Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery
"> Figure 1
<p>Map of the northern part of Baffin Bay, Nares Strait and Lincoln Sea, all surrounded by Ellesmere Island (Canada) in the west and Greenland in the east. The applied polynya mask is marked in red, enclosing the typical location of the North Water Polynya in wintertime, north of 74<math display="inline"> <msup> <mrow/> <mo>∘</mo> </msup> </math>N and indicating the main study region south of Smith Sound. Bathymetric data by Jakobsson <span class="html-italic">et al.</span> [<a href="#B4-remotesensing-07-15807" class="html-bibr">4</a>] (IBCAO v3.0).</p> "> Figure 2
<p>MODIS thin-ice thicknesses (TIT up to 0.5 m) on 14 March 2009, 1055UTC. The black boundary marks the applied polynya mask, while the sensor-specific retrieved POLA is indicated by colored contours for MODIS (TIT ≤ 0.2 m; green contour; 2 km), SSM/I 70PT (red contour; 25 km) and SSM/I PSSM (light-blue contour; 12.5 km).</p> "> Figure 3
<p>Box-plots of the daily TIT distribution in polynya areas as detected by passive microwave sensors (upper panel: SSM/I-SSMIS; lower panel: AMSR-E/AMSR2). Boxes on the left side show the MODIS TIT distribution in the PSSM polynya area, while the right-hand boxes show the equivalent information for the 70PT method. The light blue horizontal bar marks the 0.2-m TIT-threshold for the MODIS POLA-retrieval. Red bars indicate the median within the 25th and 75th percentile (inter-quartile range; blue boxes). The whisker length has a default value of 1.5-times the inter-quartile range, and outliers are marked in green (* no AMSR-E/AMSR2 sea ice concentrations available for November to March 2011/2012).</p> "> Figure 4
<p>Hovmöller diagram of daily polynya area (<math display="inline"> <msub> <mtext>POLA</mtext> <mtext>SSMI,70PT</mtext> </msub> </math>) in the North Water Polynya between 1978/1979 and 2014/2015. White horizontal dotted lines indicate changing sensors in the sea ice concentration (SIC) dataset by Cavalieri <span class="html-italic">et al.</span> [<a href="#B16-remotesensing-07-15807" class="html-bibr">16</a>].</p> "> Figure 5
<p>Average monthly relative frequency distribution of polynya-pixels as classified by the 70PT-method (SMMR/SSM/I-SSMIS; top three rows), the PSSM method (SSM/I-SSMIS); fourth row) and based on MODIS thin-ice thicknesses ≤ 0.2 m (daily TIT composites with applied spatial feature reconstruction (SFR); bottom row). Note the reference period over which the monthly relative frequency distributions are calculated, as indicated in the the upper right corner of each row.</p> "> Figure 6
<p>Number of polynya days with an area of ≥1500 km<math display="inline"> <msup> <mrow/> <mn>2</mn> </msup> </math>, ≥5000 km<math display="inline"> <msup> <mrow/> <mn>2</mn> </msup> </math>, ≥20,000 km<math display="inline"> <msup> <mrow/> <mn>2</mn> </msup> </math> and ≥50,000 km<math display="inline"> <msup> <mrow/> <mn>2</mn> </msup> </math> within the applied polynya mask. A comparison is made between POLA estimations based on daily MODIS TIT composites (CC: dark green crosses; SFR: light green crosses) and passive microwave sensors (SMMR/SSM/I-SSMIS 70PT: filled red circles; AMSR-E/AMSR2 70PT: unfilled red squares; SSM/I-SSMIS PSSM: filled blue circles; AMSR-E PSSM: unfilled blue squares). The numbers indicate the amount of polynya days for each area threshold from zero.</p> "> Figure 7
<p>Average wintertime (November to March) polynya area (POLA) for the period from 1978/1979 to 2014/2015. A comparison is made between POLA estimations based on daily MODIS TIT composites (CC: dark green crosses; SFR: light green crosses) and passive microwave sensors (SMMR/SSM/I-SSMIS 70PT: filled red circles; AMSR-E/AMSR2 70PT: unfilled red squares; SSM/I-SSMIS PSSM: filled blue circles; AMSR-E PSSM: unfilled blue squares).</p> "> Figure 8
<p>Histogram of the relative thin-ice thickness (TIT) distribution in the NOW polynya, with ice-thickness classes of the 2-cm range (<span class="html-italic">x</span> axis). Input data are based on daily TIT composites covering the complete freezing season from November to March. The bars indicate the relative distribution of each thickness class from the total number of TIT ≤ 0.2-m appearances between the winter seasons 2002/2003 and 2014/2015. Contributions of each month with respect to the whole winter season for each thickness class are indicated by the blueish colors (see the legend).</p> "> Figure 9
<p>Spatial distribution of (<b>a</b>) the average accumulated ice production (IP, in m·winter<math display="inline"> <msup> <mrow/> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </math>) rate, as well as (<b>b</b>) the maximum daily ice production rate (in m·d<math display="inline"> <msup> <mrow/> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </math>) in the North Water Polynya for winter seasons (November to March) 2002/2003 to 2014/2015.</p> "> Figure 10
<p>(<b>a</b>) Average wintertime (November to March) energy fluxes of net long-wave radiation (L*), sensible (H) and latent (E) heat (all in W·m<math display="inline"> <msup> <mrow/> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> </math>) within the applied polynya mask. (<b>b</b>) Annual wintertime accumulated ice production (IP) in the NOW polynya (in km<math display="inline"> <msup> <mrow/> <mn>3</mn> </msup> </math>·winter<math display="inline"> <msup> <mrow/> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </math>) for 2002/2003 to 2014/2015. Estimations of IP are based on heat flux calculations using the daily derived TIT composites. Special emphasis is given to the effect of an applied cloud-cover correction (CC/SFR). The red dotted line shows a linear trend estimation for <math display="inline"> <msub> <mtext>IP</mtext> <mtext>SFR</mtext> </msub> </math>.</p> "> Figure 11
<p>Relative frequency distribution of thin-ice thickness ≤ 0.2 m in northern Baffin Bay/Smith Sound, Nares Strait and Lincoln Sea for the complete freezing seasons (November to March) 2002/2003 to 2014/2015, based on daily TIT composites. Observed sites of ice bridge appearances between November and March are indicated by white arrows.</p> ">
Abstract
:1. Introduction
Sensor | Platform | Source | Retrieved Variables | Derived Parameters | Period | Spatial Resolution on Grid |
---|---|---|---|---|---|---|
MODIS | Aqua/Terra | NSIDC [12] | IST | TIT | 2002 to 2015 | 2 × 2 km |
, | ||||||
, | ||||||
AMSR-E | Aqua/ADEOS-II | NSIDC [13,14] | 89V, 89H | 2002 to 2011 | 6.25 × 6.25 km | |
36V, 36H | 12.5 × 12.5 km | |||||
Univ.of Hamburg [15] | SIC | 6.25 × 6.25 km | ||||
AMSR2 | GCOM-W1 | Univ. of Bremen [15] | SIC | 2012 to 2015 | 6.25 × 6.25 km | |
SMMR | Nimbus-7 | NSIDC [16] | SIC | 1978 to 1986 | 25 × 25 km | |
SSM/I and SSMIS | DMSP | NSIDC [16,17,18,19] | 85/91V, 85/91H | 1987 to 2015 | 12.5 × 12.5 km | |
37V, 37H | 25 × 25 km | |||||
SIC | 25 × 25 km |
2. Data and Methods
2.1. Remote Sensing Data
2.1.1. SMMR and SSM/I-SSMIS
2.1.2. AMSR-E and AMSR2
2.1.3. MODIS Ice Surface Temperatures
2.2. ERA-Interim Atmospheric Reanalysis Data
2.3. MODIS Thin-Ice Thickness Retrieval Using a Surface Energy-Balance Model
2.4. Calculation of Daily TIT Composites
Number of MODISS waths | Avg. COV1 (Confident Clear-Sky) | Avg. COV2 (High-Persistence Mcp) | Avg. COV3 (Low-Persistence Mcp) | Avg. COV4 (Incl. SFR Areas) | |
---|---|---|---|---|---|
2002 to 2003 | 4040 | 0.74 | 0.86 | 0.90 | 0.97 |
2003 to 2004 | 4009 | 0.69 | 0.79 | 0.83 | 0.94 |
2004 to 2005 | 4067 | 0.72 | 0.82 | 0.86 | 0.97 |
2005 to 2006 | 4133 | 0.78 | 0.88 | 0.93 | 0.98 |
2006 to 2007 | 4086 | 0.77 | 0.85 | 0.88 | 0.97 |
2007 to 2008 | 4108 | 0.77 | 0.87 | 0.90 | 0.97 |
2008 to 2009 | 4079 | 0.79 | 0.86 | 0.90 | 0.97 |
2009 to 2010 | 4130 | 0.70 | 0.81 | 0.85 | 0.96 |
2010 to 2011 | 4098 | 0.65 | 0.76 | 0.81 | 0.96 |
2011 to 2012 | 4170 | 0.77 | 0.86 | 0.88 | 0.98 |
2012 to 2013 | 4153 | 0.73 | 0.86 | 0.90 | 0.98 |
2013 to 2014 | 4132 | 0.83 | 0.90 | 0.92 | 0.97 |
2014 to 2015 | 3417 | 0.84 | 0.90 | 0.92 | 0.98 |
Total/Average | 52,622 | 0.75 | 0.85 | 0.88 | 0.97 |
2.5. Derivation of Ice Production and Polynya Area
2.6. IST-Coverage Correction and Spatial Feature Reconstruction
3. Results and Discussion
3.1. Sensor Differences in the POLA Retrieval
3.2. Assessment of Long-Term POLA Development
SSM/I-SSMIS 70PT (10 km) | SSM/I-SSMIS PSSM (10 km ) | AMSR-E70PT (10 km) | AMSR-EPSSM (10 km) | MODISCC (10 km) | MODISSFR (10 km) | |
---|---|---|---|---|---|---|
November | 50.5 | 39.3 | 38.5 | 39.1 | 39.3 | 42.8 |
December | 25.6 | 21.6 | 20.5 | 22.5 | 29.0 | 30.8 |
January | 12.9 | 15.6 | 13.5 | 15.3 | 26.9 | 28.1 |
February | 11.4 | 12.6 | 10.8 | 13.5 | 21.8 | 22.5 |
March | 10.0 | 12.2 | 10.5 | 12.1 | 19.9 | 20.3 |
Mean | 22.1 | 20.3 | 18.8 | 20.5 | 27.4 | 28.9 |
SD | 17.0 | 11.3 | 11.8 | 11.2 | 7.6 | 8.8 |
3.3. Thin-Ice Thickness Distribution and Thermodynamic Ice Production for 2002/2003 to 2014/2015
Acc. (km) | Acc. (km) | (10 km) | (10 km) | |
---|---|---|---|---|
2002 to 2003 | 276.6 | 290.3 | 30.2 | 32.1 |
2003 to 2004 | 178.0 | 190.2 | 20.0 | 21.7 |
2004 to 2005 | 191.0 | 196.2 | 20.1 | 20.8 |
2005 to 2006 | 249.2 | 259.8 | 27.3 | 28.8 |
2006 to 2007 | 352.2 | 368.2 | 35.6 | 37.6 |
2007 to 2008 | 258.2 | 266.6 | 27.9 | 29.1 |
2008 to 2009 | 326.2 | 337.1 | 34.8 | 36.5 |
2009 to 2010 | 230.5 | 236.7 | 27.2 | 28.3 |
2010 to 2011 | 208.1 | 219.1 | 23.5 | 25.4 |
2011 to 2012 | 198.3 | 207.8 | 22.2 | 23.8 |
2012 to 2013 | 299.4 | 313.9 | 33.8 | 35.6 |
2013 to 2014 | 390.6 | 405.7 | 41.7 | 43.7 |
2014 to 2015 | 279.1 | 292.6 | 30.1 | 32.0 |
Mean | 264.4 | 275.7 | 28.8 | 30.4 |
SD | 65.1 | 67.4 | 6.5 | 6.7 |
3.4. Ice Bridge Dynamics in Nares Strait (2002/2003 to 2014/2015)
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
70PT | 70% sea ice concentration threshold | MODIS | Moderate Resolution Imaging Spectroradiometer |
ADEOS-II | Advanced Earth Observing Satellite; also known as Midori II | NAO | North Atlantic Oscillation |
AMSR-E | Advanced Microwave Scanning Radiometer-Earth Observing System | NASA | National Aeronautics and Space Administration |
AMSR2 | Advanced Microwave Scanning Radiometer 2 | NCEP2 | National Center for Environmental Prediction-Reanalysis 2 |
AO | Arctic Oscillation | NOW | North Water |
ASI | ARTIST Sea Ice | NRT | near real time |
AVHRR | Advanced Very High Resolution Radiometer | NSIDC | National Snow and Ice Data Center |
CC | coverage correction | PIX | persistence index |
CCS | confident clear-sky | POLA | polynya area |
DMSP | Defense Meteorological Satellite Program | PR | polarization ratio |
ECMWF | European Center for Medium Range Weather Forecast | PSSM | polynya signature simulation method |
GCOM-W1 | Global Change Observation Mission-Water | SAR | Synthetic Aperture Radar |
GrIS | Greenland Ice Sheet | SFR | spatial feature reconstruction |
GSFC | Goddard Space Flight Center | SIC | sea ice concentration |
IP | ice production | SMMR | Scanning Multichannel Microwave Radiometer |
IST | ice surface temperature | SSM/I | Special Sensor Microwave/Imager |
JAXA | Japan Aerospace Exploration Agency | SSMIS | Special Sensor Microwave Imager/Sounder |
MCC | medium cloud cover | brightness temperature | |
MCP | mixed cover pixels | TIT | thin-ice thickness |
References
- Barber, D.G.; Massom, R.A. The role of sea ice in Arctic and Antarctic polynyas. In Polynyas—Windows to the World; Smith, W.O., Barber, D.G., Eds.; Elsevier Oceanography Series: Amsterdam, The Netherlands, 2007; pp. 1–54. [Google Scholar]
- Smith, S.D.; Muench, R.D.; Pease, C.H. Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res. 1990, 95, 9461–9479. [Google Scholar] [CrossRef]
- Morales-Maqueda, M.; Willmott, A.; Biggs, N. Polynya dynamics: A review of observations and modeling. Rev. Geophys. 2004, 42, 1–37. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Ingram, R.G.; Bâcle, J.; Barber, D.G.; Gratton, Y.; Melling, H. An overview of physical processes in the North Water. Deep-Sea Res. Pt II 2002, 49, 4893–4906. [Google Scholar] [CrossRef]
- Barber, D.; Marsden, R.; Minnett, P.; Ingram, G.; Fortier, L. Physical processes within the North Water (NOW) polynya. Atmos. Ocean 2001, 39, 163–166. [Google Scholar] [CrossRef]
- Deming, J.W.; Fortier, L.; Fukuchi, M. The International North Water Polynya Study (NOW): A brief overview. Deep-Sea Res. Pt II 2002, 49, 4887–4892. [Google Scholar] [CrossRef]
- Barber, D.; Hanesiak, J.; Chan, W.; Piwowar, J. Sea-ice and meteorological conditions in Northern Baffin Bay and the North Water polynya between 1979 and 1996. Atmos. Ocean 2001, 39, 343–359. [Google Scholar] [CrossRef]
- Mundy, C.; Barber, D. On the relationship between spatial patterns of sea-ice type and the mechanisms which create and maintain the North Water (NOW) polynya. Atmos. Ocean 2001, 39, 327–341. [Google Scholar] [CrossRef]
- Melling, H.; Gratton, Y.; Ingram, G. Ocean circulation within the North Water polynya of Baffin Bay. Atmos. Ocean 2001, 39, 301–325. [Google Scholar] [CrossRef]
- Yao, T.; Tang, C. The formation and maintenance of the North Water polynya. Atmos. Ocean 2003, 41, 187–201. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D.; Salomonson, V. MODIS Sea Ice Products User Guide to Collection 5; National Snow and Ice Data Center, University of Colorado: Boulder, CO, USA, 2006. [Google Scholar]
- Cavalieri, D.J.; Markus, T.; Comiso, J.C. AMSR-E/Aqua Daily L3 6.25 km 89 GHz Brightness Temperature Polar Grids. Version 3. 2002–2011; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014. [Google Scholar]
- Cavalieri, D.J.; Markus, T.; Comiso, J.C. AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids. Version 3. 2002–2011; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014. [Google Scholar]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. 1978–2014; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [Google Scholar]
- Cavalieri, D.J.; Gloersen, P.; Zwally, H.; Maslanik, J.; Stroeve, J. Near-Real-Time DMSP SSMIS Daily Polar Gridded Brightness Temperatures. 2015; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1999. [Google Scholar]
- Maslanik, J.; Stroeve, J. Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations. 2015; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1999. [Google Scholar]
- Maslanik, J.; Stroeve, J. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures. Version 4. 1992–2014; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2004. [Google Scholar]
- Tamura, T.; Ohshima, K.I. Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res. 2011, 116, C07030. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T. Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. J. Geophys. Res. Oceans 2014, 119, 3574–3594. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Comiso, J.C.; Zwally, H.J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. Oceans 1999, 104, 15803–15814. [Google Scholar] [CrossRef]
- Hall, D.; Key, J.; Casey, K.; Riggs, G.; Cavalieri, D. Sea ice surface temperature product from MODIS. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1076–1087. [Google Scholar] [CrossRef]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35); Version 6.1; Technical Report for MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin: Wisconsin, WI, USA, 2010. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ. Res. Lett. 2014, 9, 044002. [Google Scholar] [CrossRef]
- Yu, Y.; Rothrock, D.A. Thin ice thickness from satellite thermal imagery. J. Geophys. Res. 1996, 101, 25753–25766. [Google Scholar] [CrossRef]
- Yu, Y.; Lindsay, R. Comparison of thin ice thickness distributions derived from RADARSAT Geophysical Processor System and advanced very high resolution radiometer data sets. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Drucker, R.; Martin, S.; Moritz, R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Willmes, S.; Krumpen, T.; Adams, S.; Rabenstein, L.; Haas, C.; Hoelemann, J.; Hendricks, S.; Heinemann, G. Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: a case study for the Laptev Sea. Can. J. Remote Sens. 2010, 36, S196–S210. [Google Scholar] [CrossRef]
- Adams, S.; Willmes, S.; Schroeder, D.; Heinemann, G.; Bauer, M.; Krumpen, T. Improvement and sensitivity analysis of thermal thin-ice retrievals. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3306–3318. [Google Scholar] [CrossRef] [Green Version]
- Preußer, A.; Willmes, S.; Heinemann, G.; Paul, S. Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003-2013/2014 using MODIS thermal infrared imagery. Cryosphere 2015, 9, 1063–1073. [Google Scholar] [CrossRef]
- Paul, S.; Willmes, S.; Heinemann, G. Long-term coastal-polynya dynamics in the Southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Markus, T.; Cavalieri, D.J.; Nihashi, S.; Hirasawa, N. Estimation of thin ice thickness and detection of fast ice from SSM/I Data in the Antarctic Ocean. J. Atmos. Oceanic Technol. 2007, 24, 1757–1772. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 2008, 35, L07606. [Google Scholar] [CrossRef]
- Willmes, S.; Adams, S.; Schröder, D.; Heinemann, G. Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08. Polar Res. 2011, 30. [Google Scholar] [CrossRef]
- Adams, S.; Willmes, S.; Heinemann, G.; Rozman, P.; Timmermann, R.; Schröder, D. Evaluation of simulated sea-ice concentrations from sea-ice/ocean models using satellite data and polynya classification methods. Polar Res. 2011, 30. [Google Scholar] [CrossRef]
- Markus, T.; Burns, B.A. A method to estimate subpixel-scale coastal polynyas with satellite passive microwave data. J. Geophys. Res. 1995, 100, 4473–4487. [Google Scholar] [CrossRef]
- Kern, S.; Spreen, G.; Kaleschke, L.; de La Rosa, S.; Heygster, G. Polynya Signature Simulation Method polynya area in comparison to AMSR-E 89 GHz sea-ice concentrations in the Ross Sea and off the Adélie Coast, Antarctica, for 2002–05: First results. Ann. Glaciol. 2007, 46, 409–418. [Google Scholar] [CrossRef]
- Paul, S.; Willmes, S.; Gutjahr, O.; Preußer, A.; Heinemann, G. Spatial feature reconstruction of cloud-covered areas in daily MODIS composites. Remote Sens. 2015, 7, 5042–5056. [Google Scholar] [CrossRef]
- Box, J.E.; Cohen, A.E. Upper-air temperatures around Greenland: 1964–2005. Geophys. Res. Lett. 2006, 33, L12706. [Google Scholar] [CrossRef]
- Overland, J.E.; Francis, J.A.; Hanna, E.; Wang, M. The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Osborn, T.J. Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather 2011, 66, 19–21. [Google Scholar] [CrossRef]
- Häkkinen, S.; Hall, D.K.; Shuman, C.A.; Worthen, D.L.; DiGirolamo, N.E. Greenland ice sheet melt from MODIS and associated atmospheric variability. Geophys. res. lett. 2014, 41, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Hanna, E.; Cropper, T.E.; Jones, P.D.; Scaife, A.A.; Allan, R. Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int. J. Climatol. 2014, 35. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Maslanik, J.; Serreze, M.C.; Rigor, I.; Meier, W.; Fowler, C. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett. 2011, 38, L02502. [Google Scholar]
- Steffen, K. Ice conditions of an Arctic polynya: North Water in winter. J. Glaciol. 1986, 32, 383–390. [Google Scholar]
- Samelson, R.; Barbour, P. Low-level jets, orographic effects, and extreme events in Nares Strait: A model-based mesoscale climatology. Mon. Wea. Rev. 2008, 136, 4746–4759. [Google Scholar]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate 2014, 27, 2588–2606. [Google Scholar]
- Kwok, R.; Toudal Pedersen, L.; Gudmandsen, P.; Pang, S.S. Large sea ice outflow into the Nares Strait in 2007. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preußer, A.; Heinemann, G.; Willmes, S.; Paul, S. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery. Remote Sens. 2015, 7, 15844-15867. https://doi.org/10.3390/rs71215807
Preußer A, Heinemann G, Willmes S, Paul S. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery. Remote Sensing. 2015; 7(12):15844-15867. https://doi.org/10.3390/rs71215807
Chicago/Turabian StylePreußer, Andreas, Günther Heinemann, Sascha Willmes, and Stephan Paul. 2015. "Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery" Remote Sensing 7, no. 12: 15844-15867. https://doi.org/10.3390/rs71215807
APA StylePreußer, A., Heinemann, G., Willmes, S., & Paul, S. (2015). Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery. Remote Sensing, 7(12), 15844-15867. https://doi.org/10.3390/rs71215807