Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq
"> Figure 1
<p>Schematic diagram of a qanat in mountain or hilly area. Courtesy of Dale Lightfoot.</p> "> Figure 2
<p>Alignment of shafts of an abandoned qanat (<span class="html-italic">karez</span>) west of Erbil, near Arab Kandi village.</p> "> Figure 3
<p>Qanat shafts, when well preserved (<b>a</b>,<b>d</b>,<b>e</b>) are relatively easy to identify and validate on the CORONA imagery based on the linear alignment of light dots on a darker background. The certainty of identification is lower when preservation is very poor (<b>f</b>) and when natural landscape has a similar signature of white patches on darker background (<b>b</b>,<b>c</b>). In this project, however, shafts with all levels of certainty are labeled and used in training. (Yellow dots are laid over qanat shafts to emphasize the locations of individual shafts.)</p> "> Figure 4
<p>(<b>a</b>) Overlay of 51 qanats identified by D. Lightfoot from historic documents and field work (red dots) on approximately 12,000 qanat shafts (gray dots) mapped by EPAS at shaft level using historic CORONA imagery. (<b>b</b>,<b>c</b>), enlarged maps for two selected areas illustrate the previous database of qanat (red point) in comparison to the complexity of the qanat landscape captured when shafts are individually identified and mapped (yellow dots). Base Imagery: CORONA frames DS1039-2088DA037 and DS1039-2088DA038, acquired 1968, courtesy of the USGS.</p> "> Figure 5
<p>Erbil Plain Archaeological Survey (EPAS) in the Kurdistan Region of Northern Iraq, marked with black fill on grayscale map and yellow outline on the color map. The archaeological sites recorded by EPAS (2012–2018) are marked with black fill within the EPAS survey area.</p> "> Figure 6
<p>Using historic satellite imagery is necessary in many areas of the world where processes such as development have destroyed the archaeological record of past landscapes. (<b>a</b>) qanat shafts (yellow dots) abundant south of Erbil on the 1968 CORONA are (<b>b</b>) destroyed by modern development (basemap: ESRI, WorldImagery).</p> "> Figure 7
<p>During data pre-processing, we conducted exploratory data analysis (EDA) to verify that connected components (individual segments) are of reasonable size. Random distinguishing colors were assigned to annotated cases so that outliers and connected components (in the cases where shaft labels overlapped) can be quickly identified. We used this size insight in the post-processing phase to remove some noise. (Note that the left image is flipped vertically in the course of the data augmentation process).</p> "> Figure 8
<p>A schematic overview of the anisotropic 3D fully convolutional neural network for qanat feature segmentation on CORONA images.</p> "> Figure 9
<p>Approximate location of the 11 training patches.</p> "> Figure 10
<p>The highest model performance was on patch 11 (<b>a</b>) with 1178 labeled features, most with high annotation certainty resulting in the highest precision score (0.764) and highest recall score (0.850). (<b>b</b>) Annotated shafts (green), (<b>c</b>) predicted shafts (yellow), (<b>d</b>) evaluation: true positive (TP) (green), false positive (FP) (orange), false negative (FN) (red). Each patch is 2000 × 2000 pixels (approximately 5.5 × 5.5 km).</p> "> Figure 11
<p>The lowest model performance was on patch 4 (<b>a</b>) with 23 labeled features, most with low annotation certainty resulting in the lowest precision score (0.107) and very low recall score (0.478). (<b>b</b>) Annotated shafts (green), (<b>c</b>) predicted shafts (yellow), (<b>d</b>) evaluation: TP (green), FP (orange), FN (red). Annotated shafts are only in the center-right part of the image (<b>b</b>), while FP are spread across the lower half of the patch (<b>c</b>). Each patch is 2000 × 2000 pixels (approximately 5.5 × 5.5 km).</p> ">
Abstract
:1. Introduction
2. Case Study
3. Materials and Methods
3.1. Satellite Data
3.2. Deep Learning Workflow
3.3. Annotation
3.4. Convolutional Neural Networks
3.5. Network Architecture
3.6. Training
3.7. Postprocessing
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiseman, J.R.; El-Baz, F. Remote Sensing in Archaeology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Parcak, S.H. Satellite Remote Sensing for Archaeology; Routledge: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Lasaponara, R.; Masini, N. Satellite Remote Sensing:A New Tool for Archaeology; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2012; Volume 16. [Google Scholar]
- Leisz, S.J. An Overview of the Application of Remote Sensing to Archaeology During the Twentieth Century. In Mapping Archaeological Landscapes from Space; Douglas, C., Comer, D.C., Harrower, M.J., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Hritz, C. Tracing Settlement Patterns and Channel Systems in Southern Mesopotamia Using Remote Sensing. J. Field Archaeol. 2010, 35, 184–203. [Google Scholar] [CrossRef]
- Bewley, B.; Bradbury, J. The Endangered Archaeology in the Middle East and North Africa Project: Origins, Development and Future Directions. Bull. Counc. Br. Res. Levant 2017, 12, 15–20. [Google Scholar] [CrossRef]
- Hammer, E.; Seifried, R.; Franklin, K.; Lauricella, A. Remote Assessments of the Archaeological Heritage Situation in Afghanistan. J. Cult. Herit. 2018, 33, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.; Hammer, E. Untangling Palimpsest Landscapes in Conflict Zones: A “Remote Survey” in Spin Boldak, Southeast Afghanistan. J. Field Archaeol. 2018, 43, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Cowley, D.C. In with the New, out with the Old? Auto-Extraction for Remote Sensing Archaeology. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions; Bostater, C.R., Mertikas, S.P., Neyt, X., Nichol, C., Cowley, D., Bruyant, J.-P., Eds.; Proceedings of SPIE; International Society for Optics and Photonics: Edinburgh, UK, 2012; Volume 8532, p. 853206. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Pilø, L.H.; Johansen, H.M. Semi-Automatic Mapping of Cultural Heritage from Airbone Laser Scanning Data. Semata Cienc. Sociais Humanid. 2015, 27, 159–186. [Google Scholar]
- Lambers, K.; Verschoof-van der Vaart, W.; Bourgeois, Q. Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sens. 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using Deep Neural Networks on Airborne Laser Scanning Data: Results from a Case Study of Semi-automatic Mapping of Archaeological Topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Traviglia, A.; Cowley, D.; Lambers, K. Finding Common Ground: Human and Computer Vision in Archaeological Prospection. AARGnews 2016, 53, 11–24. [Google Scholar]
- Bennett, R.; Cowley, D.; De Laet, V. The Data Explosion: Tackling the Taboo of Automatic Feature Recognition in Airborne Survey Data. Antiquity 2014, 88, 896–905. [Google Scholar] [CrossRef]
- Schuetter, J.; Goel, P.; Mccorriston, J.; Park, J.; Senn, M.; Harrower, M. Autodetection of Ancient Arabian Tombs in High-Resolution Satellite Imagery. Int. J. Remote Sens. 2013, 34, 6611–6635. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Larsen, S.Ø.; Solberg, R. Automatic Detection of Circular Structures in High-Resolution Satellite Images of Agricultural Land. Archaeol. Prospect. 2009, 16, 1–15. [Google Scholar] [CrossRef]
- Zingman, I.; Saupe, D.; Penatti, O.A.B.; Lambers, K. Detection of Fragmented Rectangular Enclosures in Very High Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4580–4593. [Google Scholar] [CrossRef]
- Lambers, K.; Zingman, I. Towards Detection of Archaeological Objects in High-Resolution Remotely Sensed Images: The Silvretta Case Study. In Proceedings of the Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, UK, 26–29 March 2012; Verhagen, P., Earl, G., Chrysanthi, A., Murrieta-Flores, P., Papadopoulos, C., Romanowska, I., Wheatley, D., Eds.; University Press: Amsterdam, The Netherlands, 2014; pp. 781–791. [Google Scholar]
- De Laet, V.; Paulissen, E.; Waelkens, M. Methods for the Extraction of Archaeological Features from Very High-Resolution Ikonos-2 Remote Sensing Imagery, Hisar (Southwest Turkey). J. Archaeol. Sci. 2007, 34, 830–841. [Google Scholar] [CrossRef]
- Casana, J. Regional-Scale Archaeological Remote Sensing in the Age of Big Data. Adv. Archaeol. Pract. 2014, 2, 222–233. [Google Scholar] [CrossRef]
- Cowley, D.C.; Palmer, R. Interpreting Aerial Images—Developing Best Practice. In Space, Time and Place, Proceedings of the III International Conference on Remote Sensing in Archaeology, Tirucirapalli, India, 17–21 August 2009; Forte, M., Campana, S., Liuzza, C., Eds.; BAR International Series; Archaeopress: Oxford, UK, 2010; pp. 129–135. [Google Scholar]
- Verschoof-van der Vaart, W.B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Bajcsy, R.; Tavakoli, M. Computer Recognition of Roads from Satellite Pictures. IEEE Trans. Syst. Man Cybern. 1976, 6, 623–637. [Google Scholar] [CrossRef]
- Bajcsy, R.; Tavakoli, M. A Computer Recognition of Bridges, Islands, Rivers and Lakes from Satellite Pictures. In Proceedings of the Conference on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 16–18 October 1973. [Google Scholar]
- Vanderbrug, G.; Rosenfeld, A. Linear Feature Mapping. IEEE Trans. Syst. Man Cybern. 1978, 8, 768–774. [Google Scholar]
- Fischler, M.A.; Tenenbaum, J.M.; Wolf, H.C. Detection of Roads and Linear Structures in Low-Resolution Aerial Imagery Using a Multisource Knowledge Integration Technique. Comput. Graph. Image Process. 1981, 15, 201–223. [Google Scholar] [CrossRef]
- Bhattacharya, U.; Parui, S.K. An Improved Backpropagation Neural Network for Detection of Road-like Features in Satellite Imagery. Int. J. Remote Sens. 1997, 18, 3379–3394. [Google Scholar] [CrossRef]
- Mayer, H. Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings. Comput. Vis. Image Underst. 1999, 74, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Muller, J.-P. Development of a Graph-Based Approach for Building Detection. Image Vis. Comput. 1999, 17, 3–14. [Google Scholar] [CrossRef]
- Krishnamachari, S.; Chellappa, R. Delineating Buildings by Grouping Lines with MRFs. IEEE Trans. Image Process. 1996, 5, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.R.; Schramm, R. Rectangle Detection Based on a Windowed Hough Transform. In Proceedings of the 17th Brazilian Symposium on Computer Graphics and Image Processing, Curitiba, Brazil, 17–20 October 2004; pp. 113–120. [Google Scholar] [CrossRef]
- Sirmacek, B.; Unsalan, C. Urban-Area and Building Detection Using SIFT Keypoints and Graph Theory. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1156–1167. [Google Scholar] [CrossRef]
- Sirmacek, B.; Unsalan, C. A Probabilistic Framework to Detect Buildings in Aerial and Satellite Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.; Chellappa, R.; Rosenfeld, A. Optimal Edge-Based Shape Detection. IEEE Trans. Image Process. 2002, 11, 1209–1227. [Google Scholar] [CrossRef]
- Lambers, K.; Traviglia, A. Automated Detection in Remote Sensing Archaeology: A Reading List. AARGnews Newsl. Aer. Archaeol. Res. Group 2016, 53, 25–29. [Google Scholar]
- Lambers, K. Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology. In Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research; Siart, C., Forbriger, M., Bubenzer, O., Eds.; Springer: New York, NY, USA, 2018; pp. 109–122. [Google Scholar]
- De Laet, V.; Lambers, K. Archaeological Prospecting Using High-Resolution Digital Satellite Imagery: Recent Advances and Future Prospects; a Session Held at the Computer Applications and Quantitative Methods in Archaeology (CAA) Conference, Williamsburg, USA, March 2009. AARGnews Newsl. Aer. Archaeol. Res. Group 2009, 9–17. [Google Scholar]
- Trier, Ø.D.; Salberg, A.-B.; Pilø, L.H. Semi-Automatic Detection of Charcoal Kilns from Airborne Laser Scanning Data. In CAA2016: Oceans of Data, Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology, Oslo, Norway, 30 March–3 April 2016; Archaeopress Archaeology: Oxford, UK, 2016; pp. 219–231. [Google Scholar]
- Cerrillo-Cuenca, E. An Approach to the Automatic Surveying of Prehistoric Barrows through LiDAR. Quat. Int. 2017, 435, 135–145. [Google Scholar] [CrossRef]
- Schneider, A.; Takla, M.; Nicolay, A.; Raab, A.; Raab, T. A Template-Matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites: Automated Mapping of Charcoal Kiln Sites. Archaeol. Prospect. 2015, 22, 45–62. [Google Scholar] [CrossRef]
- Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.; Knudby, A. Automated Feature Extraction for Prospection and Analysis of Monumental Earthworks from Aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69, 64–74. [Google Scholar] [CrossRef]
- Menze, B.; Ur, J.; Sherratt, A. Detection of Ancient Settlement Mounds: Archaeological Survey Based on the SRTM Terrain Model. Photogramm. Eng. Remote Sens. 2006, 72, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, X.; Guo, H.; Liu, C.; Liu, J.; Li, L.; Du, X.; Qian, G. Automated Extraction of the Archaeological Tops of Qanat Shafts from VHR Imagery in Google Earth. Remote Sens. 2014, 6, 11956–11976. [Google Scholar] [CrossRef] [Green Version]
- Trier, Ø.D.; Pilø, L.H. Automatic Detection of Pit Structures in Airborne Laser Scanning Data. Archaeol. Prospect. 2012, 19, 103–121. [Google Scholar] [CrossRef]
- Toumazet, J.-P.; Vautier, F.; Roussel, E.; Dousteyssier, B. Automatic Detection of Complex Archaeological Grazing Structures Using Airborne Laser Scanning Data. J. Archaeol. Sci. Rep. 2017, 12, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Sevara, C.; Pregesbauer, M.; Doneus, M.; Verhoeven, G.; Trinks, I. Pixel versus Object—A Comparison of Strategies for the Semi-Automated Mapping of Archaeological Features Using Airborne Laser Scanning Data. J. Archaeol. Sci. Rep. 2016, 5, 485–498. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Salberg, A.-B.; Pilø, L.H. Semi-Automatic Mapping of Charcoal Kilns from Airborne Laser Scanning Data Using Deep Learning. In Oceans of Data, Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology, Tübingen, Germany, 19–23 March 2018; Matsumoto, M., Uleberg, E., Eds.; Archaeopress Archaeology: Oxford, UK, 2018; pp. 219–231. [Google Scholar]
- Menze, B.H.; Ur, J.A. Mapping Patterns of Long-Term Settlement in Northern Mesopotamia at a Large Scale. Proc. Natl. Acad. Sci. USA 2012, 109, E778–E787. [Google Scholar] [CrossRef] [Green Version]
- Caspari, G.; Balz, T.; Gang, L.; Wang, X.; Liao, M. Application of Hough Forests for the Detection of Grave Mounds in High-Resolution Satellite Imagery. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 906–909. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Hinton, G.E. Learning to Detect Roads in High-Resolution Aerial Images. In Computer Vision—ECCV 2010, Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6316, pp. 210–223. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25, Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [Green Version]
- Salberg, A.-B.; Trier, Ø.D.; Kampffmeyer, M. Large-Scale Mapping of Small Roads in Lidar Images Using Deep Convolutional Neural Networks. In Image Analysis, Proceedings of the 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway, 12–14 June 2017; Sharma, P., Bianchi, F.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10270, pp. 193–204. [Google Scholar] [CrossRef]
- Beaumont, P.; Bonine, M.E.; McLachlan, K.S.; McLachlan, A. Qanat, Kariz, and Khattara: Traditional Water Systems in the Middle East. and North. Africa; Middle East Centre, School of Oriental and African Studies, University of London: London, UK; Middle East & North African Studies Press: Wisbech, UK, 1989. [Google Scholar]
- English, P.W. The Origin and Spread of Qanats in the Old World. Proc. Am. Philos. Soc. 1968, 112, 170–181. [Google Scholar]
- Goblot, H. Les Qanats: Une Technique D’acquisition de L’eau; Industrie et artisanat; Mouton: Paris, France; New York, NY, USA, 1979. [Google Scholar]
- Boucharlat, R. Qanat and Falaj: Polycentric and Multi-Period Innovations Iran and the United Arab Emirates as Case Studies. In Underground Aqueducts Handbook; CRC Press: Boca Raton, FL, USA, 2016; pp. 279–304. [Google Scholar] [CrossRef]
- Magee, P. The Chronology and Environmental Background of Iron Age Settlement in Southeastern Iran and the Question of the Origin of the Qanat Irrigation System. Iran. Antiq. 2005, 40, 217–231. [Google Scholar] [CrossRef]
- Charloux, G.; Courbon, P.; Testa, O.; Thomas, M. Mapping an Ancient Qanat System in a Northern Arabian Urbanized Oasis. Water Hist. 2018, 10, 31–51. [Google Scholar] [CrossRef]
- Kermit, M.; Hamar, J.B.; Trier, Ø.D. Towards a National Infrastructure for Semi-Automatic Mapping of Cultural Heritage in Norway. In Oceans of Data, Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology, Tübingen, Germany, 19–23 March 2018; Matsumoto, M., Uleberg, E., Eds.; Archaeopress: Oxford, UK, 2018; pp. 159–172. [Google Scholar]
- Comer, D.C.; Harrower, M.J. Mapping Archaeological Landscapes from Space; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ur, J.A.; De Jong, L.; Giraud, J.; Osborne, J.F.; MacGinnis, J. Ancient Cities and Landscapes in the Kurdistan Region of Iraq: The Erbil Plain Archaeological Survey 2012 Season. Iraq 2013, 75, 89–117. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, D. Survey of Infiltration Karez in Northern Iraq: History and Current Status of Underground Aqueducts; A Report Prepared for UNESCO; UNESCO: Paris, France, 2009. [Google Scholar]
- Ruffner, K.C. Corona America’s First Satellite Program; History Staff, Center for the Study of Intelligence, Central Intelligence Agency: Washington, DC, USA, 1995. [Google Scholar]
- Ur, J.A. CORONA Satellite Imagery and Ancient Near Eastern Landscapes. In Mapping Archaeological Landscapes from Space; Comer, D.C., Harrower, M.J., Eds.; Springer: New York, NY, USA, 2013; pp. 21–32. [Google Scholar]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Jolesz, F.A., Ed.; Springer: New York, NY, USA, 2014; pp. 277–289. [Google Scholar] [CrossRef]
- Liao, H.; Mesfin, A.; Luo, J. Joint Vertebrae Identification and Localization in Spinal CT Images by Combining Short- and Long-Range Contextual Information. IEEE Trans. Med. Imaging 2018, 37, 1266–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaffino, P.; Pernelle, G.; Mastmeyer, A.; Mehrtash, A.; Zhang, H.; Kikinis, R.; Kapur, T.; Francesca Spadea, M. Fully Automatic Catheter Segmentation in MRI with 3D Convolutional Neural Networks: Application to MRI-Guided Gynecologic Brachytherapy. Phys. Med. Biol. 2019, 64, 165008. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network. In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS’14, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 2366–2374. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2018, arXiv:1703.06870. [Google Scholar]
- Iglovikov, V.; Shvets, A. TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On Calibration of Modern Neural Networks. arXiv 2017, arXiv:1706.04599. [Google Scholar]
Patch Number | CORONA Image ID | TP Count | FP Count | FN Count | Precision | Recall | F1 Score | Total Labeled Features |
---|---|---|---|---|---|---|---|---|
1 | DS1039-2088DA036-b | 54 | 51 | 29 | 0.514 | 0.651 | 0.574 | 83 |
2 | DS1039-2088DA036-b | 31 | 45 | 69 | 0.408 | 0.310 | 0.352 | 100 |
3 | DS1039-2088DA037-b | 201 | 261 | 43 | 0.435 | 0.824 | 0.569 | 244 |
4 | DS1039-2088DA037-b | 11 | 92 | 12 | 0.107 | 0.478 | 0.175 | 23 |
5 | DS1039-2088DA037-b | 115 | 174 | 94 | 0.398 | 0.550 | 0.462 | 209 |
6 | DS1039-2088DA037-b | 744 | 366 | 382 | 0.670 | 0.661 | 0.665 | 1126 |
7 | DS1039-2088DA037-b | 15 | 58 | 9 | 0.205 | 0.625 | 0.309 | 24 |
8 | DS1039-2088DA037-b | 39 | 41 | 33 | 0.488 | 0.542 | 0.513 | 72 |
9 | DS1039-2088DA039-b | 24 | 51 | 5 | 0.320 | 0.828 | 0.462 | 29 |
10 | DS1039-2088DA038-b | 628 | 310 | 136 | 0.670 | 0.822 | 0.738 | 764 |
11 | DS1039-2088DA038-b | 1001 | 309 | 177 | 0.764 | 0.850 | 0.805 | 1178 |
Predicted Qanat Shaft | Not Predicted Qanat Shaft | |
---|---|---|
True qanat shaft | 2863 (True Positive) | 989 (False Negative) |
Not qanat shaft | 1785 (False Positive) | NA 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soroush, M.; Mehrtash, A.; Khazraee, E.; Ur, J.A. Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sens. 2020, 12, 500. https://doi.org/10.3390/rs12030500
Soroush M, Mehrtash A, Khazraee E, Ur JA. Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sensing. 2020; 12(3):500. https://doi.org/10.3390/rs12030500
Chicago/Turabian StyleSoroush, Mehrnoush, Alireza Mehrtash, Emad Khazraee, and Jason A. Ur. 2020. "Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq" Remote Sensing 12, no. 3: 500. https://doi.org/10.3390/rs12030500
APA StyleSoroush, M., Mehrtash, A., Khazraee, E., & Ur, J. A. (2020). Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sensing, 12(3), 500. https://doi.org/10.3390/rs12030500