entropy Alloys (HEAs) Coatings with Single BCC Solid Solution Structure by Laser Remelting. Mater. Lett. 2022, 324, 132728. [Google Scholar] [CrossRef]
- Moorehead, M.; Bertsch, K.; Niezgoda, M.; Parkin, C.; Elbakhshwan, M.; Sridharan, K.; Zhang, C.; Thoma, D.; Couet, A. High-Throughput Synthesis of Mo-Nb-Ta-W High-Entropy Alloys via Additive Manufacturing. Mater. Des. 2020, 187, 108358. [Google Scholar] [CrossRef]
- Wu, H.; Huang, S.; Zhao, C.; Zhu, H.; Xie, Z.; Tu, C.; Li, X. Microstructures and Mechanical Properties of In-Situ FeCrNiCu High Entropy Alloy Matrix Composites Reinforced with NbC Particles. Intermetallics 2020, 127, 106983. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, N.; Guan, S.; Zhang, Y.; Li, D. Microstructure and Properties of Laser Re-Melting FeCoCrNiAl0.5Six High-Entropy Alloy Coatings. Surf. Coat. Technol. 2018, 349, 867–873. [Google Scholar] [CrossRef]
- Roy, A.; Sreeramagiri, P.; Babuska, T.; Krick, B.; Ray, P.K.; Balasubramanian, G. Lattice Distortion as an Estimator of Solid Solution Strengthening in High-Entropy Alloys. Mater. Charact. 2021, 172, 110877. [Google Scholar] [CrossRef]
- Smith, T.M.; Thompson, A.C.; Gabb, T.P.; Bowman, C.L.; Kantzos, C.A. Efficient Production of a High-Performance Dispersion Strengthened, Multi-Principal Element Alloy. Sci. Rep. 2020, 10, 9663. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Zhang, M.; Wang, X.; Gong, P.; Zhang, J.; Liu, J. Effect of the Grain Size on the Corrosion Behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 Solution. J. Alloy. Compd. 2021, 858, 157712. [Google Scholar] [CrossRef]
- Parakh, A.; Vaidya, M.; Kumar, N.; Chetty, R.; Murty, B.S. Effect of Crystal Structure and Grain Size on Corrosion Properties of AlCoCrFeNi High Entropy Alloy. J. Alloy. Compd. 2021, 863, 158056. [Google Scholar] [CrossRef]
- Kurapova, O.Y.; Smirnov, I.V.; Solovieva, E.N.; Konakov, Y.V.; Glukharev, A.G.; Konakov, V.G. Tensile Properties, Hardness and Phase Formation of the Nickel Aluminides Based Composites Doped with Reduced Graphene Oxide (Al-Ni-RGO). J. Alloy. Compd. 2022, 928, 166912. [Google Scholar] [CrossRef]
- Yalameha, S.; Vaez, A. Structural, Electronic, Elastic and Thermodynamic Properties of Al1-xZxNi (Z = Cr, V and x = 0, 0.125, 0.25) Alloys: First-Principle Calculations. Comput. Condens. Matter 2019, 21, e00415. [Google Scholar] [CrossRef]
- Rodriguez, A.; Tylczak, J.H.; Ziomek-Moroz, M. Corrosion Behavior of Cocrfemnni High-Entropy Alloys (HEAs) under Aqueous Acidic Conditions. ECS Trans. 2017, 77, 741–752. [Google Scholar] [CrossRef]
- Takeuchi, A. Analyses of Characteristics of Atomic Pairs in Ferrous Bulk Metallic Glasses Using Classification of Bulk Metallic Glasses and Pettifor Map. 7. J. Optoelectron. Adv. Mater. 2006, 8, 1679–1684. [Google Scholar]
- Lee, C.P.; Chang, C.C.; Chen, Y.Y.; Yeh, J.W.; Shih, H.C. Effect of the Aluminium Content of AlxCrFe1.5MnNi0.5 High-Entropy Alloys on the Corrosion Behaviour in Aqueous Environments. Corros. Sci. 2008, 50, 2053–2060. [Google Scholar] [CrossRef]
- Wang, H.M.; Duan, G. Wear and Corrosion Behavior of Laser Clad Cr3Si Reinforced Intermetallic Composite Coatings. Intermetallics 2003, 11, 755–762. [Google Scholar] [CrossRef]
- Varshney, P.; Mishra, R.S.; Kumar, N. Understanding the Nature of Passivation Film Formed during Corrosion of Fe39Mn20Co20Cr15Si5Al1 High Entropy Alloy in 3.5 Wt% NaCl Solution. J. Alloy. Compd. 2022, 904, 164100. [Google Scholar] [CrossRef]
- Gu, X.; Zhuang, Y.; Huang, D. Corrosion Behaviors Related to the Microstructural Evolutions of As-Cast Al0.3CoCrFeNi High Entropy Alloy with Addition of Si and Ti Elements. Intermetallics 2022, 147, 107600. [Google Scholar] [CrossRef]
Cr Atomic Ratio | Crystallite Size (nm) | Atom Fraction of Phase Composition (%) | ||
---|---|---|---|---|
B2 (Ni-Al) | A2 (Cr-rich) | Cr3Si | ||
x = 1.0 | 38.5 | 51.78 | 30.01 | 18.21 |
x = 1.2 | 41.0 | 51.76 | 25.49 | 22.76 |
x = 1.4 | 44.5 | 41.32 | 31.68 | 27.00 |
x = 1.6 | 38.7 | 38.62 | 34.53 | 26.86 |
x = 1.8 | 45.2 | 41.00 | 30.84 | 28.17 |
Cr Atomic Ratio | Region | Atom Percent/% | ||||
---|---|---|---|---|---|---|
Al | Si | Cr | Co | Ni | ||
x = 1.0 | α | 25.72 ± 0.19 | 15.93 ± 0.15 | 26.37 ± 0.15 | 5.74 ± 0.16 | 26.24 ± 0.26 |
1 | 3.45 ± 0.26 | 24.29 ± 0.34 | 65.24 ± 0.56 | 2.05 ± 0.18 | 4.98 ± 0.43 | |
2 | 35.58 ± 0.47 | 12.28 ± 0.35 | 8.06 ± 0.26 | 7.68 ± 0.42 | 36.41 ± 0.71 | |
x = 1.2 | β | 20.06 ± 0.17 | 16.91 ± 0.15 | 36.22 ± 0.18 | 4.78 ± 0.15 | 22.03 ± 0.25 |
3 | 13.87 ± 0.36 | 19.84 ± 0.36 | 50.96 ± 0.51 | 2.44 ± 0.35 | 12.89 ± 0.54 | |
4 | 1 ± 0.12 | 23.81 ± 0.30 | 72.96 ± 0.59 | 0.76 ± 0.16 | 1.47 ± 0.17 | |
x = 1.4 | γ | 20.41 ± 0.17 | 15.32 ± 0.15 | 36.85 ± 0.18 | 4.3 ± 0.15 | 23.12 ± 0.25 |
5 | 2.87 ± 0.15 | 23.46 ± 0.32 | 69.71 ± 0.58 | 0.97 ± 0.17 | 2.99 ± 0.39 | |
6 | 41.76 ± 0.48 | 4.09 ± 0.17 | 5.07 ± 0.24 | 7.31 ± 0.42 | 41.77 ± 0.76 | |
x = 1.6 | δ | 19.78 ± 0.17 | 13.72 ± 0.14 | 41.69 ± 0.20 | 3.83 ± 0.15 | 20.98 ± 0.25 |
7 | 1.66 ± 0.13 | 22.42 ± 0.30 | 73.69 ± 0.60 | 0.88 ± 0.16 | 1.35 ± 0.19 | |
8 | 25.72 ± 0.43 | 13.89 ± 0.36 | 34.71 ± 0.43 | 3.83 ± 0.38 | 21.86 ± 0.62 | |
9 | 31.74 ± 0.43 | 5.47 ± 0.29 | 30.64 ± 0.41 | 5.31 ± 0.39 | 26.84 ± 0.66 | |
x = 1.8 | ε | 19.84 ± 0.17 | 14.99 ± 0.15 | 39.72 ± 0.19 | 4.13 ± 0.15 | 21.32 ± 0.25 |
10 | 9.14 ± 0.32 | 22.25 ± 0.37 | 58.49 ± 0.55 | 2.37 ± 0.19 | 7.74 ± 0.49 | |
11 | 1.23 ± 0.13 | 23.1 ± 0.31 | 74.13 ± 0.61 | 0.58 ± 0.16 | 0.96 ± 0.19 | |
12 | 42.59 ± 0.46 | 1.91 ± 0.15 | 6.94 ± 0.26 | 6.46 ± 0.42 | 42.09 ± 0.77 |
Points | Al | Si | Cr | Co | Ni |
---|---|---|---|---|---|
1 | 26.07 ± 0.37 | 12.00 ± 0.78 | 29.90 ± 0.48 | 4.82 ± 0.57 | 27.22 ± 0.37 |
2 | 7.80 ± 0.68 | 29.40 ± 0.47 | 26.89 ± 0.50 | 9.78 ± 0.39 | 26.13 ± 0.37 |
3 | 32.60 ± 0.33 | 7.96 ± 0.99 | 16.32 ± 0.64 | 6.64 ± 0.47 | 36.48 ± 0.31 |
4 | 39.03 ± 0.31 | 3.45 ± 1.59 | 5.24 ± 1.15 | 7.59 ± 0.45 | 44.68 ± 0.29 |
5 | 24.74 ± 0.41 | 3.42 ± 1.59 | 23.36 ± 0.56 | 4.65 ± 0.60 | 43.83 ± 0.30 |
6 | 0.82 ± 2.59 | 22.55 ± 0.52 | 75.19 ± 0.31 | 0.58 ± 2.17 | 0.86 ± 2.52 |
Cr Mole Ratio | x = 1.0 | x = 1.2 | x = 1.4 | x = 1.6 | x = 1.8 |
---|---|---|---|---|---|
Ecorr (VAg/AgCl) | −0.42 | −0.45 | −0.46 | −0.46 | −0.39 |
Icorr (A/cm2) | 1.89 × 10−6 | 1.43 × 10−6 | 6.86 × 10−7 | 1.01 × 10−7 | 3.18 × 10−7 |
Cr Atomic Ratio | Rs (Ω·cm2) | Rct (Ω·cm2) | CPE | |
---|---|---|---|---|
Y0 (snΩ−1m−2) | n | |||
x = 1.0 | 4.10 | 2.77 × 105 | 1.79 × 10−5 | 0.86 |
x = 1.2 | 3.97 | 3.99 × 105 | 1.91 × 10−5 | 0.89 |
x = 1.4 | 9.46 | 4.94 × 105 | 1.67 × 10−5 | 0.83 |
x = 1.6 | 8.03 | 1.29 × 106 | 1.36 × 10−5 | 0.83 |
x = 1.8 | 5.28 | 5.41 × 105 | 1.23 × 10−5 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.; Meng, L.; Fang, S.; Lin, C.; Ke, L.; Yu, Z.; Qu, J.; Qi, T. Organizational Evolution during Performance Meritocracy of AlSi0.5CrxCo0.2Ni Lightweight High Entropy Alloys. Crystals 2022, 12, 1828. https://doi.org/10.3390/cryst12121828
Tan M, Meng L, Fang S, Lin C, Ke L, Yu Z, Qu J, Qi T. Organizational Evolution during Performance Meritocracy of AlSi0.5CrxCo0.2Ni Lightweight High Entropy Alloys. Crystals. 2022; 12(12):1828. https://doi.org/10.3390/cryst12121828
Chicago/Turabian StyleTan, Mingtian, Long Meng, Sheng Fang, Chun Lin, Lingsheng Ke, Zhihui Yu, Jingkui Qu, and Tao Qi. 2022. "Organizational Evolution during Performance Meritocracy of AlSi0.5CrxCo0.2Ni Lightweight High Entropy Alloys" Crystals 12, no. 12: 1828. https://doi.org/10.3390/cryst12121828