Ground Deformation of the Chongming East Shoal Reclamation Area in Shanghai Based on SBAS-InSAR and Laboratory Tests
"> Figure 1
<p>Google Earth-based maps of (<b>a</b>) Shanghai city and the northeastern study area, (<b>b</b>) spatial evolution of land reclamation in Chongming East Shoal (CES) since the 1990s, and (<b>c</b>) sampling points (<span class="html-italic">C1</span>-<span class="html-italic">C5</span>) at different phases. Note that stage 1 and stage 2 were bounded by the cofferdam built in 1976.</p> "> Figure 2
<p>(<b>a</b>) Geological section map of borehole profiles (different depth gauges were used here due to the large gap in soil thickness) based on field investigations; (<b>b</b>) photographs of representative soil layers; (<b>c</b>) the black interlayer between dredger fill and sandy silt; (<b>d</b>) finger marks on the clay surfaces.</p> "> Figure 3
<p>Block diagram of the small baseline subset (SBAS) algorithm. LOS: line of sight; SVD: singular value decomposition.</p> "> Figure 4
<p>(<b>a</b>) Time-position plot of synthetic aperture radar (SAR) image acquisitions and (<b>b</b>) the time baseline of Sentinel-1 interferometric pairs.</p> "> Figure 5
<p>SBAS-derived maps of (<b>a</b>) vertical deformation velocity and (<b>b</b>) its error superimposed onto a Google Earth image, based on Sentinel-1 SAR images that were collected from 22 March 2015 to 2 December 2019. Five zones (A to E), with different deformation patterns, were divided according to land use and the locations of partial cofferdams. The black diamonds shown in <a href="#remotesensing-12-01016-f005" class="html-fig">Figure 5</a>b indicate the locations of representative ground control points (GCPs).</p> "> Figure 5 Cont.
<p>SBAS-derived maps of (<b>a</b>) vertical deformation velocity and (<b>b</b>) its error superimposed onto a Google Earth image, based on Sentinel-1 SAR images that were collected from 22 March 2015 to 2 December 2019. Five zones (A to E), with different deformation patterns, were divided according to land use and the locations of partial cofferdams. The black diamonds shown in <a href="#remotesensing-12-01016-f005" class="html-fig">Figure 5</a>b indicate the locations of representative ground control points (GCPs).</p> "> Figure 6
<p>(<b>a</b>) Time series deformation of zones A to E and (<b>b</b>) their mean deformation velocities, during the period ranging from 2015 to 2019 from 22 March 2015 to 2 December 2019. Note that the time unit, shown in <a href="#remotesensing-12-01016-f006" class="html-fig">Figure 6</a>a, has been converted from the date, when each Sentinel-1 SAR image was acquired, to days.</p> "> Figure 7
<p>(<b>a</b>) Statistical range of deformation in each reclamation area along the long axis direction and the location of borehole profile P–P’, and (<b>b</b>) statistical results. (<b>c</b>) A schematic of the correlation between deformation velocity and reclamation time in this study, and other relevant studies [<a href="#B13-remotesensing-12-01016" class="html-bibr">13</a>,<a href="#B14-remotesensing-12-01016" class="html-bibr">14</a>,<a href="#B29-remotesensing-12-01016" class="html-bibr">29</a>,<a href="#B47-remotesensing-12-01016" class="html-bibr">47</a>]. (<b>d</b>) The positions of the monitoring periods on the typical time-settlement prediction curve of alluvial clay under reclamation [<a href="#B32-remotesensing-12-01016" class="html-bibr">32</a>,<a href="#B41-remotesensing-12-01016" class="html-bibr">41</a>].</p> "> Figure 8
<p>Comparison of SBAS-derived deformation velocity (<span class="html-italic">ν<sub>S</sub></span>) and fitting leveling data (<span class="html-italic">ν<sub>L</sub></span>) at the leveling location.</p> "> Figure 9
<p>Changes in the geological features of the soil layers around boreholes from west to east. The geological features include (<b>a</b>) water content, (<b>b</b>) porosity, (<b>c</b>) dry density, (<b>d</b>) cation exchange capacity, and (<b>e</b>) the compression index. The boreholes were divided into two groups (<span class="html-italic">C1</span>-<span class="html-italic">C2</span> and <span class="html-italic">C3</span>-<span class="html-italic">C5</span>) by the cofferdam built in 1976. Different locations of boreholes indicate the various phases of reclamation projects.</p> "> Figure 10
<p>Mercury intrusion porosimetry (MIP)-based micropore distribution of (<b>a</b>) plain fill, (<b>b</b>) muddy clay, and (<b>c</b>) clay.</p> "> Figure 11
<p>Variation of porosity based on MIP and corresponding SEM images.</p> "> Figure 12
<p>Schematic of the consolidation and drainage of soil layers at different reclamation times (zones A, B, and C here correspond to the zones shown in <a href="#remotesensing-12-01016-f005" class="html-fig">Figure 5</a>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Investigation-based Stratigraphic Structure and Laboratory Test
2.2. SBAS-InSAR Processing
3. Results and Discussion
3.1. Ground Deformation Characteristics
3.1.1. Spatial Distribution of Ground Deformation
3.1.2. Correlation between Ground Deformation and Reclamation Time and Urbanization
3.1.3. Validation of SBAS-Derived Results
3.2. Geological Features
3.2.1. Basic Physical Properties
3.2.2. Cation Exchange Capacity and Compressibility
3.2.3. Microscale Structure and Pore
3.2.4. Subsidence Mechanism
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bi, X.; Liu, F.; Pan, X. Coastal projects in China: From reclamation to restoration. Environ. Sci. Technol 2012, 46, 4691–4692. [Google Scholar] [CrossRef] [PubMed]
- McLeod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean Coast. Manag. 2010, 53, 507–517. [Google Scholar] [CrossRef]
- Yan, H. Aging characteristics of material, structure changes and settlement prediction of dredger fill in the consolidation process of step vacuum preloading. Ph.D. Thesis, Jilin University, Changchun, China, 2015. [Google Scholar]
- Song, J. Laboratory simulation test and PFC3D numerical analysis of high clay dredger fill in the consolidation process of step vacuum preloading. Ph.D. Thesis, Jilin University, Changchun, China, 2011. [Google Scholar]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The use of C-/X-band time-gapped SAR data and geotechnical models for the study of Shanghai’s ocean-reclaimed lands through the SBAS-DInSAR technique. Remote Sens. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, J.-W.; Liu, W.; Li, Q.-X. Evaluation of exploitative land resources in major function zoning of Shanghai. Shanghai Geol. 2009, 3. [Google Scholar] [CrossRef]
- Yuan, X.-Q.; Wang, Q.; Lu, W.-X.; Zhang, W.; Chen, H.-E.; Zhang, Y. Indoor simulation test of step vacuum preloading for high-clay content dredger fill. Mar. Georesour. Geotec. 2018, 36, 83–90. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth. Obs. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E.; Mellors, R.; Vidal, F.S. Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, leveling and geological data. J. Volcanol. Geoth. Res. 2011, 204, 76–90. [Google Scholar] [CrossRef]
- Hu, R.L.; Yue, Z.Q.; Wang, S.J.; Wang, L.C. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Galloway, D.; Jones, D.R.; Ingebritsen, S.E. Land subsidence in the United States. US Geol. Surv. Circul. 2000, 1–175. [Google Scholar] [CrossRef]
- Leighton, J.M. GPS and PSI integration for monitoring urban land motion. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2010. [Google Scholar]
- Yang, M.; Yang, T.; Zhang, L.; Lin, J.; Qin, X.; Liao, M. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 2018, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Pepe, A.; Gao, W.; Lu, Z.; Bonano, M.; He, M.L.; Wang, J.; Tang, X. A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean-Reclaimed Lands in Shanghai. IEEE J-STARS. 2015, 8, 1763–1781. [Google Scholar] [CrossRef]
- Zebker, H.A.; Gabriel, A.K.; Goldstein, R.M. Mapping small elevation changes over large areas - Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L.; Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.J. Fast recession of a west antarctic glacier. Science 1998, 281, 549–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Ann.rev.earth Planet.sci 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE T. Geosci. Remote. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Usai, S.; Klees, R. SAR interferometry on a very long time scale: a study of the interferometric characteristics of man-made features. IEEE T. Geosci. Remote. 1999, 37, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE T. Geosci. Remote. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611-n/a. [Google Scholar] [CrossRef]
- Bürgmann, R.; Hilley, G.; Ferretti, A.; Novali, F. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology 2006, 34, 221–224. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE T. Geosci. Remote. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE T. Geosci. Remote. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Bing, X.; Feng, G.; Li, Z.; Wang, Q.; Wang, C.; Xie, R. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sens. 2016, 8, 652. [Google Scholar] [CrossRef] [Green Version]
- Canova, F.; Tolomei, C.; Salvi, S.; Toscani, G.; Seno, S. Land subsidence along the Ionian coast of SE Sicily (Italy), detection and analysis via Small Baseline Subset (SBAS) multitemporal differential SAR interferometry. Earth Surf. Proc. Land. 2012, 37, 273–286. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.-S.; Sun, Y.-L.; Hou, J.-G.; Liang, J. Long-term land subsidence monitoring of Beijing (China) using the small baseline subset (SBAS) technique. Remote Sens. 2014, 6, 3648–3661. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Lin, H. Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong. Eng. Geol. 2010, 110, 77–92. [Google Scholar] [CrossRef]
- Fan, H.; Deng, K.; Ju, C.; Zhu, C.; Xue, J. Land subsidence monitoring by D-InSAR technique. Min. Sci. Technol. 2011, 21, 869–872. [Google Scholar] [CrossRef]
- Miao, D. The geological structure of the shanghai district and the East China Sea. Mar. Sci. Bull. 1983, 2, 50–57. [Google Scholar]
- Jiang, G.; Yao, Y.; Tang, Z. The analysis for influencing factors of fine sediment flocculation in the Changjiang Estuary. ACTA OCEANOL. SIN. 2002, 24, 51–57. [Google Scholar] [CrossRef]
- Li, J.; Dai, Z.; Liu, Q.; Li, W.; Wu, R.; Zhao, J. In-situ observation of floccule size and fluid mudin the Changjiang Estuary. J. Sediment Res. 2008, 3, 26–32. [Google Scholar] [CrossRef]
- Shi, L.G.; Li, C.; Yang, S.L. The microscopic characteristics of Shanghai soft clay and its effect on soil body deformation and land subsidence. Environ. Geol. 2009, 56, 1051–1056. [Google Scholar] [CrossRef]
- Yan, X.X.; Shi, Y.J. Structure characteristic of engineering geology in Shanghai. Shanghai Land Resour. 2006, 19–24. [Google Scholar] [CrossRef]
- Zhang, W.L.; Shi, Y.J. Discussion on Shanghai Engineering Geological Division. Shanghai Land Resour. 2013, 34, 5–9. [Google Scholar] [CrossRef]
- Plant, G.W.; Covil, C.S.; Publishing, T.T. Site Preparation for the new Hong Kong International Airport - the Design, Construction and Performance of the Airport Platform; Institution of Civil Engineers Publishing: London, UK, 1998. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Standard for Soil Test Methods (GB/T 50123-1999); China Planning Press: Beijing, China, 1999.
- Wang, Q.; Wang, F.-Y.; Xiao, S.-F. A quantitative study of the microstructure characteristics of soil and its application to the engineering. J. Chengdu U. Technol. 2001, 28, 148–153. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Cai, K. Quantitative evaluation of microstructure features of soil contained some cement. Rock Soil Mech. 2003, s1, 12–16. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, X.-Q.; Wang, Q.; Sun, T.; Xia, Y.-B.; Chen, H.-E.; Song, J. Pore distribution characteristics of dredger fill during hierarchical vacuum preloading. J. Jilin U. (Earth Science Edition) 2012, 42, 169–176. [Google Scholar] [CrossRef]
- Song, S.; Wang, Q.; Sun, T.; Yan, H.; Sun, M.; Yuan, X. Pore distribution characteristics of dredger fill consolidated by different methods. J. Chang’an U. (Natural Science Edition) 2015, 35. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yang, C.; Zhang, J. Characterizing and monitoring ground settlement of marine reclamation land of Xiamen New Airport, China with Sentinel-1 SAR Datasets. Remote Sens. 2019, 11, 585. [Google Scholar] [CrossRef] [Green Version]
- Yague-Martinez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE T. Geosci. Remote. 2016, 54, 2220–2234. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Yang, K.; Yang, J.; Jiang, B. Sentinel-1 Satellite Overview. Urban Geotech. Invest. Surv. 2015, 2, 24–27. (In Chinese) [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR Based Deformation Detection of Urban Land, Created from Mega-Scale Mountain Excavating and Valley Filling in the Loess Plateau: The Case Study of Yan’an City. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Ye, S.; Wu, J.; Jiao, X.; Wang, H. Characterization of land subsidence during recovery of groundwater levels in Shanghai. Geol. J. Chin. U. 2015, 21, 243–254. (In Chinese) [Google Scholar] [CrossRef]
- Yan, X.; Gong, S.; Zeng, Z.; Yu, J.; Shen, G.; Wang, T. Relationship between building density and land subsidence in Shanghai urban zone. Hydroge. Eng. Geol. 2002, 29, 21–25. (In Chinese) [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Zinno, I.; Bonano, M.; Manunta, M.; Moretti, S.; Casagli, N. Combined use of C- and X-band SAR data for subsidence monitoring in an urban area. Geosciences (Switzerland) 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Liu, Y.; Zhang, W. Science of Engineering Rock and Soil; Geological Publishing House: Beijing, China, 1999. [Google Scholar]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- Dexter, A.R. Advances in characterization of soil structure. Soil Till. Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
Geological Age | Layer Number and Lithology | Deposit Type | Distribution | Thickness (m) | |
---|---|---|---|---|---|
Holocene | ①3-1 Plain fill | Artificial/reclamation project | Reclamation area | 1.0–2.4 | |
①3-2 Dredger fill | 1.6–2.4 | ||||
②1 Silty clay with sandy silt | Littoral–estuarine | Partial | 0.0–1.3 | ||
②3 Sandy silt | Whole | 2.9–7.0 | |||
③ Muddy silty clay | Littoral–shallow sea | Partial | 0.0–1.7 | ||
④ Muddy clay | 4.1–6.5 | ||||
⑤1-1 Clay | Supralittoral–swampy | Whole | 16.0–28.6 | ||
⑤1-2 Silty clay | 4.0–13.4 |
Orbit | Near Polar Sun-Synchronous @ 693 km; 175 orbits per cycle | |
Orbital period | 98.6 min | |
Orbital direction | Ascending | |
Imaging mode | Interferometric wide swath mode (IW) | |
Swath | 250 km | |
Ground resolution | 5 m × 20 m | |
Polarization | Vertical polarization (VV) | |
Relative orbit number | 171 | |
SRTM | Resolution | 30 m |
Positioning accuracy | 20 m | |
Elevation accuracy | 16 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Wang, Q.; Yan, X.; Yang, T.; Song, S.; Yao, M.; Zhou, K.; Huang, X. Ground Deformation of the Chongming East Shoal Reclamation Area in Shanghai Based on SBAS-InSAR and Laboratory Tests. Remote Sens. 2020, 12, 1016. https://doi.org/10.3390/rs12061016
Yu Q, Wang Q, Yan X, Yang T, Song S, Yao M, Zhou K, Huang X. Ground Deformation of the Chongming East Shoal Reclamation Area in Shanghai Based on SBAS-InSAR and Laboratory Tests. Remote Sensing. 2020; 12(6):1016. https://doi.org/10.3390/rs12061016
Chicago/Turabian StyleYu, Qingbo, Qing Wang, Xuexin Yan, Tianliang Yang, Shengyuan Song, Meng Yao, Kai Zhou, and Xinlei Huang. 2020. "Ground Deformation of the Chongming East Shoal Reclamation Area in Shanghai Based on SBAS-InSAR and Laboratory Tests" Remote Sensing 12, no. 6: 1016. https://doi.org/10.3390/rs12061016
APA StyleYu, Q., Wang, Q., Yan, X., Yang, T., Song, S., Yao, M., Zhou, K., & Huang, X. (2020). Ground Deformation of the Chongming East Shoal Reclamation Area in Shanghai Based on SBAS-InSAR and Laboratory Tests. Remote Sensing, 12(6), 1016. https://doi.org/10.3390/rs12061016