Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia
"> Figure 1
<p>Distribution of rain gauges (MMD = Malaysia Meteorological Department; DID = Department of Irrigation and Drainage Malaysia) and topography of Malaysia (bar graphs show the mean monthly precipitation, from 2003 to 2007, of 342 rain gauges).</p> "> Figure 2
<p>Spatial distribution of mean annual precipitation for the period 2003–2007 estimated from (<b>a</b>) 3B42RT, (<b>b</b>) 3B42V7, (<b>c</b>) GPCP-1DD, (<b>d</b>) PERSIANN-CDR, (<b>e</b>) CMORPH, (<b>f</b>) APHRODITE, and (<b>g</b>) 342 rain gauges.</p> "> Figure 3
<p>Two-dimensional histogram of mean monthly precipitation between precipitation products with the rain gauges for the period 2003–2007.</p> "> Figure 4
<p>Coefficient of determination (R<sup>2</sup>) of daily precipitation between rain gauges and (<b>a</b>) 3B42RT, (<b>b</b>) 3B42V7, (<b>c</b>) GPCP-1DD, (<b>d</b>) PERSIANN-CDR, (<b>e</b>) CMORPH and (<b>f</b>) APHRODITE over Malaysia.</p> "> Figure 5
<p>Coefficient of determination (R<sup>2</sup>) of monthly precipitation between rain gauges and (<b>a</b>) 3B42RT, (<b>b</b>) 3B42V7, (<b>c</b>) GPCP-1DD, (<b>d</b>) PERSIANN-CDR, (<b>e</b>) CMORPH and (<b>f</b>) APHRODITE over Malaysia (red circle in <a href="#remotesensing-07-01504-f005" class="html-fig">Figure 5</a>a represents the locations of two mountainous stations).</p> "> Figure 6
<p>The probability of detection (POD) of daily precipitation between rain gauges and (<b>a</b>) 3B42RT, (<b>b</b>) 3B42V7, (<b>c</b>) GPCP-1DD, (<b>d</b>) PERSIANN-CDR, (<b>e</b>) CMORPH and (<b>f</b>) APHRODITE over Malaysia.</p> "> Figure 7
<p>The occurrence probability distribution functions (PDF) of daily precipitation (2003–2007) aggregated from 342 rain gauges (<b>a</b>) over Malaysia as a whole and (<b>b</b>–<b>h</b>) in different regions of Malaysia.</p> "> Figure 8
<p>Comparison of daily precipitation series between precipitation products and selected rain gauges (highly affected area) for the 2006/2007 flood event.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rain Gauges
No | ID | Station Name | Longitude (°) | Latitude (°) | Height (m) |
---|---|---|---|---|---|
Zone A (Northern Peninsular Malaysia) | |||||
1 | 41529 | Perai | 100.40 | 5.35 | 1.5 |
2 | 48600 | Pulau Langkawi | 99.73 | 6.33 | 6.4 |
3 | 48601 | Bayan Lepas | 100.27 | 5.30 | 2.8 |
4 | 48602 | Butterworth | 100.40 | 5.47 | 2.8 |
5 | 48603 | Alor Setar | 100.40 | 6.20 | 3.9 |
6 | 48604 | Chuping | 100.27 | 6.48 | 21.7 |
Zone B (Eastern Peninsular Malaysia) | |||||
7 | 48615 | Kota Bharu | 102.28 | 6.17 | 4.6 |
8 | 48616 | Kuala Krai | 102.20 | 5.53 | 68.3 |
9 | 48618 | K. Terengganu Airport | 103.10 | 5.38 | 5.2 |
10 | 48619 | Kajiklim K. Terengganu | 103.13 | 5.33 | 35.1 |
11 | 48657 | Kuantan | 103.22 | 3.78 | 15.3 |
Zone C (Middle Peninsular Malaysia) | |||||
12 | 48631 | K.Tanah Ratah | 101.38 | 4.47 | 1471.6 |
13 | 48632 | Cameron Highlands | 101.37 | 4.47 | 1545.0 |
14 | 48642 | Batu Embun | 102.35 | 3.97 | 59.5 |
15 | 48649 | Muadzam Shah | 103.08 | 3.05 | 33.3 |
16 | 48653 | Temerloh | 102.38 | 3.47 | 39.1 |
Zone D (Western Peninsular Malaysia) | |||||
17 | 48307 | Universiti Malaya | 101.65 | 3.12 | 104.0 |
18 | 48620 | Sitiawan | 100.70 | 4.22 | 7.0 |
19 | 48623 | Lubok Merbau | 100.90 | 4.80 | 77.5 |
20 | 48625 | Ipoh | 101.10 | 4.57 | 40.1 |
21 | 48647 | Subang | 101.55 | 3.12 | 16.5 |
22 | 48648 | Petaling Jaya | 101.65 | 3.10 | 60.8 |
23 | 48650 | KLIA Sepang | 101.70 | 2.73 | 16.3 |
24 | 48665 | Melaka | 102.25 | 2.27 | 8.5 |
Zone E (Southern Peninsular Malaysia) | |||||
25 | 48670 | Batu Pahat | 102.98 | 1.87 | 6.3 |
26 | 48672 | Kluang | 103.32 | 2.02 | 88.1 |
27 | 48674 | Mersing | 103.83 | 2.35 | 43.6 |
28 | 48679 | Senai | 103.67 | 1.63 | 37.8 |
Zone F (Southern East Malaysia) | |||||
29 | 96413 | Kuching | 110.33 | 1.48 | 21.7 |
30 | 96418 | Sri Aman | 111.45 | 1.22 | 9.6 |
31 | 96421 | Sibu | 111.97 | 2.25 | 30.9 |
32 | 96441 | Bintulu | 113.03 | 3.10 | 23.1 |
33 | 96449 | Miri | 113.98 | 4.33 | 17.0 |
34 | 96465 | Labuan | 115.25 | 4.30 | 29.3 |
Zone G (Northern East Malaysia) | |||||
35 | 96471 | Kota Kinabalu | 116.15 | 5.93 | 2.3 |
36 | 96477 | Kudat | 116.8 | 6.92 | 3.5 |
37 | 96481 | Tawau | 117.88 | 4.30 | 17.0 |
38 | 96491 | Sandakan | 118.07 | 5.90 | 10.3 |
2.3. Precipitation Products
2.3.1. TRMM 3B42RT and 3B42V7s
2.3.2. GPCP-1DD
2.3.3. PERSIANN-CDR
2.3.4. CMORPH
2.3.5. APHRODITE
No | Name | Spatial/Temporal Resolution | Coverage | Period | Data Reference |
---|---|---|---|---|---|
1 | 3B42RT | 0.25°/daily | global (50°N–S) | 2002–present | [37] |
2 | 3B42V7 | 0.25°/daily | global (50°N–S) | 1998–present | [37] |
3 | GPCP-1DD | 1°/daily | global (50°N–S) | 1996–present | [39] |
4 | PERSIANN-CDR | 0.25°/daily | global (60°N–S) | 1983–present | [41] |
5 | CMORPH | 0.25°/3-hourly | global (50°N–S) | 2002–2013 | [43] |
6 | APHRODITE | 0.25°/daily | Eurasia (84°N–15°S) | 1950–2007 | [28] |
2.4. Methodologies for the Assessment of Precipitation Products
3. Results and Discussion
3.1. Mean Annual Precipitation
Time Scale | 3B42RT | 3B42V7 | GPCP-1DD | PERSIANN-CDR | CMORPH | APHRODITE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t stat | p | t stat | p | t stat | p | t stat | p | t stat | p | t stat | p | |
Annual | −1.84 | −4.61 | * | 2.91 | * | −2.21 | * | 12.15 | * | 20.92 | * | |
NEM | −0.09 | −3.62 | * | 8.63 | * | 4.31 | * | 22.02 | * | 20.03 | * | |
SWM | −0.42 | −6.98 | * | −4.01 | * | −10.51 | * | 3.78 | * | 20.97 | * | |
Monthly | −3.06 | * | −7.45 | * | 4.87 | * | −3.66 | * | 21.66 | * | 34.58 | * |
Daily | −5.41 | * | −12.25 | * | 8.60 | * | −6.68 | * | 38.43 | * | 62.69 | * |
Time Scale | 3B42RT | 3B42V7 | GPCP-1DD | PERSIANN-CDR | CMORPH | APHRODITE | |
---|---|---|---|---|---|---|---|
Annual | RMSE (mm) | 857.04 | 732.80 | 843.31 | 808.70 | 922.44 | 908.67 |
R2 | 0.32 | 0.45 | 0.25 | 0.31 | 0.33 | 0.46 | |
ME (mm) | 57.67 | 132.96 | −79.64 | 60.77 | −376.94 | −561.98 | |
MAE (mm) | 651.39 | 540.48 | 640.40 | 618.65 | 689.60 | 684.54 | |
RB (%) | 2.02 | 4.65 | −2.79 | 2.13 | −13.18 | −19.65 | |
Northeast monsoon | RMSE (mm) | 158.42 | 138.90 | 168.81 | 158.76 | 175.34 | 160.40 |
R2 | 0.51 | 0.60 | 0.42 | 0.48 | 0.46 | 0.55 | |
ME (mm) | 0.34 | 12.41 | −26.34 | −13.38 | −70.76 | −62.21 | |
MAE (mm) | 107.17 | 94.00 | 112.05 | 108.34 | 115.14 | 101.47 | |
RB (%) | 0.12 | 4.29 | −9.10 | −4.62 | −24.45 | −21.50 | |
Southwest monsoon | RMSE (mm) | 98.85 | 84.47 | 92.33 | 93.70 | 97.03 | 89.15 |
R2 | 0.23 | 0.37 | 0.25 | 0.25 | 0.27 | 0.36 | |
ME (mm) | 0.69 | 10.78 | 6.06 | 16.10 | −6.32 | −30.52 | |
MAE (mm) | 75.10 | 65.05 | 71.36 | 73.07 | 73.06 | 65.16 | |
RB (%) | 0.37 | 5.74 | 3.22 | 8.56 | −3.36 | −16.23 | |
Monthly | RMSE (mm) | 130.31 | 111.53 | 130.35 | 125.60 | 134.48 | 126.26 |
R2 | 0.45 | 0.56 | 0.39 | 0.43 | 0.40 | 0.52 | |
ME (mm) | 4.81 | 11.08 | −6.64 | 5.06 | −31.41 | −46.83 | |
MAE | 91.86 | 78.30 | 89.90 | 89.04 | 91.31 | 83.33 | |
RB (%) | 2.02 | 4.65 | −2.79 | 2.13 | −13.18 | −19.65 | |
Daily | RMSE (mm) | 18.11 | 18.35 | 17.25 | 16.68 | 16.77 | 16.55 |
R2 | 0.15 | 0.15 | 0.09 | 0.11 | 0.16 | 0.12 | |
ME (mm) | 0.16 | 0.36 | −0.22 | 0.17 | −1.03 | −1.54 | |
MAE (mm) | 8.91 | 8.99 | 9.18 | 9.15 | 8.14 | 8.29 | |
RB (%) | 2.02 | 4.65 | −2.79 | 2.13 | −13.18 | −19.65 |
3.2. Evaluation of Seasonal Precipitation
3.3. Evaluation of Monthly Precipitation
3.4. Evaluation of Daily Precipitation
3.5. Spatial Variability Assessment
3.6. Rain Detection Ability Assessment
3B42RT | 3B42V7 | GPCP-1DD | PERSIANN-CDR | CMORPH | APHRODITE | |
---|---|---|---|---|---|---|
ACC | 0.67 | 0.68 | 0.61 | 0.55 | 0.66 | 0.60 |
POD | 0.76 | 0.76 | 0.84 | 0.91 | 0.79 | 0.88 |
FAR | 0.42 | 0.41 | 0.48 | 0.52 | 0.43 | 0.49 |
CSI | 0.49 | 0.49 | 0.47 | 0.46 | 0.49 | 0.48 |
HSS | 0.36 | 0.36 | 0.27 | 0.19 | 0.35 | 0.25 |
3.7. Rain Intensity Assessment
3.8. 2006/2007 Flood Event Assessment
ID | 3B42RT | 3B42V7 | GPCP-1DD | PERSIANN-CDR | CMORPH | APHRODITE | |
---|---|---|---|---|---|---|---|
48616 | RMSE (mm) | 16.57 | 16.70 | 22.37 | 19.30 | 18.62 | 8.43 |
R2 | 0.79 | 0.80 | 0.28 | 0.63 | 0.65 | 0.98 | |
RB (%) | 13.73 | 7.60 | −19.48 | −59.68 | −62.19 | −15.59 | |
48618 | RMSE (mm) | 14.10 | 19.17 | 18.92 | 14.14 | 17.55 | 6.91 |
R2 | 0.74 | 0.74 | 0.27 | 0.58 | 0.49 | 0.92 | |
RB (%) | −4.29 | 11.76 | −24.26 | −22.71 | −58.86 | −4.26 | |
48657 | RMSE (mm) | 19.55 | 28.88 | 31.91 | 25.85 | 33.27 | 16.08 |
R2 | 0.70 | 0.53 | 0.09 | 0.58 | 0.18 | 0.94 | |
RB (%) | −22.09 | −7.11 | −45.87 | −48.44 | −10.09 | −24.39 | |
48672 | RMSE (mm) | 18.14 | 22.38 | 42.84 | 39.14 | 20.16 | 19.66 |
R2 | 0.88 | 0.86 | 0.33 | 0.47 | 0.85 | 0.98 | |
RB (%) | 9.11 | 12.97 | −36.95 | −16.99 | −21.91 | −23.36 | |
48674 | RMSE (mm) | 30.76 | 33.54 | 35.67 | 36.49 | 31.14 | 25.58 |
R2 | 0.65 | 0.54 | 0.57 | 0.55 | 0.64 | 0.70 | |
RB (%) | −41.17 | −2.54 | −41.46 | −44.11 | −47.70 | −9.37 | |
48679 | RMSE (mm) | 27.18 | 24.25 | 39.79 | 44.62 | 33.71 | 24.18 |
R2 | 0.77 | 0.81 | 0.51 | 0.39 | 0.77 | 0.95 | |
RB (%) | −7.67 | −4.46 | −19.07 | −18.62 | −38.68 | −30.12 | |
96477 | RMSE (mm) | 31.98 | 30.21 | 41.05 | 37.75 | 31.84 | 19.37 |
R2 | 0.49 | 0.54 | 0.18 | 0.27 | 0.58 | 0.99 | |
RB (%) | −10.49 | −27.62 | −45.27 | −22.57 | −47.16 | −25.99 | |
96491 | RMSE (mm) | 30.20 | 31.08 | 41.94 | 34.54 | 29.63 | 39.87 |
R2 | 0.59 | 0.52 | 0.34 | 0.46 | 0.67 | 0.22 | |
RB (%) | −5.62 | −21.49 | −63.62 | −39.33 | −44.17 | −31.11 |
4. Conclusions
- (1)
- There was a tendency for 3B42V7 and APHRODITE to yield accurate and unbiased estimations and for GPCP-1D to perform the worst. In addition, while APHRODITE and CMORPH dramatically underestimated precipitation, GPCP-1DD exhibited slight underestimations and 3B42RT, 3B42V7, and PERSIANN-CDR showed slight overestimations. TRMM products (3B42RT and 3B42V7) showed better estimation of seasonal precipitation. The SPPs performed better in the northeast monsoon than in the southwest monsoon.
- (2)
- The SPPs’ performance was the best in the regions receiving higher annual precipitation, such as eastern and southern Peninsular Malaysia and northern East Malaysia. By contrast, poor SPP performance occurred over western Peninsular Malaysia, which is characterized by low rainfall amounts since it is sheltered from the monsoons by the Titiwangsa Range and Sumatra.
- (3)
- In terms of rain-detection ability, the precipitation products had a high accuracy (ACC) and probability of detection (POD) performance and moderate false alarm ratio (FAR), critical success index (CSI), and Heidke skill score (HSS) performance. PERSIANN-CDR received the highest POD value, but its HSS value was also the lowest in all six products. Overall, 3B42RT and 3B42V7 performed better in rain-detection ability as they had better ACC, CSI, FAR, and HSS values.
- (4)
- Most of the SPPs showed best performance during flood events, but had the tendency to underestimate the tiny to heavy rain amount (rain < 1 mm/day; rain ≥ 20 mm/day) and to overestimate the moderate ones (1 ≤ rain < 20 mm/day). This was with the exception of 3B42RT and 3B42V7, which were accurate across the whole range of event sizes.
Supplementary Files
Supplementary File 1Supplementary File 2Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Larson, L.W.; Peck, E.L. Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res. 1974, 10, 857–863. [Google Scholar] [CrossRef]
- Strauch, M.; Bernhofer, C.; Koide, S.; Volk, M.; Lorz, C.; Makeschin, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 2012, 414–415, 413–424. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011, 47, W06526. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, W07542. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Hong, Y.; Tian, Y.; Policelli, F. Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeorol. 2012, 13, 1268–1284. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; Castro, M.D. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Stokstad, E. Hydrology—Scarcity of rain, stream gages threatens forecasts. Science 1999, 285, 1199–1200. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Yang, K.; He, J.; Zhang, Y.; Han, X. Comparison of downscaled precipitation data over a mountainous watershed: A case study in the Heihe River Basin. J. Hydrometeorol. 2014, 15, 1560–1574. [Google Scholar] [CrossRef]
- Barrett, E.C. Precipitation measurement by satellites: Towards community algorithms. Adv. Space Res. 1993, 13, 119–136. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Hogue, T.S.; Hsu, K.L.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeorol. 2005, 6, 497–517. [Google Scholar] [CrossRef]
- Krakauer, N.; Pradhanang, S.; Lakhankar, T.; Jha, A. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sens. 2013, 5, 4107–4123. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, D.; Li, Z.; Mishra, A.K.; Wang, Y.; Yang, H. Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges. Int. J. Remote Sens. 2014, 35, 1272–1294. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.Y.; Wang, Y.; Xie, P.P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res.: Atmos. 2010, 115, D02114. [Google Scholar]
- Vernimmen, R.R.E.; Hooijer, A.; Aldrian, M.E.; van Dijk, A. Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol. Earth Syst. Sci. 2012, 16, 133–146. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global view of real-time TRMM Multi-satellite Precipitation Analysis: Implication to its successor Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc. 2014. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of oil palm (Elaeis guineensis): A review. Exp. Agric. 2011, 47, 629–652. [Google Scholar] [CrossRef]
- Tangang, F.T.; Juneng, L.; Salimun, E.; Vinayachandran, P.N.; Seng, Y.K.; Reason, C.J.C.; Behera, S.K.; Yasunari, T. On the roles of the northeast cold surge, the Borneo vortex, the Madden-Julian Oscillation, and the Indian Ocean Dipole during the extreme 2006/2007 flood in southern Peninsular Malaysia. Geophys. Res. Lett. 2008, 35, L14807. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River Basin, Malaysia. Hydrol. Sci. J. 2014. [Google Scholar] [CrossRef]
- Varikoden, H.; Samah, A.A.; Babu, C.A. Spatial and temporal characteristics of rain intensity in the Peninsular Malaysia using TRMM rain rate. J. Hydrol. 2010, 387, 312–319. [Google Scholar] [CrossRef]
- Semire, F.A.; Mohd-Mokhtar, R.; Ismail, W.; Mohamad, N.; Mandeep, J.S. Ground validation of space-borne satellite rainfall products in Malaysia. Adv. Space Res. 2012, 50, 1241–1249. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multi-satellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2014. [Google Scholar] [CrossRef]
- Tangang, F.T.; Juneng, L.; Salimun, E.; Sei, K.M.; Le, L.J.; Muhamad, H. Climate change and variability over Malaysia: Gaps in science and research information. Sains Malays. 2012, 41, 1355–1366. [Google Scholar]
- Tan, M.L.; Ficklin, D.L.; Ibrahim, A.L.; Yusop, Z. Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. J. Water Clim. Ch. 2014, 5, 676–695. [Google Scholar] [CrossRef]
- Suhaila, J.; Jemain, A.A. Investigating the impacts of adjoining wet days on the distribution of daily rainfall amounts in Peninsular Malaysia. J. Hydrol. 2009, 368, 17–25. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation; NASA: Washington, DC, USA, 2014. [Google Scholar]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. DWD: Offenbach, Germany, 2011. Available online: http://gpcc.dwd.de/ (accessed on 25 November 2014).
- Becker, A.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M.; Finger, P.; Stender, P.; Heller, A.; Breidenbach, J.N. GPCC Report for Years 2009 and 2010; DWD: Offenbach, Germany, 2011. Available online: http://gpcc.dwd.de/ (accessed on 25 November 2014).
- Fuchs, T.; Schneider, U.; Meyer-Christoffer, A.; Finger, P.; Breidenbach, J.N.; Heller, A.; Stender, P.; Rudolf, B. GPCC Annual Report for Year 2008; DWD: Offenbach, Germany, 2009. Available online: http://gpcc.dwd.de/ (accessed on 25 November 2014).
- Fuchs, T.; Schneider, U.; Meyer-Christoffer, A.; Finger, P.; Breidenbach, J.N.; Heller, A.; Stender, P. GPCC Annual Report for Year 2007; DWD: Offenbach, Germany, 2008. Available online: http://gpcc.dwd.de/ (accessed on 25 November 2014).
- Kurtzman, D.; Navon, S.; Morin, E. Improving interpolation of daily precipitation for hydrologic modelling: Spatial patterns of preferred interpolators. Hydrol. Process. 2009, 23, 3281–3291. [Google Scholar] [CrossRef]
- Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 2006, 77, 126–141. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.J.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Xue, X.W.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Acker, J.G.; Leptoukh, G. Online analysis enhances use of NASA Earth science data. Eos, Trans. Amer. Geophys. Union 2007, 88, 14–17. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Adler, R.F. Last Updated 2012: GPCP Version 1.2 1-Degree Daily (1DD) Precipitation Data Set; WDC-A, NCDC: Asheville, NC, USA, 2012. Available online: ftp://ftp.cgd.ucar.edu/archive/PRECIP/ (accessed on 3 July 2014).
- Hsu, K.L.; Gao, X.G.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.; Braithwaite, D.; Ashouri, H. NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1; NOAA National Climatic Data Center: Asheville, NC, USA, 2014. Available online: http://www.ncdc.noaa.gov/thredds/ncss/grid/cdr/persiann/persiann.ncml/dataset.html (accessed on 5 July 2014). [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Climate Prediction Center/National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. Updated Daily. NOAA CPC Morphing Technique (CMORPH) Global Precipitation Analyses. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2011. Available online: http://rda.ucar.edu/datasets/ds502.0/ (accessed on 8 July 2014).
- Li, Z.; Yang, D.W.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.K.; Yong, B.; Vergara, H.J. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res. 2014, 54, 670–684. [Google Scholar] [CrossRef]
- World Meteorological Organization. Chapter 14; Observation of present and past weather; state of the ground. In Guide to Meteorological Instruments and Methods of Observation; WMO: Geneva, Switzerland, 2012; pp. I.14–19. [Google Scholar]
- Mashingia, F.; Mtalo, F.; Bruen, M. Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania. Phys. Chem. Earth 2014, 67–69, 55–63. [Google Scholar] [CrossRef]
- Jamandre, C.A.; Narisma, G.T. Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmos. Res. 2013, 122, 599–608. [Google Scholar] [CrossRef]
- Mishra, A.; Gairola, R.M.; Varma, A.K.; Agarwal, V.K. Remote sensing of precipitation over Indian land and oceanic regions by synergistic use of multisatellite sensors. J. Geophys. Res. Atmos. 2010, 115, D08106. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Lo Conti, F.; Hsu, K.L.; Noto, L.V.; Sorooshian, S. Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos. Res. 2014, 138, 189–204. [Google Scholar] [CrossRef]
- Chiu, L.S.; Liu, Z.; Vongsaard, J.; Morain, S.; Budge, A.; Neville, P.; Bales, C. Comparison of TRMM and water district rain rates over New Mexico. Adv. Atmos. Sci. 2006, 23, 1–13. [Google Scholar] [CrossRef]
- Kummerow, C.; Hong, Y.; Olson, W.S.; Yang, S.; Adler, R.F.; McCollum, J.; Ferraro, R.; Petty, G.; Shin, D.B.; Wilheit, T.T. The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. 2001, 40, 1801–1820. [Google Scholar] [CrossRef]
- Behrangi, A.; Tian, Y.; Lambrigtsen, B.H.; Stephens, G.L. What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res. 2014, 50, 4893–4905. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely gauged African River Basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Feidas, H. Validation of satellite rainfall products over Greece. Theor. Appl. Climatol. 2010, 99, 193–216. [Google Scholar] [CrossRef]
- Joshi, M.K.; Rai, A.; Pandey, A.C. Validation of TMPA and GPCP 1DD against the ground truth rain-gauge data for Indian region. Int. J. Climatol. 2013, 33, 2633–2648. [Google Scholar]
- McPhee, J.; Margulis, S.A. Validation and error characterization of the GPCP-1DD precipitation product over the contiguous United States. J. Hydrometeorol. 2005, 6, 441–459. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Apip; Takara, K.; Yamashiki, Y.; Sassa, K.; Ibrahim, A.B.; Fukuoka, H. A distributed hydrological-geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides 2010, 7, 237–258. [Google Scholar]
- Tian, Y.D.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37, L24407. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.S.; Nasrollahi, N.; Hsu, K.L.; Sorooshian, S. Evaluation of satellite-based precipitation estimation over Iran. J. Arid Environ. 2013, 97, 205–219. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, Q.; Xu, C.Y. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of satellite rainfall estimates over the Chinese mainland. Remote Sens. 2014, 6, 11649–11672. [Google Scholar] [CrossRef]
- Beighley, R.E.; Ray, R.L.; He, Y.; Lee, H.; Schaller, L.; Andreadis, K.M.; Durand, M.; Alsdorf, D.E.; Shum, C.K. Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol. Process. 2011, 25, 3216–3229. [Google Scholar] [CrossRef]
- Chaplot, V. Impact of spatial input data resolution on hydrological and erosion modeling: Recommendations from a global assessment. Phys. Chem. Earth A B C 2014, 67–69, 23–35. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sens. 2015, 7, 1504-1528. https://doi.org/10.3390/rs70201504
Tan ML, Ibrahim AL, Duan Z, Cracknell AP, Chaplot V. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sensing. 2015; 7(2):1504-1528. https://doi.org/10.3390/rs70201504
Chicago/Turabian StyleTan, Mou Leong, Ab Latif Ibrahim, Zheng Duan, Arthur P Cracknell, and Vincent Chaplot. 2015. "Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia" Remote Sensing 7, no. 2: 1504-1528. https://doi.org/10.3390/rs70201504
APA StyleTan, M. L., Ibrahim, A. L., Duan, Z., Cracknell, A. P., & Chaplot, V. (2015). Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sensing, 7(2), 1504-1528. https://doi.org/10.3390/rs70201504