A Spatial-Scale Evaluation of Soil Consolidation Concerning Land Subsidence and Integrated Mechanism Analysis at Macro-, and Micro-Scale: A Case Study in Chongming East Shoal Reclamation Area, Shanghai, China
<p>A sketch of the expansion of Shanghai’s coastal land. (<b>a</b>) The widened Yangtze River; (<b>b</b>) the joint effects of seawater support and flocculation; (<b>c</b>) the expanding new lands; (<b>d</b>) the vessels on the voyage; (<b>e</b>) hydraulic reclamation; (<b>f</b>) multiple soil layers.</p> "> Figure 2
<p>Google Earth-based overview of Chongming East Shoal (CES). (<b>a</b>) The main reclamation areas in Shanghai; (<b>b</b>) the advancement of multi-phase reclamation projects in CES since the 1990s; (<b>c</b>) site environment and land use; (<b>d</b>) SBAS-derived vertical deformation map from 22 March 2015 to 2 December 2019 (data from Reference [<a href="#B27-remotesensing-13-02418" class="html-bibr">27</a>]); (<b>e</b>) comparison of SBAS-derived deformation velocity (ν<sub>S</sub>) and fitting leveling data (ν<sub>L</sub>) at the leveling location (data from Reference [<a href="#B27-remotesensing-13-02418" class="html-bibr">27</a>]). (Note that the leveling measurement followed the specification of the second-order leveling with an error of 2 mm, based on the Chinese national height data from 1985).</p> "> Figure 3
<p>Stratigraphic structure of boreholes Ba and Bb, with the sampling horizons marked.</p> "> Figure 4
<p>Diagram of the settlement curve acquisition and prediction method in this study.</p> "> Figure 5
<p>Time-continuous settlement curve in Ra and Rb during the monitoring period of 22 March 2015 to 2 December 2019.</p> "> Figure 6
<p>The predicted settlement curves derived from the three-point modified exponential (TME) method (<span class="html-italic">t</span><sub>1</sub> = 0; prediction models in Ra and Rb are labeled as Rae1 and Rbe1) and hyperbolic (HY) method (<span class="html-italic">t</span><sub>0</sub> = 0; prediction models in Ra and Rb are labeled as Rah1 and Rbh1).</p> "> Figure 7
<p>The geological features of the soil layers around Ba and Bb boreholes. (<b>a</b>) Basic Properties, (<b>b</b>) compressibility, and (<b>c</b>) permeability. Note that according to the United Soil Classification System, the ②<sub>3</sub> Sandy Silt, ⑤<sub>1-1</sub> Clay, and ⑤<sub>1-2</sub> Silty Clay could also be named as silty sand, clayey silt, and clayey silt, respectively. In order to ensure the consistency of soil layers and to facilitate the description, the soil classification in the results and discussion section still uses the soil type (<a href="#remotesensing-13-02418-f003" class="html-fig">Figure 3</a>) that was determined by the geological age, soil behavior, and physical and mechanical properties.</p> "> Figure 8
<p>The micro-scale pore characteristics of the clay around the Ba (CLBA) and clay around Bb (CLBB). (<b>a</b>) Pore distribution, (<b>b</b>) pore type, and (<b>c</b>) morphological fractal dimension.</p> "> Figure 9
<p>Quantitative description of microstructure for clay around Ba (CLBA) and clay around Bb (CLBB). (<b>a</b>) SEM images of clay in 2000× and micro-scale analysis process; (<b>b</b>) statistical microscopic parameters; distributions of (<b>c</b>) equivalent diameter and (<b>d</b>) directional frequency; (<b>e</b>) diagram of the suborbicular structural unit (SU) with complex shape and clay aggregates in 2000×; diagrams of (<b>f</b>) shape and (<b>g</b>) arrangement characteristics of SUs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Ground Deformation
2.1.1. Chongming East Shoal
2.1.2. SBAS-Insar-Based Deformation Extraction
2.1.3. Field Investigations and Stratigraphic Structure
2.2. Combined Application of HY and TME Methods
2.2.1. HY Method
2.2.2. TME Method
2.2.3. Joint Determination of ADC
2.3. Conventional Tests
2.4. Microscopic Pore and Structure Tests
2.4.1. MIP Test
2.4.2. SEM Test
3. Results and Discussion
3.1. Spatial-Scale Estimation of ADC within Multiple Soil Layers
3.2. Macro-Scale Geological Features and Compression Layer
3.3. Micro-Scale Analysis on the Representative Compression Layer
3.3.1. Pore Distribution
3.3.2. Microstructure
3.4. Engineering Construction and Potential Risk of Land Subsidence
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, L.; He, J.; Ai, J.; Sun, X.; Bian, F.; Zhu, X. Evaluation for coastal reclamation feasibility using a comprehensive hydro-dynamic framework: A case study in Haizhou Bay. Mar. Pollut. Bull. 2015, 100, 182–190. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- VanKoningsveld, M.; Mulder, J.P.M.; Stive, M.J.F.; VanDerValk, L.; VanDerWeck, A.W. Living with Sea-Level Rise and Climate Change: A Case Study of the Netherlands. J. Coast. Res. 2008, 24, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Breber, P.; Povilanskas, R.; Armaitienė, A. Recent evolution of fishery and land reclamation in Curonian and Lesina lagoons. Hydrobiologia 2008, 611, 105–114. [Google Scholar] [CrossRef]
- Suzuki, T. Economic and geographic backgrounds of land reclamation in Japanese ports. Mar. Pollut. Bull. 2003, 47, 226–229. [Google Scholar] [CrossRef]
- Glaser, R.; Haberzettl, P.; Walsh, R.P.D. Land Reclamation in Singapore, Hong Kong and Macau. GeoJournal 1991, 24, 365–373. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Jiang, G.; Yao, Y.; Tang, Z. Analysis of influencing factors on fine sediment flocculation in the Changjiang Estuary. Acta Oceanol. Sin. 2002, 21, 385–394. [Google Scholar]
- Wu, L.; Wang, J.; Zhou, J.; Yang, T.; Xu, N. Multi-scale geotechnical features of dredger fills and subsidence risk evaluation in reclaimed land using BN. Mar. Georesour. Geotechnol. 2019, 1–23. [Google Scholar] [CrossRef]
- Yu, Q.; Yan, X.; Wang, Q.; Yang, T.; Kong, Y.; Huang, X.; Mehmood, Q. X-ray computed tomography-based evaluation of the physical properties and compressibility of soil in a reclamation area. Geoderma 2020, 375, 114524. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, J.; Hu, J.; Li, J.; Xu, Y.; Pan, Y.; Shi, M. Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1A data by SBAS-InSAR. Remote Sens. 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Lin, H. Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong. Eng. Geol. 2010, 110, 77–92. [Google Scholar] [CrossRef]
- Dong, S.; Samsonov, S.; Yin, H.; Ye, S.; Cao, Y. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2013, 72, 677–691. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, Q.; Tang, M.; Calò, F.; Zamparelli, V.; Falabella, F.; Liu, M.; Pepe, A. On the characterization and forecasting of ground displacements of ocean-reclaimed lands. Remote Sens. 2020, 12, 2971. [Google Scholar] [CrossRef]
- Peduto, D.; Nicodemo, G.; Maccabiani, J.; Ferlisi, S. Multi-scale analysis of settlement-induced building damage using damage surveys and DInSAR data: A case study in The Netherlands. Eng. Geol. 2017, 218, 117–133. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fasullo, J.; Galloway, D.L. Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Sci. Rep. 2020, 10, 17905. [Google Scholar] [CrossRef]
- Wang, M.; Li, T.; Jiang, L. Monitoring reclaimed lands subsidence in Hong Kong with InSAR technique by persistent and distributed scatterers. Nat. Hazards 2016, 82, 531–543. [Google Scholar] [CrossRef]
- Ma, P.; Wang, W.; Zhang, B.; Wang, J.; Shi, G.; Huang, G.; Chen, F.; Jiang, L.; Lin, H. Remotely sensing large- and small-scale ground subsidence: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens. Environ. 2019, 232, 111282. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, J.; Yuan, L. Land subsidence caused by the interaction of high-rise buildings in soft soil areas. Nat. Hazards 2015, 79, 1199–1217. [Google Scholar] [CrossRef]
- Bonì, R.; Herrera, G.; Meisina, C.; Notti, D.; Béjar-Pizarro, M.; Zucca, F.; González, P.J.; Palano, M.; Tomás, R.; Fernández, J.; et al. Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Eng. Geol. 2015, 198, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Scifoni, S.; Bonano, M.; Marsella, M.; Sonnessa, A.; Tagliafierro, V.; Manunta, M.; Lanari, R.; Ojha, C.; Sciotti, M. On the joint exploitation of long-term DInSAR time series and geological information for the investigation of ground settlements in the town of Roma (Italy). Remote Sens. Environ. 2016, 182, 113–127. [Google Scholar] [CrossRef]
- López-Quiroz, P.; Doin, M.-P.; Tupin, F.; Briole, P.; Nicolas, J.-M. Time series analysis of Mexico City subsidence constrained by radar interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Figueroa-Miranda, S.; Hernández-Madrigal, V.M.; Tuxpan-Vargas, J.; Villaseñor-Reyes, C.I. Evolution assessment of structurally-controlled differential subsidence using SBAS and PS interferometry in an emblematic case in Central Mexico. Eng. Geol. 2020, 279, 105860. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Zhou, F.; Li, Y.; Han, X.; Mehmood, Q.; Cao, C.; Gu, F.; Han, M.; Chen, J. Integrating an interferometric synthetic aperture radar technique and numerical simulation to investigate the Tongmai old deposit along the Sichuan-Tibet Railway. Geomorphology 2021, 377, 107586. [Google Scholar] [CrossRef]
- Yang, M.; Yang, T.; Zhang, L.; Lin, J.; Qin, X.; Liao, M. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-Band SAR datasets. Remote Sens. 2018, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.B.; Wang, Q.; Yan, X.X.; Yang, T.L.; Song, S.Y.; Yao, M.; Zhou, K.; Huang, X.L. Ground deformation of the Chongming East Shoal reclamation area in Shanghai based on SBAS-InSAR and laboratory tests. Remote Sens. 2020, 12, 1016. [Google Scholar] [CrossRef] [Green Version]
- Plant, G.W.; Covil, C.S.; Publishing, T.T.J.C. Site Preparation for the New Hong Kong International Airport—the Design, Construction and Performance of the Airport Platform; Thomas Telford: London, UK, 1998. [Google Scholar]
- Kim, S.W.; Won, J.S. Measurements of soil compaction rate by using JERS-1 SAR and a prediction model. IEEE Trans. Geosci. Remote 2003, 41, 2683–2686. [Google Scholar] [CrossRef]
- Kim, S.W.; Wdowinski, S.; Dixon, T.H.; Amelung, F.; Kim, J.W.; Won, J.S. Measurements and predictions of subsidence induced by soil consolidation using persistent scatterer InSAR and a hyperbolic model. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Pepe, A.; Gao, W.; Lu, Z.; Bonano, M.; He, M.L.; Wang, J.; Tang, X. A DInSAR investigation of the ground settlement time evolution of ocean-reclaimed lands in Shanghai. IEEE J. STARS 2015, 8, 1763–1781. [Google Scholar] [CrossRef]
- Hu, X.; Oommen, T.; Lu, Z.; Wang, T.; Kim, J.-W. Consolidation settlement of Salt Lake County tailings impoundment revealed by time-series InSAR observations from multiple radar satellites. Remote Sens. Environ. 2017, 202, 199–209. [Google Scholar] [CrossRef]
- Ciampalini, A.; Solari, L.; Giannecchini, R.; Galanti, Y.; Moretti, S. Evaluation of subsidence induced by long-lasting buildings load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy). Int. J. Appl. Earth Obs. 2019, 82. [Google Scholar] [CrossRef]
- Park, S.W.; Hong, S.H. Nonlinear modeling of subsidence from a decade of InSAR time series. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Wang, F. Preliminary study on relation of fault activity and seismicity in the Shanghai region. Earthq. Res. China 2004, 20, 143–151. [Google Scholar] [CrossRef]
- Xu, Y. Evaluation of the Behaviour of Groundwater Seepage and Land Subsidence via Considering Infrastructures Penetrated into Aquifers. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2010. [Google Scholar]
- He, X.-C.; Yang, T.-L.; Shen, S.-L.; Xu, Y.-S.; Arulrajah, A. Land subsidence control zone and policy for the environmental protection of Shanghai. Int. J. Environ. Res. Public Health 2019, 16, 2729. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, P.; Cao, C.; Zheng, L.; Liu, Y.; Dong, X. Preliminary identification of geological hazards from Songpinggou to Feihong in Mao County along the Minjiang River using SBAS-InSAR technique integrated multiple spatial analysis methods. Sustainability 2021, 13, 1017. [Google Scholar] [CrossRef]
- Yang, H.-L.; Peng, J.-H. Monitoring urban subsidence with multi-master radar interferometry based on coherent targets. J. Indian Soc. Remote 2015, 43, 529–538. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.S.; Wu, H.N.; Wang, B.Z.-F.; Yang, T.L. Dewatering induced subsidence during excavation in a Shanghai soft deposit. Environ. Earth Sci. 2017, 76, 351. [Google Scholar] [CrossRef]
- Ye, G.-L.; Lin, N.; Bao, X.-H.; Gu, L.; Yadav, S.K. Effect of Quaternary transgression and regression on the engineering properties of Shanghai soft clays. Eng. Geol. 2018, 239, 321–329. [Google Scholar] [CrossRef]
- Yastika, P.E.; Shimizu, N.; Abidin, H.Z. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv. Space Res. 2019, 63, 1719–1736. [Google Scholar] [CrossRef]
- Yuan, X.Q.; Wang, Q.; Lu, W.X.; Zhang, W.; Chen, H.E.; Zhang, Y. Indoor simulation test of step vacuum preloading for high-clay content dredger fill. Mar. Georesour. Geotec. 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Tan, T.-S.; Inoue, T.; Lee, S.-L. Hyperbolic Method for Consolidation Analysis. J. Geotech. Eng. 1991, 117, 1723–1737. [Google Scholar] [CrossRef]
- Rao, S.N.; Kodandaramaswamy, K. The prediction of settlements and heave in clays. Can. Geotech. J. 1980, 17, 623–631. [Google Scholar] [CrossRef]
- Gao, Y.; Mo, Z.; Wei, J. Optimization and application of exponential curve method in soft soil foundation settlement prediction. J. Transp. Sci. Eng. 2011, 4–8. (In Chinese) [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Xu, X.; Yu, F.; Qin, S. Three-point modified exponential curve method for predicting subgrade settlements. Rock Soil Mech. 2011, 032, 3355–3360. (In Chinese) [Google Scholar] [CrossRef]
- Tang, D.X.; Sun, S.W. (Eds.) Science of Engineering Rock and Soil; Geological Publishing House: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Standard for Soil Test Methods (GB/T 50123-2019); China Planning Press: Beijing, China, 2019. (In Chinese)
- Zhan, J.; Wang, Q.; Zhang, W.; Shangguan, Y.; Song, S.; Chen, J. Soil-engineering properties and failure mechanisms of shallow landslides in soft-rock materials. Catena 2019, 181, 104093. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Q.; Xia, W.; Liu, J.; Wang, J.; Chen, Y.; Shen, J. Experimental study on the hydraulic conductivity of unsaturated dispersive soil with different salinities subjected to freeze-thaw. J. Hydrol. 2019, 583, 124297. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Kong, Y.; Han, Y.; Cheng, S. Analysis of the pore structure characteristics of freeze-thawed saline soil with different salinities based on mercury intrusion porosimetry. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yang, K.; You, J.; Lei, X. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results Phys. 2019. [Google Scholar] [CrossRef]
- Friesen, W.I.; Mikula, R.J. Fractal dimensions of coal particles. J. Colloid Interf. Sci. 1987, 120, 263–271. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Zhang, X.; Lu, Y.; Chen, G.; Wang, X.; Song, B. Experimental study on vacuum preloading consolidation of landfill sludge conditioned by Fenton’s reagent under varying filter pore size. Geotext. Geomembr. 2021, 49, 109–121. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Y.; Niu, C.; Leng, G.; Tian, G. Dynamic characteristics of saturated loess under different confining pressures: A microscopic analysis. B. Eng. Geol. Environ. 2017, 78, 931–944. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, M.; Sun, T.; Sun, T. Microstructure Features for Dredger Fill by Different Solidified Technologies. J. Tongji Univ. Nat. Sci. Ed. 2013, 1286–1292. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.; Jia, H.; Lu, Z.; Liang, H.; Ding, X.; Li, X. Minimizing height effects in MTInSAR for deformation detection over built areas. IEEE Trans. Geosci. Remote 2019, 57, 9167–9176. [Google Scholar] [CrossRef]
- Osmanoǧlu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Liu, G.; Jia, H.; Zhang, R.; Zhang, H.; Jia, H.; Yu, B.; Sang, M. Exploration of Subsidence Estimation by Persistent Scatterer InSAR on Time Series of High Resolution TerraSAR-X Images. IEEE J. STARS 2011, 4, 159–170. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.S.; Feng, G.; Lee, C.W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS J. Photogramm. 2011, 66, 146–152. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Zhai, E.; Ye, P. Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone. J. Hydrol. 2020, 593, 125603. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, Y.; Zhang, X.; Ruan, Y.; Chen, Z. Mechanical Effect of Pre-consolidation Pressure of Structural Behavior Soil. J. Southwest Jiaotong Univ. 2016, 51, 987–994. (In Chinese) [Google Scholar] [CrossRef]
- Yan, H.; Wang, Q.; Sun, D.Y. Experiment study of dredger fill using different consolidation methods. Adv. Mater. Res. 2014, 960–961, 513–516. [Google Scholar] [CrossRef]
- Gong, S.L.; Li, C.; Yang, S.L. The microscopic characteristics of Shanghai soft clay and its effect on soil body deformation and land subsidence. Environ. Geol. 2009, 56, 1051–1056. [Google Scholar] [CrossRef]
Region of Interest | R2 | s∞ (mm) | |||||
(t0, s0) | α | β | |||||
Ra | (0, 0) | −17.216 | −0.0146 | 0.9872 | −68.5 | 60.8 | |
(24, −1.6) | −17.957 | −0.0152 | 0.9859 | −67.4 | 61.8 | ||
(48, −2.8) | −19.088 | −0.015 | 0.9859 | −69.5 | 60.0 | ||
Rb | (0, 0) | −16.188 | −0.0473 | 0.867 | −21.1 | 94.1 | |
(24, −3.6) | −25.688 | −0.0565 | 0.8436 | −21.3 | 93.4 | ||
(48, −5.7) | −34.392 | −0.0645 | 0.8174 | −21.2 | 93.9 | ||
Region of Interest | η | R2 | s∞ (mm) | ||||
Note: Let t1 = t0, t3 = 1716 | |||||||
(t1, s1) | (t2, s2) | (t3, s3) | |||||
Ra | (0, 0) | (858, −28.5) | (1716, −41.7) | 1110.36 | 0.99 | −52.9 | 78.7 |
(24, −1.6) | (870, −28.3) | 1221.84 | 0.9893 | −55.0 | 75.7 | ||
(48, −2.8) | (882, −28.6) | 1224.993 | 0.9884 | −55.0 | 75.7 | ||
Rb | (0, 0) | (858, −15.8) | (1716, −19.9) | 642.1663 | 0.8355 | −21.4 | 93.1 |
(24, −3.6) | (870, −16.1) | 712.7017 | 0.8298 | −21.6 | 92.2 | ||
(48, −5.7) | (882, −16.3) | 783.0327 | 0.8131 | −21.8 | 91.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Yan, X.; Wang, Q.; Yang, T.; Lu, W.; Yao, M.; Dong, J.; Zhan, J.; Huang, X.; Niu, C.; et al. A Spatial-Scale Evaluation of Soil Consolidation Concerning Land Subsidence and Integrated Mechanism Analysis at Macro-, and Micro-Scale: A Case Study in Chongming East Shoal Reclamation Area, Shanghai, China. Remote Sens. 2021, 13, 2418. https://doi.org/10.3390/rs13122418
Yu Q, Yan X, Wang Q, Yang T, Lu W, Yao M, Dong J, Zhan J, Huang X, Niu C, et al. A Spatial-Scale Evaluation of Soil Consolidation Concerning Land Subsidence and Integrated Mechanism Analysis at Macro-, and Micro-Scale: A Case Study in Chongming East Shoal Reclamation Area, Shanghai, China. Remote Sensing. 2021; 13(12):2418. https://doi.org/10.3390/rs13122418
Chicago/Turabian StyleYu, Qingbo, Xuexin Yan, Qing Wang, Tianliang Yang, Wenxi Lu, Meng Yao, Jiaqi Dong, Jiewei Zhan, Xinlei Huang, Cencen Niu, and et al. 2021. "A Spatial-Scale Evaluation of Soil Consolidation Concerning Land Subsidence and Integrated Mechanism Analysis at Macro-, and Micro-Scale: A Case Study in Chongming East Shoal Reclamation Area, Shanghai, China" Remote Sensing 13, no. 12: 2418. https://doi.org/10.3390/rs13122418
APA StyleYu, Q., Yan, X., Wang, Q., Yang, T., Lu, W., Yao, M., Dong, J., Zhan, J., Huang, X., Niu, C., & Zhou, K. (2021). A Spatial-Scale Evaluation of Soil Consolidation Concerning Land Subsidence and Integrated Mechanism Analysis at Macro-, and Micro-Scale: A Case Study in Chongming East Shoal Reclamation Area, Shanghai, China. Remote Sensing, 13(12), 2418. https://doi.org/10.3390/rs13122418