A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS
<p>Overview map of the Arctic Ocean and adjacent seas, with color-levels indicating ocean depth (in m) according to IBCAO (v3) bathymetric data [<a href="#B15-remotesensing-14-02036" class="html-bibr">15</a>]. Subset areas for case studies in later figures are depicted with black frames, showing the Transpolar Drift (TPD; dash-dotted), the wider Laptev Sea (LAP; solid) and a southern Laptev Sea close-up (LAPs; dashed).</p> "> Figure 2
<p>The thin-ice thickness (TIT) retrieval using MODIS ice-surface temperature data with atmospheric variables from COSMO CLM or ECMWF ERA5 reanalysis. The newly added model-assisted temperature adjustment scheme (MATA) is indicated in blue.</p> "> Figure 3
<p>Overview of different data products on 3 January 2020. Thin-ice thicknesses (in m) in the areas of the Laptev Sea and Transpolar Drift ((<b>a</b>) using CCLM data, (<b>d</b>) using ERA5 data) are shown together with their respective daily thin-ice persistence (PIX) value in % ((<b>b</b>) using CCLM data, (<b>e</b>) using ERA5 data). Panel (<b>c</b>) presents daily ArcLead classifications [<a href="#B4-remotesensing-14-02036" class="html-bibr">4</a>], with color labels depicted below the map. Passive microwave sea-ice concentrations (SIC, in %; [<a href="#B21-remotesensing-14-02036" class="html-bibr">21</a>]) from AMSR2 are complementary illustrated in Panel (<b>f</b>).</p> "> Figure 4
<p>Scatterplots of the difference in surface temperatures (dTs) versus the difference in 2 m temperatures (dT2m) from CCLM simulations at 15 km grid resolution (both for January 2020). All values are given in °C. Panel (<b>a</b>) features all grid points with a surface temperature < −1.7 °C, while in panel (<b>b</b>) a 70% SIC polynya criteria is applied. Linear regression lines are drawn in red, and the 1:1 line in blue for reference.</p> "> Figure 5
<p>Case study in the Laptev Sea subset-region, illustrating the effect of the dew-point correction within MATA. (<b>a</b>) ERA5 <math display="inline"><semantics> <msub> <mi>q</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math> with <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> correction, (<b>b</b>) ERA5 <math display="inline"><semantics> <msub> <mi>q</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math> without <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> correction, (<b>c</b>) resulting difference in <math display="inline"><semantics> <msub> <mi>q</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math>. All displayed values in g/kg for 2 January 2020, 0425UTC. Black contours indicate areas with ice thicknesses up to 0.2 m. Note the data-gaps (in grey) resulting from the omission of temperature values with no corresponding MODIS IST.</p> "> Figure 6
<p>Case study in the Laptev Sea subset-region, showing the total effect of MATA on the 2 m temperature distribution. Panels (<b>a</b>,<b>d</b>) show <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math> from ERA5 and CCLM, respectively, with MATA and the <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> correction applied. (<b>b</b>,<b>e</b>) show the respective <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math> distributions without an application of MATA, while (<b>c</b>,<b>f</b>) feature the resulting differences in <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math>. All displayed values in K for 2 January 2020, 0425UTC. Black contours indicate areas with ice thicknesses up to 0.2 m. Note the data-gaps (in grey) resulting from the omission of temperature values with no corresponding MODIS IST. Points A (74.22°N, 123.09°E) and B (75.16°N, 124.48°E) mark the transect-line for the extraction of various profiles (<a href="#remotesensing-14-02036-f007" class="html-fig">Figure 7</a>).</p> "> Figure 7
<p>Various profiles (A to B; cf. <a href="#remotesensing-14-02036-f006" class="html-fig">Figure 6</a>) for sea-ice and atmospheric variables for the case study in the Laptev Sea on 02 January 2020, 04:25UTC (CCLM vs. ERA5; with/without MATA). (<b>a</b>) Calculated thin ice thicknesses (<math display="inline"><semantics> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math>, in m), (<b>b</b>) sea-ice production scaled to one hour (SIP, in cm/h), (<b>c</b>) 2 m air temperatures and MODIS IST (all in K), (<b>d</b>) specific humidity (<math display="inline"><semantics> <msub> <mi>q</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msub> </semantics></math>, in g/kg), and (<b>e</b>) sensible heat flux (in W/m<sup>2</sup>). Gaps in all panels result from clouds or otherwise missing IST data.</p> "> Figure 8
<p>Spatial distributions of thin-ice thicknesses (TIT, in m) in the Laptev Sea, presented as persistence-lead-filtered (PLF) daily composites for 2 January 2020. Both CCLM and ERA5 are compared, with (panels (<b>a</b>,<b>c</b>)) and without (panels (<b>b</b>,<b>d</b>)) the application of MATA. Green contours mark areas with ice thicknesses below or equal to 0.2 m.</p> "> Figure 9
<p>Laptev Sea: (<b>a</b>) Daily polynya area (POLA, in km<sup>2</sup>), (<b>b</b>) accumulated sea-ice production (SIP, in km<sup>3</sup>) and (<b>c</b>) average thin-ice thickness (<math display="inline"><semantics> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math>, in cm) between December 2019 and April 2020. Both CCLM and ERA5 are compared (based on PLF daily composites), with and without the application of MATA.</p> "> Figure 10
<p>Laptev Sea: Daily averages of (<b>a</b>) 2 m temperatures (in K), (<b>b</b>) 10m wind speeds (in m/s) and (<b>c</b>) the sensible heat flux (in W/m<sup>2</sup>) between December 2019 and April 2020. Both CCLM and ERA5 are compared (based on PLF daily composites), with and without the application of MATA.</p> "> Figure 11
<p>Spatial overview of accumulated sea-ice production (SIP, in m/winter for all TIT ≤ 0.2 m) in the Arctic for December 2019 to April 2020, based on MODIS data at 1km spatial resolution and atmospheric data from CCLM ((<b>a</b>) MATA, (<b>b</b>) no MATA) and ERA5 ((<b>c</b>) MATA, (<b>d</b>) no MATA). Panels (<b>e</b>,<b>f</b>) show the difference in SIP between CCLM and ERA5 for the MATA and no MATA versions, respectively. In contrast to colored areas, pixels in light grey indicate zero SIP as well as masked ocean areas of the northern Atlantic and Pacific seas.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Satellite Data Sets
2.2. Atmospheric Data Sets
3. MODIS Thin-Ice Thickness Retrieval
3.1. General Description
3.2. Addition of a Model-Based Algorithm to Enable MODIS-Assisted Temperature Adjustments
4. Results
4.1. Case Study from January 2020: Effects of MATA Application
4.2. Analysis of the 2019/2020 Winter-Season
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.D.; Muench, R.D.; Pease, C.H. Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res. 1990, 95, 9461–9479. [Google Scholar] [CrossRef]
- Preußer, A.; Ohshima, K.I.; Iwamoto, K.; Willmes, S.; Heinemann, G. Retrieval of Wintertime sea-ice Production in Arctic Polynyas Using Thermal Infrared and Passive Microwave Remote Sensing Data. J. Geophys. Res. Ocean. 2019, 124, 5503–5528. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Heinemann, G. Sea-Ice Wintertime Lead Frequencies and Regional Characteristics in the Arctic, 2003–2015. Remote Sens. 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Reiser, F.; Willmes, S.; Heinemann, G. A New Algorithm for Daily sea-ice Lead Identification in the Arctic and Antarctic Winter from Thermal-Infrared Satellite Imagery. Remote Sens. 2020, 12, 1957. [Google Scholar] [CrossRef]
- Steffen, K. Ice conditions of an Arctic polynya: North Water in winter. J. Glaciol. 1986, 32, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Steffen, K.; Maslanik, J.A. Comparison of Nimbus 7 scanning multichannel microwave radiometer radiance and derived sea-ice concentrations with Landsat imagery for the north water area of Baffin Bay. J. Geophys. Res. Ocean. 1988, 93, 10769–10781. [Google Scholar] [CrossRef]
- Yu, Y.; Rothrock, D. Thin ice thickness from satellite thermal imagery. J. Geophys. Res. Ocean. 1996, 101, 25753–25766. [Google Scholar] [CrossRef]
- Yu, Y.; Lindsay, R. Comparison of thin ice thickness distributions derived from RADARSAT Geophysical Processor System and Advanced Very High Resolution Radiometer data sets. J. Geophys. Res. 2003, 108, 3387. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I. Mapping of sea-ice production in the Arctic coastal polynyas. J. Geophys. Res. 2011, 116, C07030. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T. Improved mapping of sea-ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. J. Geophys. Res. Ocean. 2014, 119, 3574–3594. [Google Scholar] [CrossRef]
- Paul, S.; Willmes, S.; Heinemann, G. Long-term coastal-polynya dynamics in the Southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef] [Green Version]
- Preußer, A.; Heinemann, G.; Willmes, S.; Paul, S. Circumpolar polynya regions and ice production in the Arctic: Results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere 2016, 10, 3021–3042. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. 2012, 39, 176. [Google Scholar] [CrossRef] [Green Version]
- Nielsen-Englyst, P.; Høyer, J.L.; Madsen, K.S.; Tonboe, R.; Dybkjær, G.; Alerskans, E. In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic. Cryosphere 2019, 13, 1005–1024. [Google Scholar] [CrossRef] [Green Version]
- Nielsen-Englyst, P.; Høyer, J.L.; Madsen, K.S.; Tonboe, R.T.; Dybkjær, G.; Skarpalezos, S. Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements. Cryosphere 2021, 15, 3035–3057. [Google Scholar] [CrossRef]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35) Version 6.1; Technical Report; MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin: Madison, WI, USA, 2010. [Google Scholar]
- Hall, D.; Key, J.; Casey, K.; Riggs, G.; Cavalieri, D. sea-ice surface temperature product from MODIS. Geosci. Remote Sens. IEEE Trans. 2004, 42, 1076–1087. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D. MODIS sea-ice Products User Guide to Collection 6; National Snow and Ice Data Center, University of Colorado: Boulder, CO, USA, 2015. [Google Scholar]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea-ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res. 2008, 113, C02S03. [Google Scholar] [CrossRef] [Green Version]
- Gutjahr, O.; Heinemann, G.; Preußer, A.; Willmes, S.; Drüe, C. Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model. Cryosphere 2016, 10, 2999–3019. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, G.; Willmes, S.; Schefczyk, L.; Makshtas, A.; Kustov, V.; Makhotina, I. Observations and Simulations of Meteorological Conditions over Arctic Thick sea-ice in Late Winter during the Transarktika 2019 Expedition. Atmosphere 2021, 12, 174. [Google Scholar] [CrossRef]
- Sedlar, J.; Tjernström, M.; Rinke, A.; Orr, A.; Cassano, J.; Fettweis, X.; Heinemann, G.; Seefeldt, M.; Solomon, A.; Matthes, H.; et al. Confronting Arctic Troposphere, Clouds, and Surface Energy Budget Representations in Regional Climate Models With Observations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031783. [Google Scholar] [CrossRef]
- Inoue, J.; Sato, K.; Rinke, A.; Cassano, J.J.; Fettweis, X.; Heinemann, G.; Matthes, H.; Orr, A.; Phillips, T.; Seefeldt, M.; et al. Clouds and Radiation Processes in Regional Climate Models Evaluated Using Observations Over the Ice-free Arctic Ocean. J. Geophys. Res. Atmos. 2021, 126, e2020JD033904. [Google Scholar] [CrossRef]
- Zhang, J.; Rothrock, D.A. Modeling Global sea-ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Mon. Weather Rev. 2003, 131, 845–861. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and sea-ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Renfrew, I.A.; Barrell, C.; Elvidge, A.D.; Brooke, J.K.; Duscha, C.; King, J.C.; Kristiansen, J.; Cope, T.L.; Moore, G.W.K.; Pickart, R.S.; et al. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: The impact of sea-ice distribution. Q. J. R. Meteorol. Soc. 2021, 147, 691–712. [Google Scholar] [CrossRef]
- Batrak, Y.; Müller, M. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nat. Commun. 2019, 10, 4170. [Google Scholar] [CrossRef]
- Adams, S.; Willmes, S.; Schroeder, D.; Heinemann, G.; Bauer, M.; Krumpen, T. Improvement and sensitivity analysis of thermal thin-ice retrievals. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3306–3318. [Google Scholar] [CrossRef] [Green Version]
- WMO; OMM; BMO. WMO Sea-Ice Nomenclature; Edition 1970–2014 259; WMO/OMM/BMO: Geneva, Switzerland, 2014. [Google Scholar]
- Launiainen, J.; Vihma, T. Derivation of turbulent surface fluxes—An iterative flux-profile method allowing arbitrary observing heights. Environ. Softw. 1990, 5, 113–124. [Google Scholar] [CrossRef]
- Preußer, A.; Heinemann, G.; Willmes, S.; Paul, S. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery. Remote Sens. 2015, 7, 15844–15867. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Willmes, S.; Gutjahr, O.; Preußer, A.; Heinemann, G. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites. Remote Sens. 2015, 7, 5042–5056. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Krumpen, T.; Adams, S.; Rabenstein, L.; Haas, C.; Hoelemann, J.; Hendricks, S.; Heinemann, G. Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: A case study for the Laptev Sea. Can. J. Remote Sens. 2010, 36, S196–S210. [Google Scholar] [CrossRef]
- Massom, R.A.; Harris, P.; Michael, K.J.; Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 1998, 27, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Willmes, S.; Heinemann, G.; Rozman, P.; Timmermann, R.; Schröder, D. Evaluation of simulated sea-ice concentrations from sea-ice/ ocean models using satellite data and polynya classification methods. Polar Res. 2011, 30, 7124. [Google Scholar] [CrossRef]
- Jin, X.; Barber, D.; Papakyriakou, T. A new clear-sky downward longwave radiative flux parameterization for Arctic areas based on rawinsonde data. J. Geophys. Res. 2006, 111, D24104. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, A.; Lüpkes, C.; Hartmann, J. Aircraft-based observations of atmospheric boundary-layer modification over Arctic leads. Q. J. R. Meteorol. Soc. 2015, 141, 2839–2856. [Google Scholar] [CrossRef]
- Dethleff, D.; Loewe, P.; Kleine, E. The Laptev Sea flaw lead—Detailed investigation on ice formation and export during 1991/1992 winter season. Cold Reg. Sci. Technol. 1998, 27, 225–243. [Google Scholar] [CrossRef]
- Itkin, P.; Krumpen, T. Winter sea-ice export from the Laptev Sea preconditions the local summer sea-ice cover and fast ice decay. Cryosphere 2017, 11, 2383–2391. [Google Scholar] [CrossRef] [Green Version]
- Krumpen, T.; Belter, H.J.; Boetius, A.; Damm, E.; Haas, C.; Hendricks, S.; Nicolaus, M.; Nöthig, E.M.; Paul, S.; Peeken, I.; et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea-ice and ice-rafted matter. Sci. Rep. 2019, 9, 5459. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Adams, S.; Schröder, D.; Heinemann, G. Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08. Polar Res. 2011, 30, 16. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and Ozone Loss. J. Geophys. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Rinke, A.; Cassano, J.J.; Cassano, E.N.; Jaiser, R.; Handorf, D. Meteorological conditions during the MOSAiC expedition: Normal or anomalous? Elem. Sci. Anthr. 2021, 9, 00023. [Google Scholar] [CrossRef]
- Krumpen, T.; Birrien, F.; Kauker, F.; Rackow, T.; von Albedyll, L.; Angelopoulos, M.; Belter, H.J.; Bessonov, V.; Damm, E.; Dethloff, K.; et al. The MOSAiC ice floe: Sediment-laden survivor from the Siberian shelf. Cryosphere 2020, 14, 2173–2187. [Google Scholar] [CrossRef]
- Krumpen, T.; von Albedyll, L.; Goessling, H.F.; Hendricks, S.; Juhls, B.; Spreen, G.; Willmes, S.; Belter, H.J.; Dethloff, K.; Haas, C.; et al. MOSAiC drift expedition from October 2019 to July 2020: Sea-ice conditions from space and comparison with previous years. Cryosphere 2021, 15, 3897–3920. [Google Scholar] [CrossRef]
- Kohnemann, S.H.; Heinemann, G. A climatology of wintertime low-level jets in Nares Strait. Polar Res. 2021, 40, 3622. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, W.; Zhang, Z.; Cheng, X.; Hui, F.; Zhao, J. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sens. 2021, 13, 2813. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Tamaru, N.; Kashiwase, H.; Nihashi, S.; Nakata, K.; Iwamoto, K. Estimation of sea-ice Production in the Bering Sea From AMSR-E and AMSR2 Data, With Special Emphasis on the Anadyr Polynya. J. Geophys. Res. Ocean. 2020, 125, e2019JC016023. [Google Scholar] [CrossRef]
- Paul, S.; Huntemann, M. Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea-ice using MODIS thermal-infrared imagery. Cryosphere 2021, 15, 1551–1565. [Google Scholar] [CrossRef]
- Crameri, F.; Shephard, G.E.; Heron, P.J. The misuse of colour in science communication. Nat. Commun. 2020, 11, 5444. [Google Scholar] [CrossRef]
CCLM | ECMWF ERA5 | |
---|---|---|
Reference | Modified from [22,23] | [14] |
Grid Resolution | 5 km or 15 km | 31 km |
Model type | Regional climate model (Arctic) | Global reanalysis |
Sea-ice reference | AMSR-E, AMSR2 SIC | SSM/I, SSMIS SIC |
(U Bremen; ASI-v5.4 [21]), | (OSI-SAF; OSI-401/409 [27] as | |
MODIS SIC [4] | part of OSTIA [28]) | |
Utilized variables | , , , , | , , , , |
, | , , |
Domain | km | Month | SIC ≤ 0.7 & < −1.7 °C | SIC ≤ 0.7 & < −1.7 °C | <−1.7 °C | |||
---|---|---|---|---|---|---|---|---|
(Surrounding Six Pixels) | ||||||||
slope | r2 | slope | r2 | slope | r2 | |||
Arctic | 15 | January 2020 | 0.45 | 0.94 | 0.39 | 0.89 | 0.53 | 0.83 |
Arctic | 15 | April 2020 | 0.48 | 0.93 | 0.49 | 0.95 | 0.61 | 0.89 |
Arctic | 15 | March 2014 | 0.45 | 0.94 | 0.45 | 0.94 | 0.58 | 0.84 |
Laptev Sea | 5 | January 2020 | 0.40 | 0.93 | 0.38 | 0.94 | 0.57 | 0.82 |
Laptev Sea | 5 | April 2020 | 0.41 | 0.90 | 0.39 | 0.91 | 0.65 | 0.86 |
Barents Sea | 5 | March 2014 | 0.43 | 0.85 | 0.42 | 0.84 | 0.66 | 0.83 |
ERA5 | CCLM | ERA Interim [2] | |||||
---|---|---|---|---|---|---|---|
no MATA | MATA | MATA | no MATA | MATA | MATA | 2002/2003 to | |
2019/2020 | 2019/2020 | 2019/2020 | 2019/2020 | 2019/2020 | 2019/2020 | 2017/2018 | |
(DJFMA) | (DJFMA) | (DJFM) | (DJFMA) | (DJFMA) | (DJFM) | (DJFM) | |
Canadian Arctic | 107 | 48 (−55%) | 34 | 224 | 64 (−71%) | 47 | 129 ± 36 |
Chukchi Sea | 134 | 106 (−21%) | 106 | 289 | 124 (−57%) | 121 | 85 ± 34 |
East Siberian Sea | 115 | 54 (−53%) | 46 | 322 | 80 (−75%) | 67 | 51 ± 25 |
Franz-Josef-Land | 81 | 57 (−30%) | 57 | 139 | 64 (−54%) | 63 | 86 ± 33 |
Kara Sea | 187 | 110 (−41%) | 96 | 322 | 130 (−60%) | 112 | 181 ± 94 |
Laptev Sea | 132 | 68 (−48%) | 63 | 261 | 82 (−69%) | 75 | 70 ± 28 |
Northeast Water | 20 | 11 (−45%) | 11 | 51 | 18 (−65%) | 17 | 16 ± 6 |
North Water | 126 | 74 (−41%) | 69 | 297 | 113 (−62%) | 105 | 196 ± 58 |
Storfjorden | 21 | 13 (−38%) | 13 | 22 | 17 (−23%) | 16 | 18 ± 6 |
Severnaya Zemlya | 13 | 8 (−38%) | 8 | 34 | 10 (−71%) | 10 | 18 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preußer, A.; Heinemann, G.; Schefczyk, L.; Willmes, S. A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. Remote Sens. 2022, 14, 2036. https://doi.org/10.3390/rs14092036
Preußer A, Heinemann G, Schefczyk L, Willmes S. A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. Remote Sensing. 2022; 14(9):2036. https://doi.org/10.3390/rs14092036
Chicago/Turabian StylePreußer, Andreas, Günther Heinemann, Lukas Schefczyk, and Sascha Willmes. 2022. "A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS" Remote Sensing 14, no. 9: 2036. https://doi.org/10.3390/rs14092036
APA StylePreußer, A., Heinemann, G., Schefczyk, L., & Willmes, S. (2022). A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. Remote Sensing, 14(9), 2036. https://doi.org/10.3390/rs14092036