Current Trends of Polymer Materials’ Application in Agriculture
<p>Non-biodegradable/biodegradable polymers for agriculture.</p> "> Figure 2
<p>Types of polymeric agrochemicals.</p> "> Figure 3
<p>Selected types of controlled-release systems most common in agriculture.</p> "> Figure 4
<p>Schematic illustration of mechanism of release of active ingredients: (<b>a</b>) diffusion through pores, (<b>b</b>) active substance movement due to osmotic pressure, and (<b>c</b>) release due to polymer degradation.</p> "> Figure 5
<p>Scheme of controlled release of agrochemicals.</p> "> Figure 6
<p>Scheme of strategies towards the designing of polymer-based adsorbents for the removal of pesticides.</p> "> Figure 7
<p>Materials available for use as mulch films.</p> "> Figure 8
<p>General categorizing of SAHs utilizing multiple criteria.</p> "> Figure 9
<p>(<b>a</b>) Cellulose SAH: a schematic representation of the mechanism of SAH in agricultural use (<b>a1</b>), the growth of the plants without (left) and with SAH (right) (<b>a1′</b>), the state-of-the-art for designing various material structures with customized fertilizers releasing activity (<b>a2</b>), the semi-IPN SAH fertilizer release profile (<b>a3</b>), and the plant growth parameters (<b>a3′</b>,<b>a3″</b>). (<b>b</b>) Nanocellulose SAH: the cultivation of radish on the Petri dish without (<b>b1</b>) and with (<b>b1′</b>) SAH, and the growth of spinach in clay loam (<b>b2</b>,<b>b2′</b>) and sandy soil (<b>b3</b>,<b>b3′</b>). Reprinted with permission from ref. [<a href="#B406-sustainability-16-08439" class="html-bibr">406</a>] Copyright from Elsevier.</p> "> Figure 10
<p>Other applications of polymers in agriculture.</p> ">
Abstract
:1. Introduction
2. European Union Regulations on Polymer Materials from the Perspective of Environmental Protection and Agricultural Policy
2.1. The European Green Deal, a New EU Environmental and Climate Strategy
2.2. A European Strategy for Plastics in a Circular Economy
2.3. EU Soil Strategy 2030—The Benefits of Healthy Soils for People, Food, Nature, and Climate
3. Polymers and Composites for Agriculture
3.1. Non-Biodegradable Polymers in Agriculture
3.2. Biodegradable Polymers in Agriculture
Natural-Origin Polymers in Agriculture
4. Polymeric Agrochemicals and Related Biocides
- (1)
- Prolonging the action by providing continuous, smaller amounts of biocides at levels that ensure their function is fulfilled for a longer period of time.
- (2)
- Reducing the number of applications by achieving a long duration of action in a single treatment.
- (3)
- Cost reduction due to saving time and costs associated with multiple treatments.
- (4)
- Reducing environmental pollution by eliminating the need to distribute large amounts of biocides.
- (5)
- Reducing eco- and phytotoxicity by reducing the high mobility of biocides in the soil, thereby reducing their residues in the food chain.
- (6)
- Increasing the duration of action of non-persistent or less persistent biocides that are unstable in the environment, thereby protecting them from environmental degradation.
- (7)
- Enhancing the convenience of using and transporting agrochemicals [146].
4.1. Herbicides
4.2. Plant Growth Regulators
4.3. Insecticides
4.4. Molluscicides
4.5. Antimicrobials
4.6. Fertilizers
5. Controlled Released Systems in Agrochemistry
5.1. Formulation Technology of Agrochemicals
5.2. Mechanism of Release of Active Ingredients
5.3. Polymer-Controlled Release System
5.3.1. Chitosan
5.3.2. Cellulose
5.3.3. Alginate
5.3.4. Starch and Its Derivatives
5.3.5. Aliphatic Polyesters
6. Polymer-Based Materials for Agricultural Runoff Treatment
6.1. Natural Polymers as Adsorbents for Removal of Pesticides from Agricultural Runoff
6.2. (Semi)synthetic Polymers as Adsorbents for Removal of Pesticides from Agricultural Runoff
6.3. Polymer Membranes in Agriculture
Polymer Materials | Membrane Types | Application | References |
---|---|---|---|
carrageenan | membrane | adsorption and desorption of heavy metals | [323] |
cellulose/polydopamine | TFC membrane, membrane | MgSO2, adsorption and desorption of heavy metals (Zn(II), Co(II), Cd(II), and Ni(II)), dyes (methyl blue, methyl orange, Congo red) and oils (hexane, cyclohexane, petroleum), 4-nitrophenyl phosphate, pesticide (avermectin) | [343,345,348] |
chitosan | nanofibrous membrane, nanofiltration membrane | removal of heavy metals, dyes, pesticides, less cytotoxicity, mutagenicity, and soil sorption | [333] |
chitin | nanofibrous membrane, adsorption membranes | removal of organic hydrophobic organic contaminant | [333] |
polyacrylonitrile | polymer membranes | agricultural pollutants, Cr(VI) | [348] |
polyethersulfone | polymer membranes | adsorption of nonpolar solutes and hydrophobic molecules or bacteria | [331] |
polysulfone | nanocomposite membranes, nanofiltration membrane | fermentation waste, dyes | [349,350] |
polyvinyl alcohol | nanofiltration membrane | removal of dyes | [324,325] |
polyvinyl acetate | polymer membranes | removal of heavy metals, dyes, pesticides | [324,325] |
polyvinylidene fluoride | polymer membranes | water treatment | [347] |
polystyrene | polymer membranes | pesticides, validamycin | [324,325] |
7. Mulching Films
8. Superabsorbent Polymers—Hydrogels
8.1. Attempts to SAHs Classification
8.2. Shift to Natural SAHs
Cellulose-Based SAHs for Agriculture
9. Agrotextiles and Nonwovens in Agriculture
10. Other Application
10.1. Seed Coating
- Improved Seed Protection: seed coating with polymers provides seeds with better protection against plant diseases, pests, and fungi, making the seeds more resistant from the start of growth [435].
- The Controlled Release of Nutrients: seeds can be coated with polymers containing nutrients that are gradually released, supplying the necessary substances to the seeds at a critical moment of their growth [436].
- Resistance to Adverse Environmental Conditions: seeds coated are also more resistant to adverse environmental conditions, such as drought or excessive moisture, ensuring better and more uniform germination [437].
- Increased Seed Viability: coating with polymers can improve the viability of seeds stored for a long time, thanks to the reduction in moisture loss and protection against harmful external factors [438].
- Improved Sowing Precision: by standardizing the sizes of coated seeds, greater precision during sowing can be achieved, leading to a more uniform distribution of plants in the field [439].
- Improved Germination: coating can effectively improve germination in fields where environmental conditions are not optimal, giving plants a better start [440].
- Better Water Consumption Management: some polymer coatings can help maintain moisture around the seeds, which in turn reduces the demand for water and can contribute to water savings in agriculture [440].
- Dry Coating Process: This method involves mixing seeds with a dry, water-dispersible polymer powder. Water is then added to achieve a specific polymer-to-water ratio, creating a film upon drying. The temperature is maintained below the seed degradation point, creating a polymer film around each seed without causing any thermal damage [439].
- Fluid Bed Coating: Seeds are suspended and moved in an air stream in a fluid bed apparatus while the polymer coating is sprayed onto them. This method allows for uniform coating and quick drying due to continuous movement and airflow [444].
- Bowl Coating: Similar to candy production, seeds are placed in a rotating bowl, while polymers and other additives are added. Through the rotation of the bowl, seeds are uniformly coated, rotating and rolling over each other [445].
- Immersion Coating: Seeds are immersed in a polymer solution, allowing them to acquire a thin polymer layer. After removal, the polymer solution dries, forming a continuous film around the seeds [446].
- Electrostatic Coating: This uses an electric field to attract charged polymer particles to the seeds. This can lead to a very thin and uniform coating, as the electric field can attract the coating material to all sides of the seeds [447].
- Encapsulation: this is a more complex process in which seeds are completely surrounded by a polymer matrix, providing significant protection and can also be designed for the slow release of nutrients or other additives as the seedling grows [448].
- Polylactic acid (PLA)—popular for its thermoplastic properties and compostability [450].
- Starch—used for its naturalness and ability to absorb water [451].
- Cellulose—exhibits good mechanics and is fully biodegradable [449].
- Proteins, such as gelatin—allow for the creation of fully natural coatings [452].
10.2. Soil Erosion Control
- The Creation of a Protective Layer: Some polymers can be applied to the soil surface to create a protective layer that retains soil particles and increases resistance to erosive agents. This is particularly useful in areas with steep slopes or where the soil is exposed to the direct action of wind and water [463].
- Application as Hydrogels: polymer hydrogels can absorb and retain water, not only reducing the risk of erosion, but also supporting vegetation during droughts by providing additional water sources [464].
- Soil Granularity Enhancement: polymers can be used to aggregate fine soil particles into larger, more stable granular structures, further limiting the risk of erosion [465].
- The Construction of Barriers to Prevent Erosive Water Runoff: in areas with varied topographic conditions, polymers can be used to construct small barriers aimed at slowing down and controlling the directions of rainwater runoff [466].
- -
- The protection of embankments and slopes: applying polymers to stabilize road and railway embankments, as well as earth mounds, reducing the risk of landslides and erosion caused by rain and wind [467].
- -
- -
- Land Reclamation: enhancing soil conditions in degraded areas, such as waste dumps, mining sites, or decertified regions [470].
10.3. Tunnel and Greenhouse Protection
- -
- Sealing: One of the primary applications of polymers in tunnels is waterproofing. Tunnels, especially those constructed underground or underwater, are susceptible to leaks and water damage. Polymer-based waterproof membranes are applied to the interior surfaces of tunnels to prevent water ingress. These membranes are flexible, durable, and adhere well to concrete and other materials used in tunnel construction, ensuring waterproofness [491,492,493].
- -
- Structural Reinforcement: Polymers, combined with other materials such as fiberglass or carbon fiber, are used to create composite materials that can strengthen the structural integrity of tunnels. These composites can be applied to line tunnel walls or repair and reinforce areas that may have weakened over time. The high strength-to-weight ratio of polymer composites makes them an ideal choice for these applications [494,495,496,497].
- -
- Corrosion Protection: Tunnels, especially those that carry vehicles or are exposed to harsh conditions, can suffer from corrosion. Polymer coatings can be applied to metal components of the tunnel, such as reinforcement bars, to protect them against corrosion. These coatings act as a barrier between the metal and corrosive elements such as water and salts [498,499,500].
- -
- Covering Material: Polymers are commonly used as covering materials in greenhouses. Polyethylene (PE), polyvinyl chloride (PVC), and ethylene–vinyl acetate (EVA) are just a few of the polymers used to produce greenhouse films. These materials are chosen for their transparency, allowing the maximum penetration of sunlight, durability, and resistance to environmental factors such as UV radiation and temperature fluctuations. Furthermore, some polymer films have specific properties, such as light diffusion, for even plant growth or blocking certain wavelengths to combat pests [501,502,503,504].
- -
- Insulation: Polymers also play a key role in greenhouse insulation. Double-layer polymer films can trap air between them, providing an insulating effect that helps maintain the internal temperature of the greenhouse. This is particularly beneficial in cooler climates, where maintaining a constant temperature is critical for plant growth [501,505,506].
- -
- Disease and Pest Control: Some polymer films used in greenhouses can be treated with additives that help combat diseases and pests. For example, anti-drip films reduce the formation of condensation droplets, which can spread pathogens. There are also polymer films that can reflect UV light, deterring certain types of pests from entering the greenhouse [232,501,507,508].
10.4. Packaging
- Packaging Films: Polymers, such as polyethylene (PE) and polypropylene (PP), serve as fundamental materials for manufacturing packaging films. These films find widespread usage in packaging food items, industrial products, and various consumer goods, owing to their robustness, flexibility, and ability to shield products from moisture, light, and other external factors.
- Bottles and Containers: Polymers like polyethylene terephthalate (PET) and polycarbonate (PC) are integral to the production of bottles and containers for beverages, cosmetics, household chemicals, and more. Their lightweight nature, durability, and resistance to mechanical damage render them highly favored in the packaging industry.
- Bags and Sacks: Polyethylene low-density (LDPE) and high-density (HDPE) polymers are utilized for crafting bags and sacks for shopping, waste disposal, industrial packaging, and beyond. They offer cost-effectiveness, ease of production, and safeguard products against moisture and contaminants.
- Food Containers: Polymers are also employed in fabricating food containers such as trays, bowls, and single-use packaging. They ensure hygiene, ease of storage, and transportation while being adeptly engineered to preserve the freshness and quality of food products.
- Pharmaceutical Packaging: In the pharmaceutical realm, polymers feature prominently in the production of packaging for medications, capsules, patches, and syringes. Engineered to provide protection against moisture, light, and contaminants, they facilitate convenient and safe handling for patients [509,517,518,519,520].
10.5. Hoses and Irrigation Systems
10.6. Protective Nets
10.7. Artificial Substrates
10.8. Micro- and Nanoplastics
- -
- Delivering nutrients and plant protection agents—micro- and nanoplastics can be used as carriers for the controlled release of nutrients and plant protection agents. Thanks to their small sizes, these particles can more easily penetrate the soil and reach plant roots, allowing for a more efficient delivery of nutrients or pesticides directly to the plant, reducing losses and limiting negative environmental impacts.
- -
- Improving soil properties—microplastics can be added to soil to enhance its physical properties, such as water retention or structure. They can help maintain soil moisture, which is beneficial in dry regions and may reduce the need for frequent irrigation.
- -
- -
- Plant protection products and fertilizers: Micro- and nanoplastics are sometimes added to plant protection products and fertilizers as carriers of active substances or to improve product properties, such as increasing stability or the controlled release of ingredients. During their application in fields, some of these plastics can be directly introduced into the soil.
- -
- -
- Loss during production: micro- and nanoplastics can be released into the environment during the production of agrochemicals due to leaks, breaches, or improper waste disposal.
- -
- -
- Plastic covers and mulch: Various types of plastics, such as for creating polytunnels, windbreaks, or as mulch on cultivated fields, are widely used in agriculture. These materials degrade over time, leading to the formation of micro- and nanoplastics that can be carried by the wind and water.
- -
- Irrigation systems: plastic components of irrigation systems, such as pipes and drip emitters, can erode over time, releasing microplastics into the soil and water systems.
- -
- Washing off from cultivated fields: micro- and nanoplastics can be washed off from cultivated fields by rain or during irrigation, making their way into surface and groundwater, and from there, they can enter the wider environment, including seas and oceans.
- -
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Acronyms
PE | polyethylene | SCCA | starch–chitosan–calcium alginate |
PP | polypropylene | SCA | starch alginate–calcium |
PVC | polyvinyl chloride | CCA | chitosan–calcium alginate |
EU | European Union | CaA | calcium alginate |
EC | European Commission | SA-L | alginate–lignin |
EGD | European Green Deal | YMP | yerba mate powder |
REACH | Registration, Evaluation, Authorisation, and Restriction of Chemicals | NPK-HA/Alg | hydroxyapatite/alginate |
PVA | poly(vinyl alcohol) | HA/Alg | hydroxyapatite/alginate |
PBAT | poly(butylene adipate-co-terephthalate) | SNCs | starch nanocrystals |
PBSA | poly(butylene succinate-co-adipate) | TMX | thiamethoxam |
PLA | poly(lactic acid) | PEG | polyethylene glycol |
PCL | poly ε-caprolactone | ||
PBS | polybutylene succinate | GLY | glycerol |
PHA | polyhydroxy alkanoates | CF-2 | composition in weight percent of the SA/PVA/GLY 55:28:17 |
PHB | poly 3-hydroxybutyrate | CMS/XG | carboxymethyl starch/xanthan gum |
PET | polyethylene terephthalate | PDXE MG | biodegradable dextrin-based microgels |
PS | polystyrene | PDX MG | unfunctionalized microgels |
PTFE | polytetrafluoroethylene | PHV | polyhydroxyvalerates |
PU | polyurethanes | PLGA—PEG—PLGA | poly(l-lactide-co-glycolide)—oly(ethylene glycol)—poly(l-lactide-co-glycolide) |
PC | polycarbonates | HV | 3-hydroxyvalerat |
PVDF | polyvinylidene fluoride | LC | λ-cyhalothrin |
PCTFE | polychlorotrifluoroethylene | BCRNF | biochar-based controlled-release nitrogen fertilizer |
UV | ultraviolet light | GG | guar gum |
GMOs | genetically modified organisms | HNT | halloysite nanotubes |
PHBV | poly 3-hydroxybutyrate-co-3-hydroxyvalerate | MMt | montmorillonite clay |
CS | chitosan | CS-g-PCL | poly(ε-caprolactone)-chitosan |
SRF | slow-release fertilizers | 2,4,6-TCP | 2,4,6-trichlorophenol |
CRF | controlled-release fertilizers | CS/ZA | chitosan/zeolite-A nanocomposite |
WHO | World Health Organization | AC | acephate |
NPK | fertilizers with nitrogen, phosphorus, and potassium | OM | omthosate |
DAP | diammonium phosphate | MP | methyl parathion |
SSP | single superphosphate | CS/Gel | chitosan/gelatin |
CRS | controlled-released system | (MMT)-CuO | biopolymer-modified montmorillonite |
CR | controlled release | PEI | polyethyleneimine |
SCCS | controlled-release suspension | MSNPs/PANI | meso-sorbent silica/polyaniline |
CAP | chitosan-encapsulated chlorantraniliprole | β-CD | β-cyclodextrin |
CTS | CAP/Chitosan | CD | cyclodextrin |
DEACMS | 7-diethylaminocoumarin-4-yl)methyl succinate | MIP | imprinted polymer |
CMCS | carboxymethyl chitosan | CBL | carbaryl |
2,4-D | 2,4-dichlorophenoxyacetic acid | CBF | carbofuran |
NPs | nanoparticles | MTMC | metolcarb |
Alg | alginate | MWCNTs | multi-walled carbon nanotubes |
Cn | cenosphere | OPPs | organophosphorus pesticides |
IMI | imidacloprid | poly-NIPAM | poly-N-isopropylacrylamide |
GST | glutaraldehyde-saturated toluene | NIPAM | N-isopropylacrylamide |
CP/DP | between the continuous phase and the dispersed phase | PM | Pendimethalin |
CsGC | chitosan–clay composite | MBA | N,N’-methylenebisacrylamide |
AC | activated carbon | ||
CA | cellulose acetate | CYM | cymoxanil |
CMC | carboxymethyl cellulose | IMD | imidacloprid |
HEC | hydroxyethyl cellulose | PAN | polyacrylonitrile |
EC | ethyl cellulose | PES | polyethersulfone |
NFC | nanofibrillated cellulose | PSf | polysulfone |
IPDI | isophorone diisocyanate | PVAc | polyvinyl acetate |
TFC | thin film composites | ||
CS/CMC | chitosan/carboxymethylcellulose copolymer | MNPs | micro- and nanoplastics |
AVM | avermectin | PAC | pro-oxidant additives |
DMDAAC | diallyldimethylammonium chloride | Oxo-PP | oxo-degradable polypropylene |
CMC-g-PDMDAAC | carboxymethylcellulose/diallyldimethylammonium chloride | BDM | biodegradable mulch |
P-Zein | phosphorylated zein | TXG | tamarind xyloglucan |
RS | rosin | BA | benzoic anhydride |
BP | bispiribac | TPS | thermoplastic starch |
ECH | epichlorohydrin | PPC | polypropylene carbonate |
CNF | cellulose nanofibers | SAH | superabsorbent hydrogel |
CMC-g-PAM | carboxymethylcellulose-g-polyacrylamide copolymer | WAP | water-absorbing polymers |
DIN | dinotefuran | WAC | water-absorbing capacity |
SA | sodium alginate | SHC | superabsorbent hydrogel composite |
GEL | gelatin | SHNC | superabsorbent hydrogel nanocomposite |
PVP | polyvinylpyrrolidone | IPN | semi-interpenetrating polymer |
PK | polydopamine modified kaolin | APP | patterns of pure fertilizer |
ASO | amino-silicone oil | SAP | superabsorbent polyme |
DND | detonation nanodiamond | PAM | polyacrylamide |
PNIPAm | poly(N-isopropylacrylamide) | EVA | ethylene–vinyl acetate |
IPKCPD-ASO | imidacloprid/polydopamine-modified kaolin/amino-silicone oil/detonation nanodiamond/poly(N-isopropylacrylamide) | LDPE | low-density polyethylene |
HDPE | high-density polyethylene |
References
- Assessment of Agricultural Plastics and Their Sustainability: A Call for Action; FAO: Rome, Italy, 2021; ISBN 978-92-5-135402-5.
- Gao, H.; Liu, Q.; Yan, C.; Mancl, K.; Gong, D.; He, J.; Mei, X. Macro-and/or Microplastics as an Emerging Threat Effect Crop Growth and Soil Health. Resour. Conserv. Recycl. 2022, 186, 106549. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wagner, M. A Sustainable Future for Plastics Considering Material Safety and Preserved Value. Nat. Rev. Mater. 2022, 7, 71–73. [Google Scholar] [CrossRef]
- Penczek, S.; Pretula, J.; Lewiński, P. Polimery z odnawialnych surowców, polimery biodegradowalne. Polimery 2013, 58, 835–846. [Google Scholar] [CrossRef]
- Malinowski, R. Biotworzywa jako nowe materiały przyjazne środowisku naturalnemu. Inż. Ochr. Śr. 2015, 18, 215–231. [Google Scholar]
- Consolidated Version of the Treaty on the Functioning of the European Union, Article 11 and 191–193. 2012, 326. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A12012E%2FTXT (accessed on 21 June 2024).
- Transforming Our World: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/2030agenda (accessed on 25 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe. COM(2020) 98 Final. Brussels, 11.3.2020. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN (accessed on 23 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU. Policy Framework on Biobased, Biodegradable and Compostable Plastics. COM(2022) 682 Final. Brussels, 30.11.2022. 2022. Available online: https://Eur-Lex.Europa.Eu/Legal-Content/EN/ALL/?uri=CELEX%3A52022DC0682 (accessed on 23 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions EU. The European Green Deal. COM(2019) 640 Final. Brussels, 11.12.2019. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 23 June 2024).
- European Parliament. European Parliament Resolution of 10 February 2021 on the New Circular Economy Action Plan (2020/2077(INI). 2021. Available online: https://Www.Europarl.Europa.Eu/Doceo/Document/TA-9-2021-0040_EN.Html (accessed on 23 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A European Strategy for Plastics in a Circular Economy. COM(2018) 28 Final. Brussels, 16.1.2018. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A28%3AFIN (accessed on 24 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Pathway to a Healthy Planet for All EU Action Plan: “Towards Zero Pollution for Air, Water and Soil”. COM(2021) 400 Final. Brussels, 12.5.2021. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0400 (accessed on 24 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate. COM/2021/699 Final. Brussels, 17.11.2021. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021DC0699 (accessed on 24 June 2024).
- Scientific Advice Mechanism to the European Institutions. Biodegradability of Plastics in the Open Environment. Available online: https://Scientificadvice.Eu/Advice/Biodegradability-of-Plastics-in-the-Open-Environment/ (accessed on 24 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. COM(2020) 381 Final. Brussels, 20.5.2020. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 24 June 2024).
- European Union. Proposal for a Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending (EU) 2021/2115. COM(2022) 305 Final. Brussels, 22.6.2022. 2022. Available online: https://Eur-Lex.Europa.Eu/Legal-Content/EN/TXT/?uri=CELEX%3A52022PC0305 (accessed on 24 June 2024).
- European Council. Council of the EU. Circular Economy. Decoupling Economic Growth from Resource Use and Shifting to Circular Systems in Production and Consumption Is Key to Achieving EU Climate Neutrality by 2050. Available online: https://www.consilium.europa.eu/en/policies/circular-economy/ (accessed on 25 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Commission Work Programme 2018 An Agenda for a More United, Stronger and More Democratic Europe. COM(2017) 650 Final. Strasbourg, 24.10.2017. 2017. Available online: https://Eur-Lex.Europa.Eu/Legal-Content/EN/TXT/?uri=COM%3A2017%3A650%3AFIN (accessed on 24 June 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop—An EU Action Plan for the Circular Economy. COM(2015) 614 Final. Brussels, 2.12.2015. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614 (accessed on 24 June 2024).
- European Union. European Parliament and Council Directive (94/62/EC) of 20 December 1994 on Packaging and Packaging Waste. 1994, 365. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31994L0062 (accessed on 24 June 2024).
- European Union. European Parliament and Council Directive (2008/56/EC) of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). 2008, 164. Available online: https://Eur-Lex.Europa.Eu/Legal-Content/EN/ALL/?uri=CELEX%3A32008L0056 (accessed on 24 June 2024).
- European Union. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. 2021. Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj (accessed on 24 June 2024).
- Montanarella, L.; Panagos, P. The Relevance of Sustainable Soil Management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe. Available online: https://www.eea.europa.eu/soer/2020/copy_of_intro (accessed on 25 June 2024).
- State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities|Policy Support and Governance| Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1363310/ (accessed on 25 June 2024).
- European Union. Directive 2004/35/CE of the European Parliament and of the Council of 21 April 2004 on Environmental Liability with Regard to the Prevention and Remedying of Environmental Damage. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004L0035 (accessed on 25 June 2024).
- European Union. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. 1986, 181. Available online: https://Eur-Lex.Europa.Eu/Legal-Content/EN/TXT/?uri=celex%3A31986L0278 (accessed on 24 June 2024).
- European Union. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0075 (accessed on 25 June 2024).
- European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 2008, 312. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32008L0098 (accessed on 24 June 2024).
- European Union. Regulation (EU) 2023/839 of the European Parliament and of the Council of 19 April 2023 Amending Regulation (EU) 2018/841 as Regards the Scope, Simplifying the Reporting and Compliance Rules, and Setting out the Targets of the Member States for 2030, and Regulation (EU) 2018/1999 as Regards Improvement in Monitoring, Reporting, Tracking of Progress and Review (LULUCEA). Available online: https://eur-lex.europa.eu/eli/reg/2023/839/oj (accessed on 25 June 2024).
- European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20221217 (accessed on 25 June 2024).
- European Agency for Safety and Health at Work. REACH—Regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals. Available online: https://osha.europa.eu/en/themes/dangerous-substances/reach (accessed on 25 June 2024).
- European Commission. Chemicals Strategy. The EU’s Chemicals Strategy for Sustainability towards a Toxic-Free Environment. Available online: https://environment.ec.europa.eu/strategy/chemicals-strategy_en (accessed on 25 June 2024).
- Smreczak, B.; Ukalska-Jaruga, A.; Ciepiel, J. Zrównoważone Użytkowanie Gleb Rolniczych w Polityce Unii Europejskiej do 2050 R; Instytut Uprawy Nawożenia i Gleboznawstwa: Puławy, Poland, 2021; pp. 9–26. ISBN 978-83-7562-366-6. [Google Scholar]
- Köninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In Defence of Soil Biodiversity: Towards an Inclusive Protection in the European Union. Biol. Conserv. 2022, 268, 109475. [Google Scholar] [CrossRef]
- Hofmann, T.; Ghoshal, S.; Tufenkji, N.; Adamowski, J.F.; Bayen, S.; Chen, Q.; Demokritou, P.; Flury, M.; Hüffer, T.; Ivleva, N.P.; et al. Plastics Can Be Used More Sustainably in Agriculture. Commun. Earth Environ. 2023, 4, 332. [Google Scholar] [CrossRef]
- Puoci, F.; Iemma, F.; Spizzirri, U.G.; Cirillo, G.; Curcio, M.; Picci, N. Polymer in Agriculture: A Review. Am. J. Agric. Biol. Sci. 2008, 3, 299–314. [Google Scholar] [CrossRef]
- Szewczyk, P.; Lichnowski, W. Present and Prospective Use of Polyolefins and Poly(Vinyl Chloride) in Polish Agriculture. Polimery 1984, 29, 385–386. [Google Scholar] [CrossRef]
- Yang, N.; Feng, L.; Li, K.; Feng, C.; Sun, Z.; Liu, J. The Degradable Time Evaluation of Degradable Polymer Film in Agriculture Based on Polyethylene Film Experiments. e-Polymers 2021, 21, 821–829. [Google Scholar] [CrossRef]
- Wang, T.; Yu, C.; Chu, Q.; Wang, F.; Lan, T.; Wang, J. Adsorption Behavior and Mechanism of Five Pesticides on Microplastics from Agricultural Polyethylene Films. Chemosphere 2020, 244, 125491. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, Z.; Tchuenbou-Magaia, F.; Kowalczuk, M.; Adamus, G.; Manning, G.; Parati, M.; Radecka, I.; Khan, H. Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers 2022, 14, 5062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, S.; Xia, Z.; Wu, M.; Bai, J.; Lu, H. Effects of Biodegradable Film and Polyethylene Film Residues on Soil Moisture and Maize Productivity in Dryland. Agriculture 2023, 13, 332. [Google Scholar] [CrossRef]
- Ghatge, S.; Yang, Y.; Ahn, J.-H.; Hur, H.-G. Biodegradation of Polyethylene: A Brief Review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Ashori, A.; Kazemi Tabrizi, A. Characterization and Biodegradability of Polypropylene Composites Using Agricultural Residues and Waste Fish. Compos. Part B Eng. 2014, 56, 279–283. [Google Scholar] [CrossRef]
- Nor Arman, N.S.; Chen, R.S.; Ahmad, S. Review of State-of-the-Art Studies on the Water Absorption Capacity of Agricultural Fiber-Reinforced Polymer Composites for Sustainable Construction. Constr. Build. Mater. 2021, 302, 124174. [Google Scholar] [CrossRef]
- Marasovic, P. Overview and Perspective of Nonwoven Agrotextile. Text. Leather Rev. 2019, 2, 32–45. [Google Scholar] [CrossRef]
- Azam, F.; Ahmad, S. Fibers for Agro Textiles. In Fibers for Technical Textiles; Ahmad, S., Rasheed, A., Nawab, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 151–168. ISBN 978-3-030-49224-3. [Google Scholar]
- Dorugade, V.; Taye, M.; Qureshi, S.A.; Agazie, T.; Seyoum, B.; Abebe, B.; Komarabathina, S. Agrotextiles: Important Characteristics of Fibres and Their Applications—A Review. J. Nat. Fibers 2023, 20, 2211290. [Google Scholar] [CrossRef]
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental Impacts of Polypropylene (PP) Production and Prospects of Its Recycling in the GCC Region. Mater. Today Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Nerín, C. Compounds Responsible for Off-Odors in Several Samples Composed by Polypropylene, Polyethylene, Paper and Cardboard Used as Food Packaging Materials. Food Chem. 2020, 309, 125792. [Google Scholar] [CrossRef] [PubMed]
- Application of Plastics in Livestock Production: An Overview The Indian Journal of Animal Sciences. Available online: https://epubs.icar.org.in/ejournal/index.php/IJAnS/article/view/114140 (accessed on 19 May 2024).
- Borreani, G.; Tabacco, E. 9—Plastics in Animal Production. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M.D., Ed.; Plastics Design Library; Elsevier: Amsterdam, The Netherlands, 2017; pp. 145–185. ISBN 978-0-08-102170-5. [Google Scholar]
- Zegardło, B.; Maraveas, C.; Świeczka, K.; Bombik, A. Recycling Waste Agricultural Nets as Cement Composites. Materials 2024, 17, 1828. [Google Scholar] [CrossRef]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and Quantification of Macro- and Microplastics on an Agricultural Farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wen, D.; Luo, Y.; Barceló, D. Microplastics in Agricultural Soils on the Coastal Plain of Hangzhou Bay, East China: Multiple Sources Other than Plastic Mulching Film. J. Hazard. Mater. 2020, 388, 121814. [Google Scholar] [CrossRef] [PubMed]
- Abdulmouti, H.; Bourezg, A.; Ranjan, R. Exploring the Applicability of Agrivoltaic System in UAE and Its Merits. In Proceedings of the 2023 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 20–23 February 2023; pp. 1–6. [Google Scholar]
- Agriculture|Free Full-Text|Advancement in Agriculture Approaches with Agrivoltaics Natural Cooling in Large Scale Solar PV Farms. Available online: https://www.mdpi.com/2077-0472/13/4/854 (accessed on 19 May 2024).
- Scarascia-Mugnozza, G.; Sica, C.; Russo, G. Plastic materials in european agriculture: Actual use and perspectives. J. Agric. Eng. 2011, 42, 15–28. [Google Scholar] [CrossRef]
- Brown, R.P. Polymers in Agriculture and Horticulture; iSmithers Rapra Publishing: Akron, OH, USA, 2004; ISBN 978-1-85957-460-7. [Google Scholar]
- Liu, Y.; Zhou, C.; Li, F.; Liu, H.; Yang, J. Stocks and Flows of Polyvinyl Chloride (PVC) in China: 1980–2050. Resour. Conserv. Recycl. 2020, 154, 104584. [Google Scholar] [CrossRef]
- Strength and Durability of Roofing PVC Membranes in the Conditions of Climate Impacts. Available online: https://cyberleninka.ru/article/n/strength-and-durability-of-roofing-pvc-membranes-in-the-conditions-of-climate-impacts (accessed on 20 May 2024).
- Ambroziak, A.; Kłosowski, P. Mechanical Properties for Preliminary Design of Structures Made from PVC Coated Fabric. Constr. Build. Mater. 2014, 50, 74–81. [Google Scholar] [CrossRef]
- Garrido, M.; António, D.; Lopes, J.G.; Correia, J.R. Reparability of Aged PVC Waterproofing Membranes: Effect of Joining Method. J. Build. Eng. 2021, 33, 101569. [Google Scholar] [CrossRef]
- Chen, L.; Pelton, R.E.O.; Smith, T.M. Comparative Life Cycle Assessment of Fossil and Bio-Based Polyethylene Terephthalate (PET) Bottles. J. Clean. Prod. 2016, 137, 667–676. [Google Scholar] [CrossRef]
- Simon, K.; Shanbhag, R.; Slocum, A.H. Reducing Evaporative Water Losses from Irrigation Ponds through the Reuse of Polyethylene Terephthalate Bottles. J. Irrig. Drain. Eng. 2016, 142, 06015005. [Google Scholar] [CrossRef]
- The Future of Polyethylene Terephthalate Bottles: Challenges and Sustainability—Tsironi—2022—Packaging Technology and Science—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/pts.2632?casa_token=n0P0gO4HRR8AAAAA%3AZ_inWv0OuvoSkhv1nGigxAPTiJpsDWFKeBoJ6B095EyfNT0EcPPmcJgMxdIt6lvxEaPuHCveRtAFaUtZ (accessed on 20 May 2024).
- Abhijith, R.; Ashok, A.; Rejeesh, C.R. Sustainable Packaging Applications from Mycelium to Substitute Polystyrene: A Review. Mater. Today Proc. 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Alzubi, E.; Kassem, A.; Noche, B. A Comparative Life Cycle Assessment: Polystyrene or Polypropylene Packaging Crates to Reduce Citrus Loss and Waste in Transportation? Sustainability 2022, 14, 12644. [Google Scholar] [CrossRef]
- Kratky, B.A. Growing Lettuce in Non-Aerated, Non-Circulated Hydroponic Systems. J. Veg. Sci. 2005, 11, 35–42. [Google Scholar] [CrossRef]
- Kacjan Maršić, N.; Mikulič-Petkovšek, M.; Hudina, M.; Veberič, R.; Slatnar, A. Leafy Asian Vegetables Cultivated on a Floating Hydroponic System and a Substrate Culture, during the Autumn Period in Greenhouse. Acta Hortic. 2021, 1320, 413–420. [Google Scholar] [CrossRef]
- Protection against Frosts by Antifreeze, Amino Acids, and Vermicompost in Phenological Stages of the Bean. Available online: https://www.scielo.org.mx/scielo.php?pid=S2007-09342023000900303&script=sci_arttext&tlng=en (accessed on 20 May 2024).
- Krasovitski, B.; Kimmel, E.; Rozenfeld, M.; Amir, I. Aqueous Foams for Frost Protection of Plants: Stability and Protective Properties. J. Agric. Eng. Res. 1999, 72, 177–185. [Google Scholar] [CrossRef]
- Dhanumalayan, E.; Joshi, G.M. Performance Properties and Applications of Polytetrafluoroethylene (PTFE)—A Review. Adv. Compos. Hybrid Mater. 2018, 1, 247–268. [Google Scholar] [CrossRef]
- Wang, R.; Xu, G.; He, Y. Structure and Properties of Polytetrafluoroethylene (PTFE) Fibers. e-Polymers 2017, 17, 215–220. [Google Scholar] [CrossRef]
- Puts, G.J.; Crouse, P.; Ameduri, B.M. Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. Chem. Rev. 2019, 119, 1763–1805. [Google Scholar] [CrossRef]
- Yin, M.H.; Zhang, Y.C.; Zhou, R.M.; Zhai, Z.Y.; Wang, J.L.; Cui, Y.H.; Li, D.S. Friction Mechanism and Application of PTFE Coating in Finger Seals. Tribol. Trans. 2022, 65, 260–269. [Google Scholar] [CrossRef]
- Jeong, D.-Y.; Cho, J.-H. Nanoceramic and Polytetrafluoroethylene Polymer Composites for Mechanical Seal Application at Low Temperature. Bull. Korean Chem. Soc. 2013, 34, 1345–1348. [Google Scholar] [CrossRef]
- Rujnić Havstad, M.; Tucman, I.; Katančić, Z.; Pilipović, A. Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers 2023, 15, 3638. [Google Scholar] [CrossRef] [PubMed]
- Salapare, H.S., III; Guittard, F.; Noblin, X.; Givenchy, E.T.D.; Celestini, F.; Ramos, H.J. Stability of the Hydrophilic and Superhydrophobic Properties of Oxygen Plasma-Treated Poly(Tetrafluoroethylene) (PTFE) Surfaces. J. Colloid Interface Sci. 2013, 396, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Moe, M.K.; Schmidbauer, N.; Hansen, G.H.; Herzke, D. Emissions from Incineration of Fluoropolymer Materials; Norwegian Institute for Air Research: Kjeller, Norway, 2009. [Google Scholar]
- Akinay, A.E.; Tinçer, T. γ-Irradiated Poly(Tetrafluoroethylene) Particle-Filled Low-Density Polyethylene. II. UV Stability of LDPE in the Presence of 2°-PTFE Powder and Silane Coupling Agents. J. Appl. Polym. Sci. 1999, 74, 877–888. [Google Scholar] [CrossRef]
- Jia, W.; Karapetrova, A.; Zhang, M.; Xu, L.; Li, K.; Huang, M.; Wang, J.; Huang, Y. Automated Identification and Quantification of Invisible Microplastics in Agricultural Soils. Sci. Total Environ. 2022, 844, 156853. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.B.; Seung, S.I. Physical Properties and Doping Characteristics of Polyaniline-Nylon 6 Composite Films. Polymer 1998, 39, 485–489. [Google Scholar] [CrossRef]
- Water|Free Full-Text|Normal and Tangential Drag Forces of Nylon Nets, Clean and with Fouling, in Fish Farming. An Experimental Study. Available online: https://www.mdpi.com/2073-4441/12/8/2238 (accessed on 20 May 2024).
- Walsh, T. 34—The Plastic Piping Industry in North America. In Applied Plastics Engineering Handbook; Kutz, M., Ed.; Plastics Design Library; William Andrew Publishing: Oxford, UK, 2011; pp. 585–602. ISBN 978-1-4377-3514-7. [Google Scholar]
- Shirzadi, M.H.; Arvin, M.J.; Abootalebi, A.; Hasandokht, M.R. Effect of Nylon Mulch and Some Plant Growth Regulators on Water Use Efficiency and Some Quantitative Traits in Onion (Allium cepa Cv.) under Water Deficit Stress. Cogent Food Agric. 2020, 6, 1779562. [Google Scholar] [CrossRef]
- Babatunde, K.M.; Shittu, K.A.; Adekanmbi, O.A.; Asimi, M.A. The Influence of Colour and Thickness of Nylon Mulch on Soil Temperature, Moisture, Percent Germination and Some Growth Parameters of Cucumber (Cucumis sativus L.) Seedlings. Land Sci. 2020, 2, p13. [Google Scholar] [CrossRef]
- Calibration of Soil Moisture Sensing with Subsurface Heated Fiber Optics Using Numerical Simulation—Benítez-Buelga—2016—Water Resources Research—Wiley Online Library. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR017897 (accessed on 20 May 2024).
- Huh, D.S.; Cooper, S.L. Dynamic Mechanical Properties of Polyurethane Block Polymers. Polym. Eng. Sci. 1971, 11, 369–376. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Zahoor, A.F. Bio-Based Polyurethane: An Efficient and Environment Friendly Coating Systems: A Review. Prog. Org. Coat. 2016, 91, 25–32. [Google Scholar] [CrossRef]
- Ghosh, A.; Chowdhury, S.R.; Dutta, R.; Babu, R.; Rumbo, C.; Dasgupta, N.; Mukherjee, P.; Das, N.C.; Ranjan, S. Polyurethane Chemistry for the Agricultural Applications—Recent Advancement and Future Prospects. In Polyurethanes: Preparation, Properties, and Applications Volume 3: Emerging Applications; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2023; Volume 1454, pp. 1–36. [Google Scholar]
- Kaur, R.; Sharma, R.; Chahal, G.K. Synthesis of Lignin-Based Hydrogels and Their Applications in Agriculture: A Review. Chem. Pap. 2021, 75, 4465–4478. [Google Scholar] [CrossRef]
- Tanasić, J.; Erceg, T.; Tanasić, L.; Baloš, S.; Klisurić, O.; Ristić, I. The Influence of Reaction Conditions on Structural Properties and Swelling Kinetics of Polyurethane Hydrogels Intended for Agricultural Purposes. React. Funct. Polym. 2021, 169, 105085. [Google Scholar] [CrossRef]
- Kwon, J.K.; Khoshimkhujaev, B.; Lee, J.H.; Yu, I.H.; Park, K.S.; Choi, H.G. Growth and Yield of Tomato and Cucumber Plants in Polycarbonate or Glass Greenhouses. Hortic. Sci. Technol. 2017, 35, 79–87. [Google Scholar] [CrossRef]
- Development of Procedure for Determination of Characteristics of Heated Polycarbonate Greenhouses. Available online: https://cyberleninka.ru/article/n/development-of-procedure-for-determination-of-characteristics-of-heated-polycarbonate-greenhouses (accessed on 20 May 2024).
- Gohil, M.; Joshi, G. Chapter 18—Perspective of Polycarbonate Composites and Blends Properties, Applications, and Future Development: A Review. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Altalhi, T., Inamuddin, Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 393–424. ISBN 978-0-323-99643-3. [Google Scholar]
- Itoh, M.; Iwasaki, Y. Control of Ralstonia Solanacearum in Tomato Hydroponics Using a Polyvinylidene Fluoride Ultrafiltration Membrane. Acta Hortic. 2018, 1227, 299–304. [Google Scholar] [CrossRef]
- Huang, F.Y.C.; Arning, A. Performance Comparison between Polyvinylidene Fluoride and Polytetrafluoroethylene Hollow Fiber Membranes for Direct Contact Membrane Distillation. Membranes 2019, 9, 52. [Google Scholar] [CrossRef]
- Ghahramani, P.; Eldyasti, A.; Leung, S.N. Open-Cell Polyvinylidene Fluoride Foams as Carriers to Promote Biofilm Growth for Biological Wastewater Treatment. Polym. Eng. Sci. 2021, 61, 2161–2171. [Google Scholar] [CrossRef]
- Engliman, N.S.; Jahim, J.M.; Abdul, P.M.; Ling, T.P.; Tan, J.P.; Ong, C.B. Effectiveness of Fouling Mechanism for Bacterial Immobilization in Polyvinylidene Fluoride Membranes for Biohydrogen Fermentation. Food Bioprod. Process. 2020, 120, 48–57. [Google Scholar] [CrossRef]
- Saha, N.C.; Ghosh, A.K.; Garg, M.; Sadhu, S.D. Flexible Packaging Material—Manufacturing Processes and Its Application. In Food Packaging: Materials, Techniques and Environmental Issues; Saha, N.C., Ghosh, A.K., Garg, M., Sadhu, S.D., Eds.; Springer Nature: Singapore, 2022; pp. 47–87. ISBN 9789811642333. [Google Scholar]
- Gardiner, J. Fluoropolymers: Origin, Production, and Industrial and Commercial Applications. Aust. J. Chem. 2014, 68, 13–22. [Google Scholar] [CrossRef]
- Verma, K.; Sarkar, C.; Adam, S. Biodegradable Polymers for Agriculture. In Biodegradable Polymers and Their Emerging Applications; Saha, S., Sarkar, C., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2023; pp. 191–212. [Google Scholar] [CrossRef]
- Agarwal, S. Biodegradable Polymers: Present Opportunities and Challenges in Providing a Microplastic-Free Environment. Macromol. Chem. Phys. 2020, 221, 2000017. [Google Scholar] [CrossRef]
- Valdés García, A.; Ramos Santonja, M.; Sanahuja, A.B.; Selva, M.D.C.G. Characterization and Degradation Characteristics of Poly(ε-Caprolactone)-Based Composites Reinforced with Almond Skin Residues. Polym. Degrad. Stab. 2014, 108, 269–279. [Google Scholar] [CrossRef]
- Yamamoto-Tamura, K.; Hiradate, S.; Watanabe, T.; Koitabashi, M.; Sameshima-Yamashita, Y.; Yarimizu, T.; Kitamoto, H. Contribution of Soil Esterase to Biodegradation of Aliphatic Polyester Agricultural Mulch Film in Cultivated Soils. AMB Express 2015, 5, 10. [Google Scholar] [CrossRef]
- Li, N.; Sun, C.; Jiang, J.; Wang, A.; Wang, C.; Shen, Y.; Huang, B.; An, C.; Cui, B.; Zhao, X.; et al. Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. J. Agric. Food Chem. 2021, 69, 12579–12597. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, I.; Adamus, G.; Jiang, G.; Radecka, I.; Baldwin, T.C.; Khan, H.R.; Johnston, B.; Pennetta, V.; Hill, D.; Bretz, I.; et al. Biodegradable PBAT/PLA Blend with Bioactive MCPA-PHBV Conjugate Suppresses Weed Growth. Biomacromolecules 2018, 19, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Jandas, P.J.; Mohanty, S.; Nayak, S.K. Sustainability, Compostability, and Specific Microbial Activity on Agricultural Mulch Films Prepared from Poly(Lactic Acid). Ind. Eng. Chem. Res. 2013, 52, 17714–17724. [Google Scholar] [CrossRef]
- Sun, Y.; Mi, W.; Su, L.; Shan, Y.; Wu, L. Controlled-Release Fertilizer Enhances Rice Grain Yield and N Recovery Efficiency in Continuous Non-Flooding Plastic Film Mulching Cultivation System. Field Crop. Res. 2019, 231, 122–129. [Google Scholar] [CrossRef]
- Merlini, C.; Lacotte, V.; Castro, V.O.; Perli, G.; Da Silva, P.; Livi, S. Novel Aphid-Repellent Fiber Mats Based on Poly(Lactic Acid)-Containing Ionic Liquids. ACS Omega 2024, 9, 5406–5417. [Google Scholar] [CrossRef]
- Gowda, V.; Shivakumar, S. Agrowaste-Based Polyhydroxyalkanoate (PHA) Production Using Hydrolytic Potential of Bacillus Thuringiensis IAM 12077. Braz. Arch. Biol. Technol. 2014, 57, 55–61. [Google Scholar] [CrossRef]
- Kalia, V.C. (Ed.) Biotechnological Applications of Polyhydroxyalkanoates; Springer: Singapore, 2019; ISBN 9789811337581. [Google Scholar]
- Malinconico, M. (Ed.) Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-54128-9. [Google Scholar]
- Matei, E.; Predescu, A.M.; Râpă, M.; Țurcanu, A.A.; Mateș, I.; Constantin, N.; Predescu, C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials 2022, 12, 1707. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Purohit, M.P.; Ghosh, D.; Patnaik, S. Advances in Controlled Release Pesticide Formulations: Prospects to Safer Integrated Pest Management and Sustainable Agriculture. J. Hazard. Mater. 2020, 385, 121525. [Google Scholar] [CrossRef]
- Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, N.; Yu, J.; Jin, S.; Shen, G.; Chen, H.; Yuzhen, N.; Xiang, D.; Qian, K. Research Progress of a Pesticide Polymer-Controlled Release System Based on Polysaccharides. Polymers 2023, 15, 2810. [Google Scholar] [CrossRef]
- Smola-Dmochowska, A.; Lewicka, K.; Macyk, A.; Rychter, P.; Pamuła, E.; Dobrzyński, P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int. J. Mol. Sci. 2023, 24, 7473. [Google Scholar] [CrossRef] [PubMed]
- Rychter, P. Chitosan/Glyphosate Formulation as a Potential, Environmental Friendly Herbicide with Prolonged Activity. J. Environ. Sci. Health Part B 2019, 54, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Engineered Chitosan Based Nanomaterials: Bioactivities, Mechanisms and Perspectives in Plant Protection and Growth. Int. J. Biol. Macromol. 2018, 113, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan Nanoparticle Based Delivery Systems for Sustainable Agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.-Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.-H.; Strano, M.S. Chloroplast-Selective Gene Delivery and Expression in Planta Using Chitosan-Complexed Single-Walled Carbon Nanotube Carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Stoffolano, J.; Wong, R.; Lo, T.; Ford, B.; Geden, C.J. Effect of Chitosan on Adult Longevity When Fed, in No-Choice Experiments, to Musca domestica L., Tabanus nigrovittatus Macquart, and Phormia regina (Meigen) Adults and Its Consumption in Adult Musca domestica L. Pest Manag. Sci. 2020, 76, 4293–4300. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Muthukumar, S. Chitosan Guar Nanoparticle Preparation and Its in Vitro Antimicrobial Activity towards Phytopathogens of Rice. Int. J. Biol. Macromol. 2020, 153, 297–304. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of Chitosan on Plant Responses with Special Reference to Abiotic Stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef]
- Neri-Badang, M.C.; Chakraborty, S. Carbohydrate Polymers as Controlled Release Devices for Pesticides. J. Carbohydr. Chem. 2019, 38, 67–85. [Google Scholar] [CrossRef]
- Gamage, A.; Liyanapathiranage, A.; Manamperi, A.; Gunathilake, C.; Mani, S.; Merah, O.; Madhujith, T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability 2022, 14, 6085. [Google Scholar] [CrossRef]
- Zarski, A.; Bajer, K.; Kapuśniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. [Google Scholar] [CrossRef] [PubMed]
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and Physical Modifications of Starch for Renewable Polymeric Materials. Mater. Today Sustain. 2020, 7–8, 100028. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K.A. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals 2023, 2, 296–336. [Google Scholar] [CrossRef]
- Zanino, A.; Pizzetti, F.; Masi, M.; Rossi, F. Polymers as Controlled Delivery Systems in Agriculture: The Case of Atrazine and Other Pesticides. Eur. Polym. J. 2024, 203, 112665. [Google Scholar] [CrossRef]
- Adel, A.M.; El-Gendy, A.A.; Diab, M.A.; Abou-Zeid, R.E.; El-Zawawy, W.K.; Dufresne, A. Microfibrillated Cellulose from Agricultural Residues. Part I: Papermaking Application. Ind. Crop. Prod. 2016, 93, 161–174. [Google Scholar] [CrossRef]
- Zainul Armir, N.A.; Zulkifli, A.; Gunaseelan, S.; Palanivelu, S.D.; Salleh, K.M.; Che Othman, M.H.; Zakaria, S. Regenerated Cellulose Products for Agricultural and Their Potential: A Review. Polymers 2021, 13, 3586. [Google Scholar] [CrossRef]
- Saberi Riseh, R. Advancing Agriculture through Bioresource Technology: The Role of Cellulose-Based Biodegradable Mulches. Int. J. Biol. Macromol. 2024, 255, 128006. [Google Scholar] [CrossRef]
- Urbina, L.; Corcuera, M.Á.; Gabilondo, N.; Eceiza, A.; Retegi, A. A Review of Bacterial Cellulose: Sustainable Production from Agricultural Waste and Applications in Various Fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. Int. J. Polym. Sci. 2013, 2013, 435073. [Google Scholar] [CrossRef]
- Firmanda, A.; Fahma, F.; Syamsu, K.; Suryanegara, L.; Wood, K. Controlled Slow-release Fertilizer Based on Cellulose Composite and Its Impact. Biofuels Bioprod. Biorefining 2022, 16, 1909–1930. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Abdahim, M.M.; Abou im, M.N.H. Lignocellulosic Biomass for the Preparation of Cellulose-based Hydrogel and Its. J. Appl. Polym. Sci. 2015, 132, 42652. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.; Bajpai, J.; Bajpai, A. Controlled Pesticide Release from Biodegradable Polymers. Open Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F. Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Adv. Sci. Eng. Med. 2014, 6, 373–387. [Google Scholar] [CrossRef]
- Kalia, A.; Sharma, S.P.; Kaur, H.; Kaur, H. Chapter 5—Novel Nanocomposite-Based Controlled-Release Fertilizer and Pesticide Formulations: Prospects and Challenges. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems; Abd-Elsalam, K.A., Ed.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–134. ISBN 978-0-12-821354-4. [Google Scholar]
- Akelah, A. Polymers in the Controlled Release of Agrochemicals. In Functionalized Polymeric Materials in Agriculture and the Food Industry; Akelah, A., Ed.; Springer: Boston, MA, USA, 2013; pp. 133–192. ISBN 978-1-4614-7061-8. [Google Scholar]
- Khatib, I.; Rychter, P.; Falfushynska, H. Pesticide Pollution: Detrimental Outcomes and Possible Mechanisms of Fish Exposure to Common Organophosphates and Triazines. J. Xenobiotics 2022, 12, 236–265. [Google Scholar] [CrossRef]
- Falfushynska, H.; Khatib, I.; Kasianchuk, N.; Lushchak, O.; Horyn, O.; Sokolova, I.M. Toxic Effects and Mechanisms of Common Pesticides (Roundup and Chlorpyrifos) and Their Mixtures in a Zebrafish Model (Danio rerio). Sci. Total Environ. 2022, 833, 155236. [Google Scholar] [CrossRef]
- Khatib, I.; Horyn, O.; Bodnar, O.; Lushchak, O.; Rychter, P.; Falfushynska, H. Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals 2023, 13, 1029. [Google Scholar] [CrossRef]
- Cherwoo, L.; Gupta, I.; Bhatia, R.; Setia, H. Improving Agricultural Practices: Application of Polymers in Agriculture. Energy Ecol. Environ. 2023, 9, 25–41. [Google Scholar] [CrossRef]
- Zheng, L.; Deng, L.; Zhong, Y.; Wang, Y.; Guo, W.; Fan, X. Molluscicides against the Snail-Intermediate Host of Schistosoma: A Review. Parasitol. Res. 2021, 120, 3355–3393. [Google Scholar] [CrossRef]
- Jothimani, B.; Venkatachalapathy, B.; Karthikeyan, N.S.; Ravichandran, C. A Review on Versatile Applications of Degradable Polymers. In Green Biopolymers and Their Nanocomposites; Gnanasekaran, D., Ed.; Springer: Singapore, 2019; pp. 403–422. ISBN 9789811380631. [Google Scholar]
- Yamamoto, C.F.; Pereira, E.I.; Mattoso, L.H.C.; Matsunaka, T.; Ribeiro, C. Slow Release Fertilizers Based on Urea/Urea–Formaldehyde Polymer Nanocomposites. Chem. Eng. J. 2016, 287, 390–397. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The New Perspective in Precision Agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Rathore, P. Review Article Nanotechnology Pros and Cons to Agriculture: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 43–55. [Google Scholar] [CrossRef]
- Guha, T.; Gopal, G.; Kundu, R.; Mukherjee, A. Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 3691–3702. [Google Scholar] [CrossRef]
- El-Ghamry, A.; Mosa, A.A.; Alshaal, T.; El-Ramady, H. Nanofertilizers vs. Biofertilizers: New Insights. Environ. Biodivers. Soil Secur. 2018, 2, 51–72. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Mani, P.K.; Mondal, S. Agri-Nanotechniques for Plant Availability of Nutrients. In Plant Nanotechnology: Principles and Practices; Kole, C., Kumar, D.S., Khodakovskaya, M.V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 263–303. ISBN 978-3-319-42154-4. [Google Scholar]
- Singh, G.; Ramadass, K.; Sooriyakumar, P.; Hettithanthri, O.; Vithange, M.; Bolan, N.; Tavakkoli, E.; Van Zwieten, L.; Vinu, A. Nanoporous Materials for Pesticide Formulation and Delivery in the Agricultural Sector. J. Control. Release 2022, 343, 187–206. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Malina, G.; Kmiecik, E.; Wątor, K. Pesticides from the EU First and Second Watch Lists in the Water Environment. CLEAN–Soil Air Water 2019, 47, 1800376. [Google Scholar] [CrossRef]
- Mihou, A.P.; Michaelakis, A.; Krokos, F.D.; Mazomenos, B.E.; Couladouros, E.A. Prolonged Slow Release of (Z)-11-Hexadecenyl Acetate Employing Polyurea Microcapsules. J. Appl. Entomol. 2007, 131, 128–133. [Google Scholar] [CrossRef]
- Lee, C.-S.; Hwang, H.S. Starch-Based Hydrogels as a Drug Delivery System in Biomedical Applications. Gels 2023, 9, 951. [Google Scholar] [CrossRef]
- Raval, A.; Parikh, J.; Engineer, C. Mechanism of Controlled Release Kinetics from Medical Devices. Braz. J. Chem. Eng. 2010, 27, 211–225. [Google Scholar] [CrossRef]
- Deka, R.; Boruah, P.; Ali, A.A.; Dutta, R.; Gogoi, P.; Sarmah, J.K. Smart Hydrogel with Rapid Self-Healing and Controlled Release Attributes for Biomedical Applications. Smart Mater. Struct. 2022, 31, 095039. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yeo, Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 2015, 125, 75–84. [Google Scholar] [CrossRef]
- Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.P.S. Controlled Release Drug Delivery Systems. Pharma Innov. 2012, 1, 24–32. [Google Scholar]
- Heng, P.W.S. Controlled Release Drug Delivery Systems. Pharm. Dev. Technol. 2018, 23, 833. [Google Scholar] [CrossRef]
- Yenilmez, E.; Başaran, E.; Yazan, Y. Release Characteristics of Vitamin E Incorporated Chitosan Microspheres and in Vitro–in Vivo Evaluation for Topical Application. Carbohydr. Polym. 2011, 84, 807–811. [Google Scholar] [CrossRef]
- Odrobińska, J.; Neugebauer, D. Retinol derivative as bioinitiator in the synthesis of hydroxyl-functionalized polymethacrylates for micellar delivery systems. Express Polym. Lett. 2019, 13, 806. [Google Scholar] [CrossRef]
- Boostani, S.; Jafari, S.M. A Comprehensive Review on the Controlled Release of Encapsulated Food Ingredients; Fundamental Concepts to Design and Applications. Trends Food Sci. Technol. 2021, 109, 303–321. [Google Scholar] [CrossRef]
- Zaitoon, A.; Lim, L.-T. Triggered and Controlled Release of Bioactives in Food Applications. Adv. Food Nutr. Res. 2022, 100, 49–107. [Google Scholar] [CrossRef]
- Morales-Medina, R.; Drusch, S.; Acevedo, F.; Castro-Alvarez, A.; Benie, A.; Poncelet, D.; Dragosavac, M.M.; Tesoriero, M.V.D.; Löwenstein, P.; Yonaha, V.; et al. Structure, Controlled Release Mechanisms and Health Benefits of Pectins as an Encapsulation Material for Bioactive Food Components. Food Funct. 2022, 13, 10870–10881. [Google Scholar] [CrossRef]
- Cota-Arriola, O.; Onofre Cortez-Rocha, M.; Burgos-Hernández, A.; Marina Ezquerra-Brauer, J.; Plascencia-Jatomea, M. Controlled Release Matrices and Micro/Nanoparticles of Chitosan with Antimicrobial Potential: Development of New Strategies for Microbial Control in Agriculture. J. Sci. Food Agric. 2013, 93, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Memarizadeh, N.; Ghadamyari, M.; Adeli, M.; Talebi, K. Preparation, Characterization and Efficiency of Nanoencapsulated Imidacloprid under Laboratory Conditions. Ecotoxicol. Environ. Saf. 2014, 107, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, M.P.; Poehlmann, M.; Fery, A. Microcapsule Mechanics: From Stability to Function. Adv. Colloid Interface Sci. 2014, 207, 65–80. [Google Scholar] [CrossRef]
- Ngwuluka, N.C.; Abu-Thabit, N.Y.; Uwaezuoke, O.J.; Erebor, J.O.; Ilomuanya, M.O.; Mohamed, R.R.; Soliman, S.M.A.; Elella, M.H.A.; Ebrahim, N.A.A.; Ngwuluka, N.C.; et al. Natural Polymers in Micro- and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part I: Lipids and Fabrication Techniques. In Nano- and Microencapsulation—Techniques and Applications; IntechOpen: London, UK, 2020; ISBN 978-1-83968-349-7. [Google Scholar]
- Bremer-Hoffmann, S.; Halamoda-Kenzaoui, B.; Borgos, S.E. Identification of Regulatory Needs for Nanomedicines. J. Interdiscip. Nanomedicine 2018, 3, 4–15. [Google Scholar] [CrossRef]
- Slattery, M.; Harper, B.; Harper, S. Pesticide Encapsulation at the Nanoscale Drives Changes to the Hydrophobic Partitioning and Toxicity of an Active Ingredient. Nanomaterials 2019, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in Agriculture: Opportunities, Toxicological Implications, and Occupational Risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zhao, F.-J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Karny, A.; Zinger, A.; Kajal, A.; Shainsky-Roitman, J.; Schroeder, A. Therapeutic Nanoparticles Penetrate Leaves and Deliver Nutrients to Agricultural Crops. Sci. Rep. 2018, 8, 7589. [Google Scholar] [CrossRef]
- Fischer, J.; Beckers, S.J.; Yiamsawas, D.; Thines, E.; Landfester, K.; Wurm, F.R. Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Adv. Sci. 2019, 6, 1802315. [Google Scholar] [CrossRef]
- Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A Promising Technique for Controlled Drug Delivery. Res. Pharm. Sci. 2010, 5, 65–77. [Google Scholar]
- Sanopoulou, M.; Papadokostaki, K.G. Controlled Drug Release Systems: Mechanisms and Kinetics. In Biomedical Membranes and (Bio)Artificial Organs; World Scientific: Singapore, 2018; pp. 1–33. ISBN 978-981-322-175-8. [Google Scholar]
- Nollet, L.M.L.; Rathore, H.S. (Eds.) Handbook of Pesticides: Methods of Pesticide Residues Analysis; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-14116-4. [Google Scholar]
- Machado, T.O.; Grabow, J.; Sayer, C.; de Araújo, P.H.H.; Ehrenhard, M.L.; Wurm, F.R. Biopolymer-Based Nanocarriers for Sustained Release of Agrochemicals: A Review on Materials and Social Science Perspectives for a Sustainable Future of Agri- and Horticulture. Adv. Colloid Interface Sci. 2022, 303, 102645. [Google Scholar] [CrossRef] [PubMed]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing Pesticide Use While Preserving Crop Productivity and Profitability on Arable Farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, Z.F.; El-Sawy, S.; El-Bassiony, A.E.-M.; Jun, H.; Shedeed, S.; Okasha, A.M.; Bayoumi, Y.; El-Ramady, H.; Prokisch, J. Smart Fertilizers vs. Nano-Fertilizers: A Pictorial Overview. Environ. Biodivers. Soil Secur. 2022, 6, 191–204. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.K.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for Agricultural and Environmental Sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef]
- Milani, P.; França, D.; Balieiro, A.G.; Faez, R. Polymers and Its Applications in Agriculture. Polímeros 2017, 27, 256–266. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Tan, K.X.; Loo, S.C.J. Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. iScience 2020, 23, 101055. [Google Scholar] [CrossRef]
- Afrin, S.; Karim, Z. 1—Polysaccharides. In Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering; Bhawani, S.A., Karim, Z., Jawaid, M., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2021; pp. 1–14. ISBN 978-0-12-821230-1. [Google Scholar]
- Vinzant, K.; Rashid, M.; Khodakovskaya, M.V. Advanced Applications of Sustainable and Biological Nano-Polymers in Agricultural Production. Front. Plant Sci. 2023, 13, 1081165. [Google Scholar] [CrossRef]
- Agarwal, M.; Nagar, D.P.; Srivastava, N.; Agarwal, M. Chitosan Nanoparticles Based Drug Delivery: An Update. Int. J. Adv. Multidiscip. Res. 2015, 2, 1–13. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef]
- Campos, E.V.R.; De Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as Safer Release Systems for Agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Dudhani, A.R.; Kosaraju, S.L. Bioadhesive Chitosan Nanoparticles: Preparation and Characterization. Carbohydr. Polym. 2010, 81, 243–251. [Google Scholar] [CrossRef]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; de Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/Tripolyphosphate Nanoparticles Loaded with Paraquat Herbicide: An Environmentally Safer Alternative for Weed Control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Zinc Encapsulated Chitosan Nanoparticle to Promote Maize Crop Yield. Int. J. Biol. Macromol. 2019, 127, 126–135. [Google Scholar] [CrossRef]
- Saharan, V.; Kumaraswamy, R.V.; Choudhary, R.C.; Kumari, S.; Pal, A.; Raliya, R.; Biswas, P. Cu-Chitosan Nanoparticle Mediated Sustainable Approach To Enhance Seedling Growth in Maize by Mobilizing Reserved Food. J. Agric. Food Chem. 2016, 64, 6148–6155. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Li, G.-B.; Zhang, B.-H.; Lü, H.; Luo, L.; Kong, X.-P. Evaluation of a Spinosad Controlled-Release Formulation Based on Chitosan Carrier: Insecticidal Activity against Plutella xylostella (L.) Larvae and Dissipation Behavior in Soil. ACS Omega 2021, 6, 30762–30768. [Google Scholar] [CrossRef]
- Wang, M.; Kong, X.-P.; Li, H.; Ge, J.-C.; Han, X.-Z.; Liu, J.-H.; Yu, S.-L.; Li, W.; Li, D.-L.; Wang, J. Coprecipitation-Based Synchronous Chlorantraniliprole Encapsulation with Chitosan: Carrier–Pesticide Interactions and Release Behavior. Pest Manag. Sci. 2023, 79, 3757–3766. [Google Scholar] [CrossRef]
- Xu, Q.; Long, S.; Zhu, G.; Li, J.; Zhou, Y. Preparation and Pesticide Release Performance of Carboxymethyl Chitosan Film. J. Phys. Conf. Ser. 2024, 2679, 012027. [Google Scholar] [CrossRef]
- Feng, S.; Wang, J.; Zhang, L.; Chen, Q.; Yue, W.; Ke, N.; Xie, H. Coumarin-Containing Light-Responsive Carboxymethyl Chitosan Micelles as Nanocarriers for Controlled Release of Pesticide. Polymers 2020, 12, 2268. [Google Scholar] [CrossRef]
- Maan, S.; Jatrana, A.; Kumar, V.; Sindhu, M.; Mondal, S. Controlled Release of Chlorpyrifos through Crosslinked Chitosan–Guargum Biopolymer Based Nano-Formulation. Sustain. Chem. Pharm. 2024, 37, 101378. [Google Scholar] [CrossRef]
- Singh, A.; Kar, A.K.; Singh, D.; Verma, R.; Shraogi, N.; Zehra, A.; Gautam, K.; Anbumani, S.; Ghosh, D.; Patnaik, S. pH-Responsive Eco-Friendly Chitosan Modified Cenosphere/Alginate Composite Hydrogel Beads as Carrier for Controlled Release of Imidacloprid towards Sustainable Pest Control. Chem. Eng. J. 2022, 427, 131215. [Google Scholar] [CrossRef]
- Mujtaba, M.; Khawar, K.M.; Camara, M.C.; Carvalho, L.B.; Fraceto, L.F.; Morsi, R.E.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Ullah, H.; et al. Chitosan-Based Delivery Systems for Plants: A Brief Overview of Recent Advances and Future Directions. Int. J. Biol. Macromol. 2020, 154, 683–697. [Google Scholar] [CrossRef]
- dos Santos Pereira, T.; França, D.; Souza, C.F.; Faez, R. Chitosan-Sugarcane Bagasse Microspheres as Fertilizer Delivery: On/Off Water Availability System. J. Polym. Environ. 2020, 28, 2977–2987. [Google Scholar] [CrossRef]
- Suratman, A.; Purwaningsih, D.R.; Kunarti, E.S.; Kuncaka, A. Controlled Release Fertilizer Encapsulated by Glutaraldehyde-Crosslinked Chitosan Using Freeze-Drying Method. Indones. J. Chem. 2020, 20, 1414. [Google Scholar] [CrossRef]
- Siri, J.G.S.; Fernando, C.A.N.; De Silva, S.N.T. A Green Control Release NPK Fertilizer Based on Micro/Nanoparticle of Chitosan Impregnated Activated Coir Fiber. Nanosci. Nanotechnol.-Asia 2021, 11, 54–64. [Google Scholar] [CrossRef]
- Jayanudin, J.; Lestari, R.S.D.; Kustiningsih, I.; Irawanto, D.; Bahaudin, R.; Wardana, R.L.A.; Muhammad, F.; Suyuti, M.; Luthfi, M. Preparation of Chitosan Microspheres as Carrier Material to Controlled Release of Urea Fertilizer. S. Afr. J. Chem. Eng. 2021, 38, 70–77. [Google Scholar] [CrossRef]
- Eddarai, E.M.; El Mouzahim, M.; Ragaoui, B.; El Addaoui, S.; Boussen, R.; Warad, I.; Bellaouchou, A.; Zarrouk, A. Chitosan/Kaolinite Clay Biocomposite as a Sustainable and Environmentally Eco-Friendly Coating Material for Slow Release NPK Fertilizers: Effect on Soil Nutrients and Tomato Growth. Int. J. Biol. Macromol. 2023, 242, 125019. [Google Scholar] [CrossRef]
- Ma, J.; Faqir, Y.; Chai, Y.; Wu, S.; Luo, T.; Liao, S.; Kaleri, A.R.; Tan, C.; Qing, Y.; Kalhoro, M.T.; et al. Chitosan Microspheres-Based Controlled Release Nitrogen Fertilizers Enhance the Growth, Antioxidant, and Metabolite Contents of Chinese Cabbage. Sci. Hortic. 2023, 308, 111542. [Google Scholar] [CrossRef]
- Quirós, J.; Gonzalo, S.; Jalvo, B.; Boltes, K.; Perdigón-Melón, J.A.; Rosal, R. Electrospun Cellulose Acetate Composites Containing Supported Metal Nanoparticles for Antifungal Membranes. Sci. Total Environ. 2016, 563–564, 912–920. [Google Scholar] [CrossRef]
- Pang, L.; Gao, Z.; Feng, H.; Wang, S.; Wang, Q. Cellulose Based Materials for Controlled Release Formulations of Agrochemicals: A Review of Modifications and Applications. J. Control. Release 2019, 316, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y.; Sun, R.; Wang, X. Self-Assembly and β-Carotene Loading Capacity of Hydroxyethyl Cellulose-Graft-Linoleic Acid Nanomicelles. Carbohydr. Polym. 2016, 145, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Gold, G.T.; Varma, D.M.; Taub, P.J.; Nicoll, S.B. Development of Crosslinked Methylcellulose Hydrogels for Soft Tissue Augmentation Using an Ammonium Persulfate-Ascorbic Acid Redox System. Carbohydr. Polym. 2015, 134, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhen, D.; Liao, S.; Zhu, D.; Yang, X. Controlled-Release Urea Encapsulated by Ethyl Cellulose/Butyl Acrylate/Vinyl Acetate Hybrid Latex. Pol. J. Chem. Technol. 2018, 20, 108–112. [Google Scholar] [CrossRef]
- Mahfoudhi, N. Poly (Acrylic Acid-Co-Acrylamide)/Cellulose Nanofibrils Nanocomposite Hydrogels: Effects of CNFs Content on the Hydrogel Properties. Cellulose 2016, 23, 3691–3701. [Google Scholar] [CrossRef]
- Yusnaidar, Y.; Wirjosentono, B.; Thamrin, T.; Eddiyanto, E. Synthesized Superabsorbent Based on Cellulose from Rice Straw for Controlled-Release of Urea. Orient. J. Chem. 2017, 33, 1905–1913. [Google Scholar] [CrossRef]
- Pang, L.; Gao, Z.; Feng, H.; Wang, S.; Ma, R.; Zhou, B.; Hu, S.; Jin, K. Synthesis of a Fluorescent Ethyl Cellulose Membrane with Application in Monitoring 1-Naphthylacetic Acid from Controlled Release Formula. Carbohydr. Polym. 2017, 176, 160–166. [Google Scholar] [CrossRef]
- Pang, L.; Gao, Z.; Zhang, S.; Li, Y.; Hu, S.; Ren, X. Preparation and Anti-UV Property of Modified Cellulose Membranes for Biopesticides Controlled Release. Ind. Crop. Prod. 2016, 89, 176–181. [Google Scholar] [CrossRef]
- Senna, A.M.; Botaro, V.R. Biodegradable Hydrogel Derived from Cellulose Acetate and EDTA as a Reduction Substrate of Leaching NPK Compound Fertilizer and Water Retention in Soil. J. Control. Release Off. J. Control. Release Soc. 2017, 260, 194–201. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Xu, X.; Su, Y.; Yue, Q.; Gao, B. Characterization, Swelling and Slow-Release Properties of a New Controlled Release Fertilizer Based on Wheat Straw Cellulose Hydrogel. J. Taiwan Inst. Chem. Eng. 2016, 60, 564–572. [Google Scholar] [CrossRef]
- Essawy, H.A.; Ghazy, M.B.M.; El-Hai, F.A.; Mohamed, M.F. Superabsorbent Hydrogels via Graft Polymerization of Acrylic Acid from Chitosan-Cellulose Hybrid and Their Potential in Controlled Release of Soil Nutrients. Int. J. Biol. Macromol. 2016, 89, 144–151. [Google Scholar] [CrossRef]
- Işiklan, N. Controlled Release of Insecticide Carbaryl from Sodium Alginate, Sodium Alginate/Gelatin, and Sodium Alginate/Sodium Carboxymethyl Cellulose Blend Beads Crosslinked with Glutaraldehyde. J. Appl. Polym. Sci. 2006, 99, 1310–1319. [Google Scholar] [CrossRef]
- Mphateng, T.N.; Mapossa, A.B.; Wesley-Smith, J.; Ramjee, S.; Focke, W.W. Cellulose Acetate/Organoclay Nanocomposites as Controlled Release Matrices for Pest Control Applications. Cellulose 2022, 29, 3915–3933. [Google Scholar] [CrossRef]
- Xiao, D.; Liang, W.; Xie, Z.; Cheng, J.; Du, Y.; Zhao, J. A Temperature-Responsive Release Cellulose-Based Microcapsule Loaded with Chlorpyrifos for Sustainable Pest Control. J. Hazard. Mater. 2021, 403, 123654. [Google Scholar] [CrossRef] [PubMed]
- Saberi Riseh, R.; Gholizadeh Vazvani, M.; Hassanisaadi, M.; Skorik, Y.A. Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers 2023, 15, 440. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhao, Y.; Lu, Z.; Xing, R.; Yao, X.; Jin, Z.; Wang, Y.; Yu, F. Citral-Loaded Chitosan/Carboxymethyl Cellulose Copolymer Hydrogel Microspheres with Improved Antimicrobial Effects for Plant Protection. Int. J. Biol. Macromol. 2020, 164, 986–993. [Google Scholar] [CrossRef]
- Hao, L.; Lin, G.; Lian, J.; Chen, L.; Zhou, H.; Chen, H.; Xu, H.; Zhou, X. Carboxymethyl Cellulose Capsulated Zein as Pesticide Nano-Delivery System for Improving Adhesion and Anti-UV Properties. Carbohydr. Polym. 2020, 231, 115725. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Hao, L.; Chen, H.; Zhou, X. Natural Rosin Modified Carboxymethyl Cellulose Delivery System with Lowered Toxicity for Long-Term Pest Control. Carbohydr. Polym. 2021, 259, 117749. [Google Scholar] [CrossRef]
- Mohd Sharif, S.N.; Hashim, N.; Md Isa, I.; Abu Bakar, S.; Idris Saidin, M.; Syahrizal Ahmad, M.; Mamat, M.; Zobir Hussein, M.; Zainul, R. Carboxymethyl Cellulose Hydrogel Based Formulations of Zinc Hydroxide Nitrate-Sodium Dodecylsulphate-Bispyribac Nanocomposite: Advancements in Controlled Release Formulation of Herbicide. J. Nanosci. Nanotechnol. 2021, 21, 5867–5880. [Google Scholar] [CrossRef]
- Ahmad, D.F.B.A.; Wasli, M.E.; Tan, C.S.Y.; Musa, Z.; Chin, S.-F. Eco-Friendly Cellulose-Based Hydrogels Derived from Wastepapers as a Controlled-Release Fertilizer. Chem. Biol. Technol. Agric. 2023, 10, 36. [Google Scholar] [CrossRef]
- Sharma, N.; Allardyce, B.J.; Rajkhowa, R.; Agrawal, R. Controlled Release Fertilizer Delivery System Derived from Rice Straw Cellulose Nanofibres: A Circular Economy Based Solution for Sustainable Development. Bioengineered 2023, 14, 2242124. [Google Scholar] [CrossRef]
- Priya, E.; Jha, A.; Sarkar, S.; Maji, P.K. A Urea-Loaded Hydrogel Comprising of Cellulose Nanofibers and Carboxymethyl Cellulose: An Effective Slow-Release Fertilizer. J. Clean. Prod. 2024, 434, 140215. [Google Scholar] [CrossRef]
- Sultan, M.; Taha, G. Sustained-Release Nitrogen Fertilizer Delivery Systems Based on Carboxymethyl Cellulose-Grafted Polyacrylamide: Swelling and Release Kinetics. Int. J. Biol. Macromol. 2024, 266, 131184. [Google Scholar] [CrossRef] [PubMed]
- Artusio, F.; Casà, D.; Granetto, M.; Tosco, T.; Pisano, R. Alginate Nanohydrogels as a Biocompatible Platform for the Controlled Release of a Hydrophilic Herbicide. Processes 2021, 9, 1641. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Yu, M.; Jiao, B.; Chen, F.; Yin, M. Sodium Alginate-Based Composite Microspheres for Controlled Release of Pesticides and Reduction of Adverse Effects of Copper in Agricultural Soils. Chemosphere 2023, 313, 137539. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of Heavy Metal Ions by Sodium Alginate Based Adsorbent-a Review and New Perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef]
- Zheng, D.; Bai, B.; Zhao, H.; Xu, X.; Hu, N.; Wang, H. Stimuli-Responsive Ca-Alginate-Based Photothermal System with Enhanced Foliar Adhesion for Controlled Pesticide Release. Colloids Surf. B Biointerfaces 2021, 207, 112004. [Google Scholar] [CrossRef]
- Xie, Y.-L.; Jiang, W.; Li, F.; Zhang, Y.; Liang, X.-Y.; Wang, M.; Zhou, X.; Wu, S.-Y.; Zhang, C.-H. Controlled Release of Spirotetramat Using Starch–Chitosan–Alginate-Encapsulation. Bull. Environ. Contam. Toxicol. 2020, 104, 149–155. [Google Scholar] [CrossRef]
- El Bouchtaoui, F.-Z.; Ablouh, E.-H.; Kassem, I.; Kassab, Z.; Sehaqui, H.; El Achaby, M. Slow-Release Fertilizers Based on Lignin–Sodium Alginate Biopolymeric Blend for Sustained N–P Nutrients Release. J. Coat. Technol. Res. 2022, 19, 1551–1565. [Google Scholar] [CrossRef]
- Llive, L.M.; Perullini, M.; Santagapita, P.R.; Schneider-Teixeira, A.; Deladino, L. Controlled Release of Fertilizers from Ca(II)-Alginate Matrix Modified by Yerba Mate (Ilex paraguariensis) Waste. Eur. Polym. J. 2020, 138, 109955. [Google Scholar] [CrossRef]
- Nooeaid, P.; Cha-aim, K.; Chuysinuan, P.; Pengsuk, C.; Thanyacharoern, T.; Sophonputtanaphoca, S.; Techasakul, S. Nutrient Controlled Release Behaviors and Plant Growth of NPK Encapsulated Hydroxyapatite/Alginate Biocomposite toward Agricultural and Environmental Sustainability. Mater. Res. Express 2024, 11, 035310. [Google Scholar] [CrossRef]
- Stanley, N.; Mahanty, B. Preparation and Characterization of Biogenic CaCO3-Reinforced Polyvinyl Alcohol–Alginate Hydrogel as Controlled-Release Urea Formulation. Polym. Bull. 2020, 77, 529–540. [Google Scholar] [CrossRef]
- Lewicka, K.; Rychter, P.; Pastusiak, M.; Janeczek, H.; Dobrzynski, P. Biodegradable Blends of Grafted Dextrin with PLGA-Block-PEG Copolymer as a Carrier for Controlled Release of Herbicides into Soil. Materials 2020, 13, 832. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Qian, K.; Fan, J.; Qin, Z.; Yi, L.; Wang, J.; Dou, W. Nano-Based Smart Pesticide Formulations Utilizing Starch Nanocrystals: Achieving High Stability and Extended Effective Duration. Ind. Crop. Prod. 2024, 214, 118470. [Google Scholar] [CrossRef]
- Dong, X.; Bai, Y.; Ma, X.; Xue, P.; Zhang, Y.; Bian, L. Adsorption and Sustained-Release Capacity of Glyphosate on Microporous Corn Starch. Starch-Stärke 2021, 73, 2000224. [Google Scholar] [CrossRef]
- Fabiyi, O.A.; Saliu, O.D.; Claudius-cole, A.O.; Olaniyi, I.O.; Oguntebi, O.V.; Olatunji, G.A. Porous Starch Citrate Biopolymer for Controlled Release of Carbofuran in the Management of Root Knot Nematode Meloidogyne Incognita. Biotechnol. Rep. 2020, 25, e00428. [Google Scholar] [CrossRef]
- Versino, F.; Urriza, M.; García, M.A. Eco-Compatible Cassava Starch Films for Fertilizer Controlled-Release. Int. J. Biol. Macromol. 2019, 134, 302–307. [Google Scholar] [CrossRef]
- Sofyane, A.; Ablouh, E.; Lahcini, M.; Elmeziane, A.; Khouloud, M.; Kaddami, H.; Raihane, M. Slow-Release Fertilizers Based on Starch Acetate/Glycerol/Polyvinyl Alcohol Biocomposites for Sustained Nutrient Release. Mater. Today Proc. 2021, 36, 74–81. [Google Scholar] [CrossRef]
- Lü, S.; Gao, C.; Wang, X.; Xu, X.; Bai, X.; Gao, N.; Feng, C.; Wei, Y.; Wu, L.; Liu, M. Synthesis of a Starch Derivative and Its Application in Fertilizer for Slow Nutrient Release and Water-Holding. RSC Adv. 2014, 4, 51208–51214. [Google Scholar] [CrossRef]
- Dhiman, A.; Thaper, P.; Bhardwaj, D.; Agrawal, G. Biodegradable Dextrin-Based Microgels for Slow Release of Dual Fertilizers for Sustainable Agriculture. ACS Appl. Mater. Interfaces 2024, 16, 11860–11871. [Google Scholar] [CrossRef]
- Da Costa, D.; Exbrayat-Héritier, C.; Rambaud, B.; Megy, S.; Terreux, R.; Verrier, B.; Primard, C. Surface Charge Modulation of Rifampicin-Loaded PLA Nanoparticles to Improve Antibiotic Delivery in Staphylococcus Aureus Biofilms. J. Nanobiotechnol. 2021, 19, 12. [Google Scholar] [CrossRef]
- Tao, R.; You, C.; Qu, Q.; Zhang, X.; Deng, Y.; Ma, W.; Huang, C. Recent Advances in the Design of Controlled- and Sustained-Release Micro/Nanocarriers of Pesticide. Environ. Sci. Nano 2023, 10, 351–371. [Google Scholar] [CrossRef]
- Sikorska, W.; Musioł, M.; Rydz, J.; Zięba, M.; Rychter, P.; Lewicka, K.; Šiškova, A.; Mosnáčková, K.; Kowalczuk, M.; Adamus, G. Prediction Studies of Environment-Friendly Biodegradable Polymeric Packaging Based on PLA. Influence of Specimens’ Thickness on the Hydrolytic Degradation Profile. Waste Manag. 2018, 78, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Rychter, P.; Lewicka, K.; Rogacz, D. Environmental Usefulness of PLA/PEG Blends for Controlled-Release Systems of Soil-Applied Herbicides. J. Appl. Polym. Sci. 2019, 136, 47856. [Google Scholar] [CrossRef]
- Rychter, P.; Lewicka, K.; Pastusiak, M.; Domański, M.; Dobrzyński, P. PLGA–PEG Terpolymers as a Carriers of Bioactive Agents, Influence of PEG Blocks Content on Degradation and Release of Herbicides into Soil. Polym. Degrad. Stab. 2019, 161, 95–107. [Google Scholar] [CrossRef]
- Boyandin, A.N.; Kazantseva, E.A. Constructing Slow-Release Formulations of Herbicide Metribuzin Using Its Co-Extrusion with Biodegradable Polyester Poly-ε-Caprolactone. J. Environ. Sci. Health Part B 2021, 56, 467–476. [Google Scholar] [CrossRef]
- Abedalwafa, M.; Wang, F.; Wang, L.; Li, C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci 2013, 34, 123–140. [Google Scholar]
- Khoshtinat, S. State-of-the-Art Review of Aliphatic Polyesters and Polyolefins Biodeterioration by Microorganisms: From Mechanism to Characterization. Corros. Mater. Degrad. 2023, 4, 542–572. [Google Scholar] [CrossRef]
- Strangis, G.; Rossi, D.; Cinelli, P.; Seggiani, M. Seawater Biodegradable Poly(Butylene Succinate-co-Adipate)—Wheat Bran Biocomposites. Materials 2023, 16, 2593. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Yang, F.; Wang, X.; Shen, H.; Cui, H.; Wu, D. Construction of a Controlled-Release Delivery System for Pesticides Using Biodegradable PLA-Based Microcapsules. Colloids Surf. B Biointerfaces 2016, 144, 38–45. [Google Scholar] [CrossRef]
- Roshani, B.; Tavanai, H.; Morshed, M.; Khajehali, J. Controlled Release of Thiram Pesticide from Poly (L-Lactic Acid) Nanofibers. J. Text. Inst. 2016, 108, 1504–1509. [Google Scholar] [CrossRef]
- Takei, T.; Yoshida, M.; Hatate, Y.; Shiomori, K.; Kiyoyama, S. Preparation of Polylactide/Poly(ε-Caprolactone) Microspheres Enclosing Acetamiprid and Evaluationof Release Behavior. Polym. Bull. 2008, 61, 391–397. [Google Scholar] [CrossRef]
- Suave, J.; Dall’Agnol, E.C.; Pezzin, A.P.T.; Meier, M.M.; Silva, D.A.K. Biodegradable Microspheres of Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone) Loaded with Malathion Pesticide: Preparation, Characterization, and in Vitro Controlled Release Testing. J. Appl. Polym. Sci. 2010, 117, 3419–3427. [Google Scholar] [CrossRef]
- Kiselev, E.G.; Boyandin, A.N.; Zhila, N.O.; Prudnikova, S.V.; Shumilova, A.A.; Baranovskiy, S.V.; Shishatskaya, E.I.; Thomas, S.; Volova, T.G. Constructing Sustained-Release Herbicide Formulations Based on Poly-3-Hydroxybutyrate and Natural Materials as a Degradable Matrix. Pest Manag. Sci. 2020, 76, 1772–1785. [Google Scholar] [CrossRef] [PubMed]
- Prudnikova, S.V.; Volova, T.G. Design and Application of Slow-Release Pesticide Formulations Embedded in a Biodegradable Matrix Based on Poly(3-Hydroxybutyrate). J. Sib. Fed. Univ. Biol. 2019, 12, 329–336. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Wang, Y.; Zhang, Y.; Li, X. Compound Pesticide Controlled Release System Based on the Mixture of Poly(Butylene Succinate) and PLA. J. Microencapsul. 2018, 35, 494–503. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, B. Preparation and Characterisation of Poly(Butylene Succinate) Microcarriers Containing Pesticide. Micro Nano Lett. 2019, 14, 81–85. [Google Scholar] [CrossRef]
- Cen, Z.; Wei, L.; Muthukumarappan, K.; Sobhan, A.; McDaniel, R. Assessment of a Biochar-Based Controlled Release Nitrogen Fertilizer Coated with Polylactic Acid. J. Soil Sci. Plant Nutr. 2021, 21, 2007–2019. [Google Scholar] [CrossRef]
- El Assimi, T.; Blažic, R.; Vidović, E.; Raihane, M.; El Meziane, A.; Baouab, M.H.V.; Khouloud, M.; Beniazza, R.; Kricheldorf, H.; Lahcini, M. Polylactide/Cellulose Acetate Biocomposites as Potential Coating Membranes for Controlled and Slow Nutrients Release from Water-Soluble Fertilizers. Prog. Org. Coat. 2021, 156, 106255. [Google Scholar] [CrossRef]
- El Assimi, T.; Chaib, M.; Raihane, M.; El Meziane, A.; Khouloud, M.; Benhida, R.; Beniazza, R.; Lahcini, M. Poly(ε-Caprolactone)-g-Guar Gum and Poly(ε-Caprolactone)-g-Halloysite Nanotubes as Coatings for Slow-Release DAP Fertilizer. J. Polym. Environ. 2020, 28, 2078–2090. [Google Scholar] [CrossRef]
- Boutriouia, E.H.; El Assimi, T.; Qayouh, H.; Raihane, M.; El Meziane, A.; Baouab, M.H.V.; Youcef, H.B.; El Kadib, A.; Lahcini, M. Poly(ε-Caprolactone)-Grafted-Chitosan Copolymers: Synthesis and Use as Tunable and Biodegradable Coating for Water Soluble Fertilizers. React. Funct. Polym. 2024, 198, 105887. [Google Scholar] [CrossRef]
- Souza, J.L.; de Campos, A.; França, D.; Faez, R. PHB and Montmorillonite Clay Composites as KNO3 and NPK Support for a Controlled Release. J. Polym. Environ. 2019, 27, 2089–2097. [Google Scholar] [CrossRef]
- Baldanza, V.A.R.; Souza, F.G., Jr.; Filho, S.T.; Franco, H.A.; Oliveira, G.E.; Caetano, R.M.J.; Hernandez, J.A.R.; Ferreira Leite, S.G.; Furtado Sousa, A.M.; Nazareth Silva, A.L. Controlled-Release Fertilizer Based on Poly(Butylene Succinate)/Urea/Clay and Its Effect on Lettuce Growth. J. Appl. Polym. Sci. 2018, 135, 46858. [Google Scholar] [CrossRef]
- Singh, N.K.; Sanghvi, G.; Yadav, M.; Padhiyar, H.; Christian, J.; Singh, V. Fate of Pesticides in Agricultural Runoff Treatment Systems: Occurrence, Impacts and Technological Progress. Environ. Res. 2023, 237, 117100. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wood, J.; Smith, D.; Thapa, A.; Aryal, N. A Review on Constructed Treatment Wetlands for Removal of Pollutants in the Agricultural Runoff. Sustainability 2021, 13, 13578. [Google Scholar] [CrossRef]
- Marican, A.; Durán-Lara, E.F. A Review on Pesticide Removal through Different Processes. Environ. Sci. Pollut. Res. 2018, 25, 2051–2064. [Google Scholar] [CrossRef]
- El Harmoudi, H.; El Gaini, L.; Daoudi, E.; Rhazi, M.; Boughaleb, Y.; El Mhammedi, M.A.; Migalska-Zalas, A.; Bakasse, M. Removal of 2,4-D from Aqueous Solutions by Adsorption Processes Using Two Biopolymers: Chitin and Chitosan and Their Optical Properties. Opt. Mater. 2014, 36, 1471–1477. [Google Scholar] [CrossRef]
- Rissouli, L.; Benicha, M.; Chafik, T.; Chabbi, M. Decontamination of Water Polluted with Pesticide Using Biopolymers: Adsorption of Glyphosate by Chitin and Chitosan. J. Mater. Environ. Sci. 2017, 8, 4544–4549. [Google Scholar] [CrossRef]
- Rissouli, L.; Benicha, M.; Chabbi, M. Contribution to the Elimination of Linuron by the Adsorption Process Using Chitin and Chitosan Biopolymers. J. Mater. Environ. Sci. 2016, 7, 531–540. [Google Scholar]
- Abdeen, Z.; Mohammad, S.G. Study of the Adsorption Efficiency of an Eco-Friendly Carbohydrate Polymer for Contaminated Aqueous Solution by Organophosphorus Pesticide. Open J. Org. Polym. Mater. 2014, 4, 16–28. [Google Scholar] [CrossRef]
- Moradeeya, P.G.; Kumar, M.A.; Thorat, R.B.; Rathod, M.; Khambhaty, Y.; Basha, S. Nanocellulose for Biosorption of Chlorpyrifos from Water: Chemometric Optimization, Kinetics and Equilibrium. Cellulose 2017, 24, 1319–1332. [Google Scholar] [CrossRef]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid Removal of Organic Micropollutants from Water by a Porous β-Cyclodextrin Polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xu, G.; Zhang, H.; Li, M.; Tu, Y.; Xie, X.; Zhu, Y.; Jiang, L.; Zhu, X.; Ji, X.; et al. Multifunctional β-Cyclodextrin Polymer for Simultaneous Removal of Natural Organic Matter and Organic Micropollutants and Detrimental Microorganisms from Water. ACS Appl. Mater. Interfaces 2020, 12, 12165–12175. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.; Bin Jumah, M.N.; Othman, S.I.; Alruhaimi, R.S.; Salama, Y.F.; Allam, A.A.; Abukhadra, M.R. Effective Removal of Different Species of Organophosphorus Pesticides (Acephate, Omthosate, and Methyl Parathion) Using Chitosan/Zeolite-A as Multifunctional Adsorbent. Environ. Technol. Innov. 2021, 24, 101875. [Google Scholar] [CrossRef]
- Attallah, O.A.; Wafa, M.M.A.; Al-Ghobashy, M.A.; Nebsen, M.; Monir, H.H. Adsorptive Removal of Pesticides from Aqueous Solutions Using Chitosan/Gelatin Polymeric Composite: Process Monitoring and Optimization. Int. J. Environ. Sci. Technol. 2022, 19, 8183–8194. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, R.Z.; Ma, Y.Q.; Guan, W.B.; Wu, X.L.; Liu, X.; Li, H.; Du, Y.L.; Pan, C.P. Preparation of Cellulose/Graphene Composite and Its Applications for Triazine Pesticides Adsorption from Water. ACS Sustain. Chem. Eng. 2015, 3, 396–405. [Google Scholar] [CrossRef]
- Sahithya, K.; Das, D.; Das, N. Effective Removal of Dichlorvos from Aqueous Solution Using Biopolymer Modified MMT–CuO Composites: Equilibrium, Kinetic and Thermodynamic Studies. J. Mol. Liq. 2015, 211, 821–830. [Google Scholar] [CrossRef]
- Sahithya, K.; Das, D.; Das, N. Adsorptive Removal of Monocrotophos from Aqueous Solution Using Biopolymer Modified Montmorillonite–CuO Composites: Equilibrium, Kinetic and Thermodynamic Studies. Process Saf. Environ. Prot. 2016, 99, 43–54. [Google Scholar] [CrossRef]
- Pal, J.; Deb, M.K.; Sircar, J.K.; Agnihotri, P.K. Microwave Green Synthesis of Biopolymer-Stabilized Silver Nanoparticles and Their Adsorption Behavior for Atrazine. Appl. Water Sci. 2015, 5, 181–190. [Google Scholar] [CrossRef]
- Etcheverry, M.; Cappa, V.; Trelles, J.; Zanini, G. Montmorillonite-Alginate Beads: Natural Mineral and Biopolymers Based Sorbent of Paraquat Herbicides. J. Environ. Chem. Eng. 2017, 5, 5868–5875. [Google Scholar] [CrossRef]
- Narayanan, N.; Gajbhiye, V.; Gupta, S.; Manjaiah, K.M. Novel Biopolymer-Nanoorganoclay Composites for the Decontamination of Pesticides from Water. Pestic. Res. J. 2016, 28, 25–34. [Google Scholar]
- Narayanan, N.; Gupta, S.; Gajbhiye, V.T.; Manjaiah, K.M. Optimization of Isotherm Models for Pesticide Sorption on Biopolymer-Nanoclay Composite by Error Analysis. Chemosphere 2017, 173, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Bilici, Z.; Ozay, Y.; Yuzer, A.; Ince, M.; Ocakoglu, K.; Dizge, N. Fabrication and Characterization of Polyethersulfone Membranes Functionalized with Zinc Phthalocyanines Embedding Different Substitute Groups. Colloids Surf. Physicochem. Eng. Asp. 2021, 617, 126288. [Google Scholar] [CrossRef]
- Bhalerao, T.; Puranik, P. Microbial Degradation of Monocrotophos by Aspergillus Oryzae. Int. Biodeterior. Biodegrad. 2009, 63, 503–508. [Google Scholar] [CrossRef]
- Abdelhameed, R.; El-Zawahry, M.; Emam, H. Efficient Removal of Organophosphorus Pesticides from Wastewater Using Polyethylenimine-Modified Fabrics. Polymer 2018, 155, 225–234. [Google Scholar] [CrossRef]
- El-Said, W.; El-Khouly, M.; Ali, M.; Rashad, R.; Elshehy, E.; Al-Bogami, A. Synthesis of Mesoporous Silica-Polymer Composite for the Chloridazon Pesticide Removal from Aqueous Media. J. Environ. Chem. Eng. 2018, 6, 2214–2221. [Google Scholar] [CrossRef]
- Mlynarcíková, H.; Legáth, J.; Guzy, J.; Kovalkovicová, N.; Ivanko, S. Effect of Chloridazone on the Animal Organism. Gen. Physiol. Biophys. 1999, 18, 99–104. [Google Scholar]
- Liber, K.; Solomon, K.R. Acute and Chronic Toxicity of 2,3,4,6-Tetrachlorophenol and Pentachlorophenol to Daphnia and Rotifers. Arch. Environ. Contam. Toxicol. 1994, 26, 212–221. [Google Scholar] [CrossRef]
- Salazar, S.; Guerra, D.; Yutronic, N.; Jara, P. Removal of Aromatic Chlorinated Pesticides from Aqueous Solution Using β-Cyclodextrin Polymers Decorated with Fe3O4 Nanoparticles. Polymers 2018, 10, 1038. [Google Scholar] [CrossRef]
- So, J.; Pang, C.; Dong, H.; Jang, P.; Juhyok, U.; Ri, K.; Yun, C. Adsorption of 1-Naphthyl Methyl Carbamate in Water by Utilizing a Surface Molecularly Imprinted Polymer. Chem. Phys. Lett. 2018, 699, 199–207. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Choi, J.G.; Ku, C.S.; Vijayaraghavan, K.; Binupriya, A.R.; Yun, S.E. Carbaryl Sorption by Porogen-Treated Banana Pith Carbon. Adsorpt. Sci. Technol. 2008, 26, 679–686. [Google Scholar] [CrossRef]
- Youssef, A.; El-Naggar, M.; Malhat, F.; Sharkawi, H. Efficient Removal of Pesticides and Heavy Metals from Wastewater and the Antimicrobial Activity of the Synthesized F-MWCNTs/PVA Nanocomposite Film. J. Clean. Prod. 2018, 206, 315–325. [Google Scholar] [CrossRef]
- Shahnazi, A.; Nabid, M.R.; Sedghi, R.; Heidari, B. A Thermosensitive Molecularly Imprinted Poly-NIPAM Coated MWCNTs/TiO2 Photocatalyst for the Preferential Removal of Pendimethalin Pesticide from Wastewater. J. Photochem. Photobiol. Chem. 2020, 402, 112802. [Google Scholar] [CrossRef]
- Dimitrov, B.D.; Gadeva, P.G.; Benova, D.K.; Bineva, M.V. Comparative Genotoxicity of the Herbicides Roundup, Stomp and Reglone in Plant and Mammalian Test Systems. Mutagenesis 2006, 21, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Thakur, B.; Kumar, A.; Sharma, S.; Naushad, M.; Stadler, F.J. Atrazine Removal Using Chitin-Cl-Poly(Acrylamide-Co-Itaconic Acid) Nanohydrogel: Isotherms and pH Responsive Nature. Carbohydr. Polym. 2020, 241, 116258. [Google Scholar] [CrossRef] [PubMed]
- Clausen, L.; Fabricius, I. Atrazine, Isoproturon, Mecoprop, 2,4-D, and Bentazone Adsorption onto Iron Oxides. J. Environ. Qual. 2001, 30, 858–869. [Google Scholar] [CrossRef]
- Fayette, J.; Roberts, P.D.; Pernezny, K.L.; Jones, J.B. The Role of Cymoxanil and Famoxadone in the Management of Bacterial Spot on Tomato and Pepper and Bacterial Leaf Spot on Lettuce. Crop Prot. 2012, 31, 107–112. [Google Scholar] [CrossRef]
- Tonietto, B.D.; Laurentino, A.O.M.; Costa-Valle, M.T.; Cestonaro, L.V.; Antunes, B.P.; Sates, C.; Dos Santos, N.G.; Dallegrave, E.; Garcia, S.C.; Leal, M.B.; et al. Imidacloprid-Based Commercial Pesticide Causes Behavioral, Biochemical, and Hematological Impairments in Wistar Rats. Environ. Toxicol. Pharmacol. 2022, 94, 103924. [Google Scholar] [CrossRef]
- Utzeri, G.; Verissimo, L.; Murtinho, D.; Pais, A.A.C.C.; Perrin, F.X.; Ziarelli, F.; Iordache, T.-V.; Sarbu, A.; Valente, A.J.M. Poly(β-Cyclodextrin)-Activated Carbon Gel Composites for Removal of Pesticides from Water. Molecules 2021, 26, 1426. [Google Scholar] [CrossRef]
- Drioli, E.; Macedonio, F.; Tocci, E. Membrane Science and Membrane Engineering for a Sustainable Industrial Development. Sep. Purif. Technol. 2021, 275, 119196. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite Membranes for Water Separation and Purification: Fabrication, Modification, and Applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Kadirkhan, F.; Goh, P.S.; Ismail, A.F.; Wan Mustapa, W.N.F.; Halim, M.H.M.; Soh, W.K.; Yeo, S.Y. Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes 2022, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A.; Parthasarathy, P.; Irfan, M. Advanced Functional Polymer Nanocomposites and Their Use in Water Ultra-Purification. Trends Environ. Anal. Chem. 2019, 24, e00067. [Google Scholar] [CrossRef]
- María Arsuaga, J.; Sotto, A.; Del Rosario, G.; Martínez, A.; Molina, S.; Teli, S.B.; De Abajo, J. Influence of the Type, Size, and Distribution of Metal Oxide Particles on the Properties of Nanocomposite Ultrafiltration Membranes. J. Membr. Sci. 2013, 428, 131–141. [Google Scholar] [CrossRef]
- Deng, Y.-F.; Zhang, D.; Zhang, N.; Huang, T.; Lei, Y.-Z.; Wang, Y. Electrospun Stereocomplex Polylactide Porous Fibers toward Highly Efficient Oil/Water Separation. J. Hazard. Mater. 2021, 407, 124787. [Google Scholar] [CrossRef]
- Alam, J.; Alhoshan, M.; Shukla, A.K.; Aldalbahi, A.; Ali, F.A.A. K-Carrageenan—A Versatile Biopolymer for the Preparation of a Hydrophilic PVDF Composite Membrane. Eur. Polym. J. 2019, 120, 109219. [Google Scholar] [CrossRef]
- Momina, K.A. Study of Different Polymer Nanocomposites and Their Pollutant Removal Efficiency: Review. Polymer 2021, 217, 123453. [Google Scholar] [CrossRef]
- Kotobuki, M.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021, 26, 3331. [Google Scholar] [CrossRef]
- Benavente, L.; Coetsier, C.; Venault, A.; Chang, Y.; Causserand, C.; Bacchin, P.; Aimar, P. FTIR Mapping as a Simple and Powerful Approach to Study Membrane Coating and Fouling. J. Membr. Sci. 2016, 520, 477–489. [Google Scholar] [CrossRef]
- Lawrence Arockiasamy, D.; Alhoshan, M.; Alam, J.; Muthumareeswaran, M.; Figoli, A.; Arun Kumar, S. Separation of Proteins and Antifouling Properties of Polyphenylsulfone Based Mixed Matrix Hollow Fiber Membranes. Sep. Purif. Technol. 2017, 174, 529–543. [Google Scholar] [CrossRef]
- Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M.Z.; Chew, C.M.; David Ng, K.M.; Lau, W.J.; Ismail, A.F. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes 2021, 12, 30. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic Membrane Technology for Water and Wastewater Treatment: A Critical Review of Performance, Full-Scale Applications, Membrane Fouling and Prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Qalyoubi, L.; Al-Othman, A.; Al-Asheh, S. Recent Progress and Challenges of Adsorptive Membranes for the Removal of Pollutants from Wastewater. Part II: Environmental Applications. Case Stud. Chem. Environ. Eng. 2021, 3, 100102. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of Polyethersulfone Membranes—A Review of Methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Khademian, E.; Salehi, E.; Sanaeepur, H.; Galiano, F.; Figoli, A. A Systematic Review on Carbohydrate Biopolymers for Adsorptive Remediation of Copper Ions from Aqueous Environments-Part A: Classification and Modification Strategies. Sci. Total Environ. 2020, 738, 139829. [Google Scholar] [CrossRef]
- Salehi, E.; Daraei, P.; Arabi Shamsabadi, A. A Review on Chitosan-Based Adsorptive Membranes. Carbohydr. Polym. 2016, 152, 419–432. [Google Scholar] [CrossRef]
- Adam, M.R.; Hubadillah, S.K.; Esham, M.I.M.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; Jaafar, J. Adsorptive Membranes for Heavy Metals Removal From Water. In Membrane Separation Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 361–400. ISBN 978-0-12-812815-2. [Google Scholar]
- Alias, M.S.; Kamarudin, S.K.; Zainoodin, A.M.; Masdar, M.S. Active Direct Methanol Fuel Cell: An Overview. Int. J. Hydrogen Energy 2020, 45, 19620–19641. [Google Scholar] [CrossRef]
- Anwar, F.; Arthanareeswaran, G. Silver Nano-Particle Coated Hydroxyapatite Nano-Composite Membrane for the Treatment of Palm Oil Mill Effluent. J. Water Process Eng. 2019, 31, 100844. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A Review on Membrane Fabrication: Structure, Properties and Performance Relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Sundarrajan, S.; Balamurugan, R.; Kaur, S.; Ramakrishna, S. Potential of Engineered Electrospun Nanofiber Membranes for Nanofiltration Applications. Dry. Technol. 2013, 31, 163–169. [Google Scholar] [CrossRef]
- Tijing, L.D.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H.K. Recent Progress of Membrane Distillation Using Electrospun Nanofibrous Membrane. J. Membr. Sci. 2014, 453, 435–462. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Hai, F.I. Biocatalytic Membrane Reactors for the Removal of Recalcitrant and Emerging Pollutants from Wastewater. In Handbook of Membrane Reactors; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Krumm, B.; Kofen, M. Synthesis and Characterization of New Insensitive and High-Energy Dense Cellulosic Biopolymers. Fuel 2021, 292, 120347. [Google Scholar] [CrossRef]
- Cheng, J.; Zhan, C.; Wu, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.-S. Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine. ACS Omega 2020, 5, 5389–5400. [Google Scholar] [CrossRef]
- Esmaeili, N.; Boyd, S.E.; Brown, C.L.; Mac A Gray, E.; Webb, C.J. Improving the Gas-Separation Properties of PVAc-Zeolite 4A Mixed-Matrix Membranes through Nano-Sizing and Silanation of the Zeolite. Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 2019, 20, 1590–1606. [Google Scholar] [CrossRef]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Fabrication and Characterization of Cellulose Nanofiber Based Thin-Film Nanofibrous Composite Membranes. J. Membr. Sci. 2014, 454, 272–282. [Google Scholar] [CrossRef]
- Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S. Influence of Electrospun Fiber Size on the Separation Efficiency of Thin Film Nanofiltration Composite Membrane. J. Membr. Sci. 2012, 392–393, 101–111. [Google Scholar] [CrossRef]
- Tian, M.; Qiu, C.; Liao, Y.; Chou, S.; Wang, R. Preparation of Polyamide Thin Film Composite Forward Osmosis Membranes Using Electrospun Polyvinylidene Fluoride (PVDF) Nanofibers as Substrates. Sep. Purif. Technol. 2013, 118, 727–736. [Google Scholar] [CrossRef]
- Riaz, T.; Ahmad, A.; Saleemi, S.; Adrees, M.; Jamshed, F.; Hai, A.M.; Jamil, T. Synthesis and Characterization of Polyurethane-Cellulose Acetate Blend Membrane for Chromium (VI) Removal. Carbohydr. Polym. 2016, 153, 582–591. [Google Scholar] [CrossRef]
- Nambikkattu, J.; Kaleekkal, N.J.; Jacob, J.P. Metal Ferrite Incorporated Polysulfone Thin-Film Nanocomposite Membranes for Wastewater Treatment. Environ. Sci. Pollut. Res. 2021, 28, 11915–11927. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent Advances in Mulching Materials and Methods for Modifying Soil Environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Wu, P.; Chen, X. Effects of Water Limitation on Yield Advantage and Water Use in Wheat (Triticum aestivum L.)/Maize (Zea mays L.) Strip Intercropping. Eur. J. Agron. 2015, 71, 149–159. [Google Scholar] [CrossRef]
- Somanathan, H.; Sathasivam, R.; Sivaram, S.; Mariappan Kumaresan, S.; Muthuraman, M.S.; Park, S.U. An Update on Polyethylene and Biodegradable Plastic Mulch Films and Their Impact on the Environment. Chemosphere 2022, 307, 135839. [Google Scholar] [CrossRef] [PubMed]
- Kasirajan, S.; Ngouajio, M. Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.; Qiao, R.; Ding, F.; Feng, H.; Jiang, R. Agronomic Performances of Biodegradable and Non-Biodegradable Plastic Film Mulching on a Maize Cropping System in the Semi-Arid Loess Plateau, China. Pedosphere 2024, 34, 88–96. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic Mulching in Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil Degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Tan, Q.; Yang, L.; Wei, F.; Chen, Y.; Li, J. Comparative Life Cycle Assessment of Polyethylene Agricultural Mulching Film and Alternative Options Including Different End-of-Life Routes. Renew. Sustain. Energy Rev. 2023, 178, 113239. [Google Scholar] [CrossRef]
- Aa, H. Effect of Polyethylene Mulching Type on the Growth, Yield and Fruits Quality of Physalis Pubescens. Adv. Plants Agric. Res. 2017, 6, 00229. [Google Scholar] [CrossRef]
- Malińska, K.; Pudełko, A.; Postawa, P.; Stachowiak, T.; Dróżdż, D. Performance of Biodegradable Biochar-Added and Bio-Based Plastic Clips for Growing Tomatoes. Materials 2022, 15, 7205. [Google Scholar] [CrossRef]
- Berger, S.; Kim, Y.; Kettering, J.; Gebauer, G. Plastic Mulching in Agriculture—Friend or Foe of N2O Emissions? Agric. Ecosyst. Environ. 2013, 167, 43–51. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Dvorak, P.; Hajšlová, J.; Hamouz, K.; Schulzová, V.; Kuchtova, P.; Tomasek, J. Black Polypropylene Mulch Textile in Organic Agriculture. Available online: https://orgprints.org/id/eprint/20582/ (accessed on 19 May 2024).
- Selke, S.; Auras, R.; Nguyen, T.A.; Castro Aguirre, E.; Cheruvathur, R.; Liu, Y. Evaluation of Biodegradation-Promoting Additives for Plastics. Environ. Sci. Technol. 2019, 49, 3769–3777. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of Plastics: Current Scenario and Future Prospects for Environmental Safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- López-Tolentino, G.; Ibarra-Jiménez, L.; Méndez-Prieto, A.; Río, A.J.L.; Lira-Saldivar, R.H.; Valenzuela-Soto, J.H.; Lozano-Cavazos, C.J.; Torres-Olivar, V. Photosynthesis, Growth, and Fruit Yield of Cucumber in Response to Oxo-Degradable Plastic Mulches. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 77–84. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Yan, C.; Chadwick, D.; Jones, D.L.; Liu, E.; Liu, Q.; Bai, R.; He, W. Kinetics of Microplastic Generation from Different Types of Mulch Films in Agricultural Soil. Sci. Total Environ. 2022, 814, 152572. [Google Scholar] [CrossRef]
- Hayes, D.G.; Anunciado, M.B.; DeBruyn, J.M.; Bandopadhyay, S.; Schaeffer, S.; English, M.; Ghimire, S.; Miles, C.; Flury, M.; Sintim, H.Y. Biodegradable Plastic Mulch Films for Sustainable Specialty Crop Production. In Polymers for Agri-Food Applications; Gutiérrez, T.J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 183–213. ISBN 978-3-030-19416-1. [Google Scholar]
- Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology; Kalia, S.; Kaith, B.S.; Kaur, I. (Eds.) Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-17369-1. [Google Scholar]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Finkenstadt, V.L.; Tisserat, B. Poly(Lactic Acid) and Osage Orange Wood Fiber Composites for Agricultural Mulch Films. Ind. Crop. Prod. 2010, 31, 316–320. [Google Scholar] [CrossRef]
- Yamamoto-Tamura, K.; Hoshino, Y.T.; Tsuboi, S.; Huang, C.; Kishimoto-Mo, A.W.; Sameshima-Yamashita, Y.; Kitamoto, H. Fungal Community Dynamics during Degradation of Poly(Butylene Succinate-Co-Adipate) Film in Two Cultivated Soils in Japan. Biosci. Biotechnol. Biochem. 2020, 84, 1077–1087. [Google Scholar] [CrossRef]
- Ning, R.; Liu, C.; Cheng, X.; Lei, F.; Zhang, F.; Xu, W.; Zhu, L.; Jiang, J. Fabrication of Multi-Functional Biodegradable Liquid Mulch Utilizing Xyloglucan Derived from Tamarind Waste for Agricultural Application. Int. J. Biol. Macromol. 2024, 257, 128627. [Google Scholar] [CrossRef]
- Wang, K.; Sun, X.; Long, B.; Li, F.; Yang, C.; Chen, J.; Ma, C.; Xie, D.; Wei, Y. Green Production of Biodegradable Mulch Films for Effective Weed Control. ACS Omega 2021, 6, 32327–32333. [Google Scholar] [CrossRef]
- Corrêa, A.C.; De Campos, A.; Claro, P.I.C.; Guimarães, G.G.F.; Mattoso, L.H.C.; Marconcini, J.M. Biodegradability and Nutrients Release of Thermoplastic Starch and Poly (ε-Caprolactone) Blends for Agricultural Uses. Carbohydr. Polym. 2022, 282, 119058. [Google Scholar] [CrossRef] [PubMed]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation Mechanisms of Polycaprolactone in the Context of Chemistry, Geometry and Environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Szymanek, I.; Cvek, M.; Rogacz, D.; Żarski, A.; Lewicka, K.; Sedlarik, V.; Rychter, P. Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry. Int. J. Mol. Sci. 2024, 25, 653. [Google Scholar] [CrossRef]
- Gu, X.-B.; Li, Y.-N.; Du, Y.-D. Biodegradable Film Mulching Improves Soil Temperature, Moisture and Seed Yield of Winter Oilseed Rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Alvarado, E.; Camacho Montero, J.R.; Rosales, J.M. Atmospheric and Soil Degradation of Aliphatic–Aromatic Polyester Films. Polym. Degrad. Stab. 2010, 95, 99–107. [Google Scholar] [CrossRef]
- Souza, P.M.S.; Sommaggio, L.R.D.; Marin-Morales, M.A.; Morales, A.R. PBAT Biodegradable Mulch Films: Study of Ecotoxicological Impacts Using Allium Cepa, Lactuca Sativa and HepG2/C3A Cell Culture. Chemosphere 2020, 256, 126985. [Google Scholar] [CrossRef]
- Michalik, R.; Wandzik, I. A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers 2020, 12, 2425. [Google Scholar] [CrossRef]
- Supare, K.; Mahanwar, P.A. Starch-Derived Superabsorbent Polymers in Agriculture Applications: An Overview. Polym. Bull. 2022, 79, 5795–5824. [Google Scholar] [CrossRef]
- Gan, J.; Zhu, Y.; Wilen, C.; Pittenger, D.; Crowley, D. Effect of Planting Covers on Herbicide Persistence in Landscape Soils. Environ. Sci. Technol. 2003, 37, 2775–2779. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as Water-Saving Technique in Dryland Agriculture: Review Article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent Hydrogel (SAH) as a Soil Amendment for Drought Management: A Review. Soil Tillage Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Feng, D.; Bai, B.; Ding, C.; Wang, H.; Suo, Y. Synthesis and Swelling Behaviors of Yeast- g -Poly(Acrylic Acid) Superabsorbent Co-Polymer. Ind. Eng. Chem. Res. 2014, 53, 12760–12769. [Google Scholar] [CrossRef]
- Saha, A.; Rattan, B.; Sekharan, S.; Manna, U. Quantifying the Interactive Effect of Water Absorbing Polymer (WAP)-Soil Texture on Plant Available Water Content and Irrigation Frequency. Geoderma 2020, 368, 114310. [Google Scholar] [CrossRef]
- Buchmann, C.; Bentz, J.; Schaumann, G.E. Intrinsic and Model Polymer Hydrogel-Induced Soil Structural Stability of a Silty Sand Soil as Affected by Soil Moisture Dynamics. Soil Tillage Res. 2015, 154, 22–33. [Google Scholar] [CrossRef]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Md Akil, H. Classification, Processing and Application of Hydrogels: A Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 414–433. [Google Scholar] [CrossRef]
- Guilherme, M.R.; Aouada, F.A.; Fajardo, A.R.; Martins, A.F.; Paulino, A.T.; Davi, M.F.T.; Rubira, A.F.; Muniz, E.C. Superabsorbent Hydrogels Based on Polysaccharides for Application in Agriculture as Soil Conditioner and Nutrient Carrier: A Review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Ren, X.; Gao, G. The Role of Chemical and Physical Crosslinking in Different Deformation Stages of Hybrid Hydrogels. Eur. Polym. J. 2018, 100, 86–95. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, L.; Xie, F.; Bao, X.; Liu, H.; Ji, Z.; Chen, L. One-Step Method to Prepare Starch-Based Superabsorbent Polymer for Slow Release of Fertilizer. Chem. Eng. J. 2017, 309, 607–616. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Chen, Y. Synthesis and Characterization of Starch-g-Poly(Acrylic Acid)/Organo-Zeolite 4A Superabsorbent Composites with Respect to Their Water-Holding Capacities and Nutrient-Release Behavior. Polym. Compos. 2017, 38, 1838–1848. [Google Scholar] [CrossRef]
- Chibac-Scutaru, A.L.; Coseri, S. Advances in the Use of Cellulose-Based Proton Exchange Membranes in Fuel Cell Technology: A Review. Int. J. Biol. Macromol. 2023, 247, 125810. [Google Scholar] [CrossRef] [PubMed]
- Duceac, I.A.; Coseri, S. Biopolymers and Their Derivatives: Key Components of Advanced Biomedical Technologies. Biotechnol. Adv. 2022, 61, 108056. [Google Scholar] [CrossRef] [PubMed]
- Culica, M.E.; Chibac-Scutaru, A.-L.; Mohan, T.; Coseri, S. Cellulose-Based Biogenic Supports, Remarkably Friendly Biomaterials for Proteins and Biomolecules. Biosens. Bioelectron. 2021, 182, 113170. [Google Scholar] [CrossRef] [PubMed]
- Duceac, I.A.; Vereștiuc, L.; Coroaba, A.; Arotăriței, D.; Coseri, S. All-Polysaccharide Hydrogels for Drug Delivery Applications: Tunable Chitosan Beads Surfaces via Physical or Chemical Interactions, Using Oxidized Pullulan. Int. J. Biol. Macromol. 2021, 181, 1047–1062. [Google Scholar] [CrossRef]
- Duceac, I.A.; Coseri, S. Chitosan Schiff-Base Hydrogels—A Critical Perspective Review. Gels 2022, 8, 779. [Google Scholar] [CrossRef]
- Dragan, E.S.; Ghiorghita, C.-A.; Dinu, M.; Duceac, I.; Coseri, S. Fabrication of Self-Antibacterial Chitosan/Oxidized Starch Polyelectrolyte Complex Sponges for Controlled Delivery of Curcumin. Food Hydrocoll. 2022, 135, 108147. [Google Scholar] [CrossRef]
- Baron, R.I.; Bercea, M.; Avadanei, M.; Lisa, G.; Biliuta, G.; Coseri, S. Green Route for the Fabrication of Self-Healable Hydrogels Based on Tricarboxy Cellulose and Poly(Vinyl Alcohol). Int. J. Biol. Macromol. 2019, 123, 744–751. [Google Scholar] [CrossRef]
- Biliuta, G.; Suteu, D.; Malutan, T.; Chirculescu, A.-I.; Nica, I.; Coseri, S. Valorization of tempo-oxidized cellulosic fractions for efficient dye removal from wastewaters. Cellul. Chem. Technol. 2018, 52, 609–618. [Google Scholar]
- Coseri, S.; Biliuta, G.; Simionescu, B.C. Selective Oxidation of Cellulose, Mediated by N-Hydroxyphthalimide, under a Metal-Free Environment. Polym. Chem. 2018, 9, 961–967. [Google Scholar] [CrossRef]
- Culica, M.; Biliuta, G.; Rotaru, R.; Lisa, G.; Baron, R.; Coseri, S. New Electromagnetic Shielding Materials Based on Viscose-carbon Nanotubes Composites. Polym. Eng. Sci. 2019, 59, 1499–1506. [Google Scholar] [CrossRef]
- Biliuta, G.; Sacarescu, L.; Socoliuc, V.; Iacob, M.; Gheorghe, L.; Negru, D.; Coseri, S. Carboxylated Polysaccharides Decorated with Ultrasmall Magnetic Nanoparticles with Antibacterial and MRI Properties. Macromol. Chem. Phys. 2017, 218, 1700062. [Google Scholar] [CrossRef]
- Zhang, Z.; Abidi, N.; Lucia, L.; Chabi, S.; Denny, C.T.; Parajuli, P.; Rumi, S.S. Cellulose/Nanocellulose Superabsorbent Hydrogels as a Sustainable Platform for Materials Applications: A Mini-Review and Perspective. Carbohydr. Polym. 2023, 299, 120140. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Z.; Zhang, A.; Yang, S. Water Retention and Fertilizer Slow Release Integrated Superabsorbent Synthesized from Millet Straw and Applied in Agriculture. Ind. Crop. Prod. 2021, 160, 113126. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J. Preparation and Characterization of Multifunctional Slow Release Fertilizer Coated with Cellulose Derivatives. Int. J. Polym. Mater. Polym. Biomater. 2020, 70, 774–781. [Google Scholar] [CrossRef]
- Barajas-Ledesma, R.M.; Patti, A.F.; Wong, V.N.L.; Raghuwanshi, V.S.; Garnier, G. Engineering Nanocellulose Superabsorbent Structure by Controlling the Drying Rate. Colloids Surf. Physicochem. Eng. Asp. 2020, 600, 124943. [Google Scholar] [CrossRef]
- Barajas-Ledesma, R.M.; Wong, V.N.L.; Little, K.; Patti, A.F.; Garnier, G. Carboxylated Nanocellulose Superabsorbent: Biodegradation and Soil Water Retention Properties. J. Appl. Polym. Sci. 2022, 139, 51495. [Google Scholar] [CrossRef]
- Tanpichai, S.; Phoothong, F.; Boonmahitthisud, A. Superabsorbent Cellulose-Based Hydrogels Cross-Liked with Borax. Sci. Rep. 2022, 12, 8920. [Google Scholar] [CrossRef]
- Kim, B.; Kim, T.-H.; Lee, B. Optimal Synthesis of Carboxymethylcellulose-Based Composite Superabsorbents. Korean J. Chem. Eng. 2021, 38, 215–225. [Google Scholar] [CrossRef]
- Das, D.; Prakash, P.; Rout, P.K.; Bhaladhare, S. Synthesis and Characterization of Superabsorbent Cellulose-Based Hydrogel for Agriculture Application. Starch-Stärke 2021, 73, 1900284. [Google Scholar] [CrossRef]
- Ajmeri, J.R.; Ajmeri, C.J. Developments in Nonwovens as Agrotextiles. In Advances in Technical Nonwovens; Woodhead Publishing: Sawston, UK, 2016; pp. 365–384. ISBN 978-0-08-100575-0. [Google Scholar]
- Šišková, A.O.; Peer, P.; Andicsová, A.E.; Jordanov, I.; Rychter, P. Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. Materials 2021, 14, 4694. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Li, Z.; Zhang, Y.; Ren, Z.; Zhang, Y.; Li, S.; Weng, W. Electrospun Starch-Based Nanofiber Mats for Odor Adsorption of Oyster Peptides: Recyclability and Structural Characterization. Food Hydrocoll. 2024, 147, 109408. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Sun, J.; Wang, X. Development of Natural Fiber-Based Degradable Nonwoven Mulch from Recyclable Mill Waste. Waste Manag. 2021, 121, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xiong, X.; Petrů, M.; Tan, X.; Kaneko, H.; Militký, J.; Sakuma, A. Theoretical and Experimental Studies on Thermal Properties of Polyester Nonwoven Fibrous Material. Materials 2020, 13, 2882. [Google Scholar] [CrossRef]
- Chizhov, A.S.; Ol’khov, A.A.; Monakhova, T.V.; Shibryaeva, L.S.; Iordanskii, A.L. Thermooxidation and Biodegradation of Nonwoven Biopolymer Fibrous Materials. Polym. Sci. Ser. D 2018, 11, 339–343. [Google Scholar] [CrossRef]
- Marczak, D.; Lejcuś, K.; Grzybowska-Pietras, J.; Biniaś, W.; Lejcuś, I.; Misiewicz, J. Biodegradation of Sustainable Nonwovens Used in Water Absorbing Geocomposites Supporting Plants Vegetation. Sustain. Mater. Technol. 2020, 26, e00235. [Google Scholar] [CrossRef]
- Hablot, E.; Dharmalingam, S.; Hayes, D.; Wadsworth, L.; Blazy, C.; Narayan, R. Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonwoven Mulches. J. Polym. Environ. 2014, 22, 417–429. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Hayes, D.; Wadsworth, L.; Dunlap, R.; DeBruyn, J.; Lee, J.; Wszelaki, A. Soil Degradation of Polylactic Acid/Polyhydroxyalkanoate-Based Nonwoven Mulches. J. Polym. Environ. 2015, 23, 302–315. [Google Scholar] [CrossRef]
- Gaminian, H.; Ahvazi, B.; Vidmar, J.J.; Ekuere, U.; Regan, S. Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric. Biomass 2024, 4, 363–401. [Google Scholar] [CrossRef]
- Anand, S.C.; Brunnschweiler, D.; Swarbrick, G.; Russell, S.J. Chapter 8—Mechanical Bonding. In Handbook of Nonwovens, 2nd ed.; Russell, S.J., Ed.; The Textile Institute Book Series; Woodhead Publishing: Cambridge, UK, 2022; pp. 301–393. ISBN 978-0-12-818912-2. [Google Scholar]
- Yan, Y. 2—Developments in Fibers for Technical Nonwovens. In Advances in Technical Nonwovens; Kellie, G., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2016; pp. 19–96. ISBN 978-0-08-100575-0. [Google Scholar]
- Böhme, M.; Pinker, I.; Grueneberg, H.; Herfort, S. Sheep Wool as Fertiliser for Vegetables and Flowers in Organic Farming. Acta Hortic. 2012, 933, 195–202. [Google Scholar] [CrossRef]
- Broda, J.; Gawłowski, A.; Grzybowska-Pietras, J.; Rom, M.; Przybyło, S.; Laszczak, R. Application of geotextiles for the stabilization of steep slopes in gravel pits. Inż. Ekol. 2017, 18, 71–77. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Stratton, G.W.; Pincock, J.; Butler, S.; Jeliazkova, E.A.; Nedkov, N.K.; Gerard, P.D. Wool-Waste as Organic Nutrient Source for Container-Grown Plants. Waste Manag. 2009, 29, 2160–2164. [Google Scholar] [CrossRef] [PubMed]
- Gabryś, T.; Fryczkowska, B.; Grzybowska-Pietras, J.; Biniaś, D. Modification and Properties of Cellulose Nonwoven Fabric—Multifunctional Mulching Material for Agricultural Applications. Materials 2021, 14, 4335. [Google Scholar] [CrossRef]
- Gao, Y.; Truong, Y.B.; Cacioli, P.; Butler, P.; Kyratzis, I.L. Bioremediation of Pesticide Contaminated Water Using an Organophosphate Degrading Enzyme Immobilized on Nonwoven Polyester Textiles. Enzyme Microb. Technol. 2014, 54, 38–44. [Google Scholar] [CrossRef]
- Ingmar, O.; Setiyono, S.; Savitri, D.A.; Novijanto, N. Effect of Seed Coating and Packaging Material on Viability and Vigor of Soybean Seed in Room Temperature Storage. J. Appl. Agric. Sci. Technol. 2023, 7, 109–118. [Google Scholar] [CrossRef]
- Zhang, K.; Khan, Z.; Yu, Q.; Qu, Z.; Liu, J.; Luo, T.; Zhu, K.; Bi, J.; Hu, L.; Luo, L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. Plants 2022, 11, 2864. [Google Scholar] [CrossRef]
- Samarah, N.H.; Aldahadha, A. Effect of Polymer Coating on Seed Germination and the Emergence of Squash (Cucurbita pepo Zucchini). J. Appl. Hortic. 2023, 24, 288–292. [Google Scholar] [CrossRef]
- Zeng, D.; Fan, Z.; Tian, X.; Wang, W.; Zhou, M.; Li, H. Preparation and Mechanism Analysis of an Environment-Friendly Maize Seed Coating Agent. J. Sci. Food Agric. 2018, 98, 2889–2897. [Google Scholar] [CrossRef]
- Giroto, A.S.; Valle, S.F.; Guimarães, G.G.F.; Ohrem, B.; Bresolin, J.; Lücke, A.; Wissel, H.; Hungria, M.; Ribeiro, C.; Mattoso, L.H.C.; et al. Polyglycerol Citrate: A Novel Coating and Inoculation Material for Soybean Seeds. Environ. Technol. Innov. 2024, 34, 103627. [Google Scholar] [CrossRef]
- Akhter, M.; Shah, G.A.; Niazi, M.B.K.; Mir, S.; Jahan, Z.; Rashid, M.I. Novel Water-Soluble Polymer Coatings Control NPK Release Rate, Improve Soil Quality and Maize Productivity. J. Appl. Polym. Sci. 2021, 138, 51239. [Google Scholar] [CrossRef]
- Kumar, N. Polysaccharide-Based Component and Their Relevance in Edible Film/Coating: A Review. Nutr. Food Sci. 2019, 49, 793–823. [Google Scholar] [CrossRef]
- Campos de Melo, A.P.; de Melo e Silva-Neto, C.; Seleguini, A.; Marçal Fernandes, P. Does Fruit Cooling and Seed Film Coating Affect the Germination Potential of Physalis? Sci. Agropecu. 2015, 6, 325–328. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- do Espirito Santo Pereira, A.; Caixeta Oliveira, H.; Fernandes Fraceto, L.; Santaella, C. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials 2021, 11, 267. [Google Scholar] [CrossRef]
- Ludwig, E.J.; Nunes, U.R.; Prestes, O.D.; Fagundes, L.K.; Fernandes, T.S.; Saibt, N. Polymer Coating in Soybean Seed Treatment and Their Relation to Leaching of Chemicals. Rev. Ambiente Água 2020, 15, e2602. [Google Scholar] [CrossRef]
- Rakesh, P.; Prasad, R.D.; Devi, G.U.; Bhat, B.N. In Vitro Assessment of Seedling Growth and Management of Castor Wilt and Groundnut Collar Rot through the Combination of Seed Coat Polymers, Fungicides and Bioagents. Bull. Environ. Pharmacol. Life Sci. 2017, 6, 147–153. [Google Scholar]
- Kumar, S.; Gangwar, C.B.; Gupta, H.; Yadav, G.; Singh, S.; Yadav, S.K. Influence of Seed Coating with Polymer Coat and Chemical on Pigeon Pea Seed Quality during Storage. Pharma Innov. J. 2022, 11, 2222–2224. [Google Scholar] [CrossRef]
- Robani, H. Film-Coating of Horticultural Seed. HortTechnology 1994, 4, 104–105. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Shier, W.T.; Vicari, A.; Little, N.S.; Aloise, M.R.; Giacomini, S. Degradation of Microplastic Seed Film-Coating Fragments in Soil. Chemosphere 2019, 226, 645–650. [Google Scholar] [CrossRef]
- Vercelheze, A.E.S.; Marim, B.M.; Oliveira, A.L.M.; Mali, S. Development of Biodegradable Coatings for Maize Seeds and Their Application for Azospirillum Brasilense Immobilization. Appl. Microbiol. Biotechnol. 2019, 103, 2193–2203. [Google Scholar] [CrossRef]
- Lee, S.; Hong, J.-Y.; Jang, J. Synthesis and Electrical Response of Polyaniline/Poly(Styrene Sulfonate)-Coated Silica Spheres Prepared by Seed-Coating Method. J. Colloid Interface Sci. 2013, 398, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aziz, M.E.; Salama, D.M.; Morsi, S.M.M.; Youssef, A.M.; El-Sakhawy, M. Development of Polymer Composites and Encapsulation Technology for Slow-Release Fertilizers. Rev. Chem. Eng. 2022, 38, 603–616. [Google Scholar] [CrossRef]
- Korbecka-Glinka, G.; Wiśniewska-Wrona, M.; Kopania, E. Zastosowanie Polimerów Naturalnych Do Uszlachetniania Materiału Siewnego. Polimery 2021, 66, 11–20. [Google Scholar] [CrossRef]
- Turco, R.; Ortega-Toro, R.; Tesser, R.; Mallardo, S.; Collazo-Bigliardi, S.; Chiralt Boix, A.; Malinconico, M.; Rippa, M.; Di Serio, M.; Santagata, G. Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties. Coatings 2019, 9, 574. [Google Scholar] [CrossRef]
- Pathak, V.; Ambrose, R.P.K. Starch-Based Biodegradable Hydrogel as Seed Coating for Corn to Improve Early Growth under Water Shortage. J. Appl. Polym. Sci. 2020, 137, 48523. [Google Scholar] [CrossRef]
- Dogaru, B.-I.; Stoleru, V.; Mihalache, G.; Yonsel, S.; Popescu, M.-C. Gelatin Reinforced with CNCs as Nanocomposite Matrix for Trichoderma Harzianum KUEN 1585 Spores in Seed Coatings. Molecules 2021, 26, 5755. [Google Scholar] [CrossRef]
- Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment. Agronomy 2019, 9, 276. [Google Scholar] [CrossRef]
- Donayre, A.; Sanchez, L.F.; Kim, S.; Aguilar, R.; Nakamatsu, J. Eco-Friendly Improvement of Water Erosion Resistance of Unstable Soils with Biodegradable Polymers. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012044. [Google Scholar] [CrossRef]
- Larson, S.; Newman, J.K.; O Connor, G.; Griggs, C.; Martin, A.; Nijak, G.; Lord, E.; Duggar, R.; Leeson, A. Biopolymer as an Alternative to Petroleum-Based Polymers to Control Soil Erosion: Iowa Army Ammunition Plant; Defense Technical Information Center: Fort Belvoir, VA, USA, 2013. [Google Scholar]
- Algadwi, M.B.; Spyropoulos, E.; Nawaz, B.A. Erosion Protection by Polymer Additive. In Proceedings of the 2nd International Conference on Civil Engineering Fundamentals and Applications (ICCEFA’21), Seoul, Republic of Korea, 21–23 November 2021. [Google Scholar]
- CSIRO PUBLISHING|Soil Research. Available online: https://www.publish.csiro.au/SR/SR05175 (accessed on 14 April 2024).
- Effect of Polyacrylamide Polymer on Wind Erosion Control of Sandy Soil in Azadegan Plain. Available online: https://jsw.um.ac.ir/article_38575_en.html (accessed on 14 April 2024).
- Flanagan, D.C.; Norton, L.D.; Peterson, J.R.; Chaudhari, K. Using Polyacrylamide to Control Erosion on Agricultural and Disturbeds Soils in Rainfed Areas. J. Soil Water Conserv. 2003, 58, 301–311. [Google Scholar]
- Koerner, R.M.; Okrasinski, T.A. Erosion Control of Granular Soils Using PVA. J. Constr. Div. 1978, 104, 279–294. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.; Xu, Y.; Mu, X.; Zhang, H.; Lei, Z. Waste Cabbage-Integrated Nutritional Superabsorbent Polymers for Water Retention and Absorption Applications. Langmuir 2022, 38, 14869–14878. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhou, C.; Liu, Z. Model Test Study on the Enhancement of Ecological Self-Repairing Ability of Surface Slope Soil by New Polymer Composites. Int. J. Environ. Res. Public Health 2022, 19, 9933. [Google Scholar] [CrossRef] [PubMed]
- Panova, I.; Drobyazko, A.; Spiridonov, V.; Sybachin, A.; Kydralieva, K.; Jorobekova, S.; Yaroslavov, A. Humics-Based Interpolyelectrolyte Complexes for Antierosion Protection of Soil: Model Investigation. Land Degrad. Dev. 2019, 30, 337–347. [Google Scholar] [CrossRef]
- Wali, S.; Khattak, M.I.K. and M.I. Synthesis, Characterization and Application of Karak Bentonite Clay-Graft-Poly (Acrylamide/Co- Acrylic Acid) Superabsorbent Composite and Its Adsorption Study for Selected Heavy Metals. J. Chem. Soc. Pak. 2023, 45, 226. [Google Scholar]
- Tian, H.; Cheng, S.; Zhen, J.; Lei, Z. Superabsorbent Polymer with Excellent Water/Salt Absorbency and Water Retention, and Fast Swelling Properties for Preventing Soil Water Evaporation. J. Polym. Environ. 2023, 31, 812–824. [Google Scholar] [CrossRef]
- Khudhair, H.H.; Basim, K.N.; Al-Baidhani, J.H. Experimental Study of the Effect on Soil Erosion of Using Tiny Gravel as Bedding for Defective Sewer Pipes. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1067, 012008. [Google Scholar] [CrossRef]
- Doroftei, B.-I.; Degeratu, M.; Bandoc, G. Numerical tests for soil erosion reduction solutions under the action of the wind. Ann. Acad. Rom. Sci. Ser. Eng. Sci. 2022, 14, 62–72. [Google Scholar] [CrossRef]
- Misiewicz, J.; Datta, S.S.; Lejcuś, K.; Marczak, D. The Characteristics of Time-Dependent Changes of Coefficient of Permeability for Superabsorbent Polymer-Soil Mixtures. Materials 2022, 15, 4465. [Google Scholar] [CrossRef]
- Kou, H.; Jia, H.; Chu, J.; Zheng, P.; Liu, A. Effect of Polymer on Strength and Permeability of Marine Clay. Mar. Georesources Geotechnol. 2021, 39, 234–240. [Google Scholar] [CrossRef]
- Shaheen, A.; Turaib Ali Bukhari, S. Potential of Sawdust and Corn Cobs Derived Biochar to Improve Soil Aggregate Stability, Water Retention, and Crop Yield of Degraded Sandy Loam Soil. J. Plant Nutr. 2018, 41, 2673–2682. [Google Scholar] [CrossRef]
- Jinger, D.; Kumar, R.; Kakade, V.; Dinesh, D.; Singh, G.; Pande, V.C.; Bhatnagar, P.R.; Rao, B.K.; Vishwakarma, A.K.; Kumar, D.; et al. Agroforestry for Controlling Soil Erosion and Enhancing System Productivity in Ravine Lands of Western India under Climate Change Scenario. Environ. Monit. Assess. 2022, 194, 267. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, I.V.; Camilloto, G.P. Polímeros biodegradáveis na agricultura. An. Semin. Iniciaç. Científica 2021, 25. [Google Scholar] [CrossRef]
- Ben-Hur, M. Using Synthetic Polymers as Soil Conditioners to Control Runoff and Soil Loss in Arid and Semi-Arid Regions—A Review. Soil Res. 2006, 44, 191–204. [Google Scholar] [CrossRef]
- Haghighat, P.H.; Torabi, A.M. Preparation of biodegradable low density polyethylene by starch—Urea composition for agricultural applications. Iran. J. Chem. Chem. Eng. 2004, 23, 7–11. [Google Scholar]
- Thiagamani, S.M.K.; Krishnasamy, S.; Siengchin, S. Challenges of Biodegradable Polymers: An Environmental Perspective. Appl. Sci. Eng. Prog. 2024, 12, 149. [Google Scholar] [CrossRef]
- Khan, M.; Zaheer, M.H.; Kakar, H.K.; Ullah, Z.; Bukhsh, K. Reuse of Non-Degradable Waste Polyethylene Bottles for Ground Improvement. J. ICT Des. Eng. Technol. Sci. 2023, 7, 1–5. [Google Scholar] [CrossRef]
- Tyagi, P.; Agate, S.; Velev, O.D.; Lucia, L.; Pal, L. A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environ. Sci. Technol. 2022, 56, 2071–2095. [Google Scholar] [CrossRef]
- Sun, B.; Guo, C.; Chen, Y.; Chu, X.; Ma, X. Study on Spraying Construction Method of a Non-Water Reacting Polymer Layer in the Tunnel. Materials 2022, 15, 4138. [Google Scholar] [CrossRef]
- Guo, C.; Wang, F. Research on Polymer Injection Technology for Quick Tunnel Repairment. In Proceedings of the Road Pavement Material Characterization and Rehabilitation: Selected Papers from the 2009 GeoHunan International Conference, Changsha, China, 3–6 August 2012; pp. 110–117. [Google Scholar] [CrossRef]
- Shokodko, E.; Bobrova, E.Y.; Zinoveva, E.A.; Zhukov, A.D. Dome House Insulation Systems. Mater. Sci. Forum 2020, 992, 48–53. [Google Scholar] [CrossRef]
- Plank, J. Polymere für die Tiefbohrzementierung. Nachrichten Aus Chem. 2011, 59, 510–515. [Google Scholar] [CrossRef]
- Nirman, P. Polyimide Nanocomposites and Its Application. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2448–2851. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Q.; Liu, Y.; Zeng, Y.; Ding, Q.; Wu, R.; Liu, Y.; Xiang, X. Synthesis, Gas Barrier and Thermal Properties of Polyimide Containing Rigid Planar Fluorene Moieties. J. Macromol. Sci. Part A 2018, 55, 75–84. [Google Scholar] [CrossRef]
- Yoshida, M.; Hoshino, K.; Taino, T.; Myoren, H.; Takada, S.; Kikuchi, K.; Nakagawa, H.; Aoyagi, M.; Sato, H.; Shimizu, H.M. X-Ray Detection Using Superconducting Tunnel Junctions with Polyimide Insulation Layer. IEEE Trans. Appl. Supercond. 2005, 15, 606–608. [Google Scholar] [CrossRef]
- Iwamoto, M.; Kubota, T. Elastic and Inelastic Tunneling through Polyimide LB Films. In Proceedings of the 1994 4th International Conference on Properties and Applications of Dielectric Materials (ICPADM), Brisbane, Australia, 3–8 July 1994; Volume 1, pp. 197–200. [Google Scholar]
- Dhamaniya, S.; Gupta, V.; Kakatkar, R. Recent Advances in Biodegradable Polymers. J. Res. Updat. Polym. Sci. 2018, 7. [Google Scholar] [CrossRef]
- Zhang, W. Analysis on the Development and Application of Biodegradable Polymers. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012156. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Dehbi, A.; Youssef, B.; Mourad, A.-H.I.; Chappey, C.; Picuno, P.; Statuto, D. Physical and Gas Permeation Properties of Five-Layer Polyethylene Film Used as Greenhouse Roof. J. Agric. Eng. 2018, 49, 124–129. [Google Scholar] [CrossRef]
- Cabrera, G.; Li, J.; Maazouz, A.; Lamnawar, K. A Journey from Processing to Recycling of Multilayer Waste Films: A Review of Main Challenges and Prospects. Polymers 2022, 14, 2319. [Google Scholar] [CrossRef]
- Ma, J.Q. Application of Spray-on Waterproofing Membrane in Tunnels. Adv. Mater. Res. 2011, 168–170, 822–826. [Google Scholar] [CrossRef]
- Gong, C.; Wang, Y.; Ding, W.; Lei, M.; Shi, C. Waterproof Performance of Sealing Gasket in Shield Tunnel: A Review. Appl. Sci. 2022, 12, 4556. [Google Scholar] [CrossRef]
- Jiang, Y.; He, B.; Zhao, J.; Pei, H.; Liu, J.; Wang, H. Influence of Novel Polymer Waterproofing Membrane on Mechanical Properties of Tunnel Lining Structure. Constr. Build. Mater. 2022, 360, 129579. [Google Scholar] [CrossRef]
- Tengilimoglu, O.; Akyuz, U. Experimental Study on Hybrid Precast Tunnel Segments Reinforced by Macro-Synthetic Fibres and Glass Fibre Reinforced Polymer Bars. Tunn. Undergr. Space Technol. 2020, 106, 103612. [Google Scholar] [CrossRef]
- Markovičová, L.; Zatkalíková, V.; Hanusová, P. Carbon Fiber Polymer Composites. Conf. Qual. Prod. Improv.–CQPI 2019, 1, 276–280. [Google Scholar] [CrossRef]
- Radford, D.W.; Grabher, A.; Bridge, J. Inorganic Polymer Matrix Composite Strength Related to Interface Condition. Materials 2009, 2, 2216–2227. [Google Scholar] [CrossRef]
- Reis, J.M.; Ferreira, A. Fracture Energy of Polymer Concrete Reinforced with Short Carbon and Glass Fibers. Mater. Sci. Forum 2004, 455–456, 810–813. [Google Scholar] [CrossRef]
- Deshpande, P.P.; Jadhav, N.G.; Gelling, V.J.; Sazou, D. Conducting Polymers for Corrosion Protection: A Review. J. Coat. Technol. Res. 2014, 11, 473–494. [Google Scholar] [CrossRef]
- Ghafari, N. Corrosion Control in Underground Concrete Structures Using Double Waterproofing Shield System (DWS). Int. J. Min. Sci. Technol. 2013, 23, 603–611. [Google Scholar] [CrossRef]
- Hu, X.; He, C.; Feng, K.; Liu, S.; Walton, G. Effects of Polypyrrole Coated Rebar on Corrosion Behavior of Tunnel Lining with the Combination Effect of Sustained Loading and Pre-Existing Cracks When Exposed to Chlorides. Constr. Build. Mater. 2019, 221, 318–331. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental Sustainability of Greenhouse Covering Materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Alzahrani, S.M.; Alsadon, A.A.; Ali, I.M.; Elleithy, R.M. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review. Sci. World J. 2012, 2012, e906360. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Solar Radiation Manipulations and Their Role in Greenhouse Claddings: Fresnel Lenses, NIR- and UV-Blocking Materials. Renew. Sustain. Energy Rev. 2013, 18, 271–287. [Google Scholar] [CrossRef]
- Espejo, C.; Arribas, A.; Monzó, F.; Díez, P.P. Nanocomposite Films with Enhanced Radiometric Properties for Greenhouse Covering Applications. J. Plast. Film Sheeting 2012, 28, 336–350. [Google Scholar] [CrossRef]
- Maraveas, C.; Kotzabasaki, M.I.; Bayer, I.S.; Bartzanas, T. Sustainable Greenhouse Covering Materials with Nano- and Micro-Particle Additives for Enhanced Radiometric and Thermal Properties and Performance. AgriEngineering 2023, 5, 1347–1377. [Google Scholar] [CrossRef]
- Kavga, A.; Souliotis, M.; Koumoulos, E.P.; Fokaides, P.A.; Charitidis, C.A. Environmental and Nanomechanical Testing of an Alternative Polymer Nanocomposite Greenhouse Covering Material. Sol. Energy 2018, 159, 1–9. [Google Scholar] [CrossRef]
- Peteu, S.F.; Oancea, F.; Sicuia, O.A.; Constantinescu, F.; Dinu, S. Responsive Polymers for Crop Protection. Polymers 2010, 2, 229–251. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield. Sustainability 2021, 13, 3253. [Google Scholar] [CrossRef]
- Mangaraj, S.; Yadav, A.; Bal, L.M.; Dash, S.K.; Mahanti, N.K. Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. J. Packag. Technol. Res. 2019, 3, 77–96. [Google Scholar] [CrossRef]
- Twede, D. History of Packaging. In The Routledge Companion to Marketing History; Routledge: London, UK, 2016; ISBN 978-1-315-88285-7. [Google Scholar]
- Bepeмeйчик, O.B.; Якимoвич, E.Б. Packaging. History. Packaging Materials. Bionic Design; БНТУ: Minskaja Voblasć, Belarus, 2014; ISBN 978-985-550-225-9. [Google Scholar]
- Meena, P.L.; Goel, A.; Rai, V.; Barwa, M.S. Packaging Material and Need of Biodegradable Polymers: A Review. Int. J. Appl. Res. 2017, 3, 886–896. [Google Scholar]
- Bharadwaj, A.; Yadav, D.; Varshney, S. Non-biodegradable waste—Its impact & safe disposal. Int. J. Adv. Technol. Eng. Sci. 2015, 3, 184–191. [Google Scholar]
- Composites for Environmental Engineering|Wiley Online Books. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119555346#page=112 (accessed on 15 April 2024).
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Comprehensive Review on Polylactic Acid (PLA)—Synthesis, Processing and Application in Food Packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef] [PubMed]
- Bastarrachea, L.; Dhawan, S.; Sablani, S.S. Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Eng. Rev. 2011, 3, 79–93. [Google Scholar] [CrossRef]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable Polymers and Green-Based Antimicrobial Packaging Materials: A Mini-Review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Lyashenko, V.; Sotnik, S.; Babker, A.M. Features of Packaging from Polymers in Pharmaceutics. Saudi J. Med. Pharm. Sci. 2018, 4, 166–174. [Google Scholar]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling 2018, 3, 1. [Google Scholar] [CrossRef]
- Yamada, K.; Tomonaga, F.; Kamimura, A. Improved Preparation of Recycled Polymers in Chemical Recycling of Fiber-Reinforced Plastics and Molding of Test Product Using Recycled Polymers. J. Mater. Cycles Waste Manag. 2010, 12, 271–274. [Google Scholar] [CrossRef]
- Achilias, D.S.; Giannoulis, A.; Papageorgiou, G.Z. Recycling of Polymers from Plastic Packaging Materials Using the Dissolution–Reprecipitation Technique. Polym. Bull. 2009, 63, 449–465. [Google Scholar] [CrossRef]
- Vouvoudi, E.C.; Achilias, D.S. Polymer Packaging Waste Recycling: Study of the Pyrolysis of Two Blends via TGA. J. Therm. Anal. Calorim. 2020, 142, 1891–1895. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Choi, Y. Advances in the Recycling of Polymer-Based Plastic Materials. In Urban Mining for Waste Management and Resource Recovery; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-00-320107-6. [Google Scholar]
- Mahala, V. Madhuca indica: An Overview of Tree. Agric. Food E-Newsl. 2022, 4. [Google Scholar]
- Stelescu, M.D. Polymer Composites Based on Plasticized PVC and Vulcanized Nitrile Rubber Waste Powder for Irrigation Pipes. Int. Sch. Res. Not. 2013, 2013, e726121. [Google Scholar] [CrossRef]
- Bouchenafa, W.; Dewals, B.; Lefevre, A.; Mignot, E. Water Soluble Polymers as a Means to Increase Flow Capacity: Field Experiment of Drag Reduction by Polymer Additives in an Irrigation Canal. J. Hydraul. Eng. 2021, 147, 05021003. [Google Scholar] [CrossRef]
- Borsato, E.; Martello, M.; Marinello, F.; Bortolini, L. Environmental and Economic Sustainability Assessment for Two Different Sprinkler and A Drip Irrigation Systems: A Case Study on Maize Cropping. Agriculture 2019, 9, 187. [Google Scholar] [CrossRef]
- Al-Taey, D.K.A.; Hussain, A.J. Drought’s Impact on Growth and Strategies to Mitigate Its Effects on Potato Cultivation: A Review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 042070. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, Z.H.; Zhou, H. The Research on Wear Resistant Polyurethane Hose Capable of Being Flat. Adv. Mater. Res. 2012, 535–537, 1378–1381. [Google Scholar] [CrossRef]
- Sadeghzadeh, M.A.; Jannati, M.; Melekinezhad, H. Solar-Thermophysical Irrigation Instrument for Container Plants. J. Irrig. Drain. Eng. 2022, 148, 04022019. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, T.; Li, Y.; Bralts, V. Effects of Microbial Community Variation on Bio-Clogging in Drip Irrigation Emitters Using Reclaimed Water. Agric. Water Manag. 2017, 194, 139–149. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Wang, Z.-M.; Yan, X.; Chen, J.; Guo, Y.-J.; Lang, W.-Z. Versatile Polyvinylidene Fluoride Hybrid Ultrafiltration Membranes with Superior Antifouling, Antibacterial and Self-Cleaning Properties for Water Treatment. J. Colloid Interface Sci. 2017, 505, 38–48. [Google Scholar] [CrossRef]
- Vismara, E.; Ajmi, K.; Arrigoni, P.; Starace, G.; Torri, G. Innovative Polyethylene Nets for Agricultural and Environmental Applications. In Proceedings of the 262nd ACS National Meeting & Exposition, Atlanta, GA, USA, 22–26 August 2021. [Google Scholar]
- La Mantia, F.P.; Ceraulo, M.; Testa, P.; Morreale, M. Biodegradable Polymers for the Production of Nets for Agricultural Product Packaging. Materials 2021, 14, 323. [Google Scholar] [CrossRef]
- Sustainability|Free Full-Text|The Sustainability of Plastic Nets in Agriculture. Available online: https://www.mdpi.com/2071-1050/12/9/3625 (accessed on 15 April 2024).
- Sica, C.; Picuno, P. Spectro-radiometrical characterization of plastic nets for protected cultivation. Acta Hortic. 2008, 801, 245–252. [Google Scholar] [CrossRef]
- SciELO—Brazil—Polymers and Its Applications in Agriculture Polymers and Its Applications in Agriculture. Available online: https://www.scielo.br/j/po/a/Y94k4QmMfsKGqqfHgzBdcLj/?lang=en (accessed on 15 April 2024).
- Sánchez-Solís, A.; Padilla, A. Effect of Sands on Poly(Vinyl Chloride) Resistance to Ultraviolet Light. Polym. Bull. 1996, 36, 753–758. [Google Scholar] [CrossRef]
- Mourad, M.M.; Abdou, Y.; Berber, M.R.; Elhussiny, F. Using nano tungsten oxide polymer composite as a gamma radiation shielding. Delta J. Sci. 2021, 43, 126–132. [Google Scholar] [CrossRef]
- Laboratory Efficacy of HaNPV against Pod Borer, Helicoverpa Armigera (Hubner) Infesting Chickpea—MedCrave Online. Available online: https://medcraveonline.com/APAR/laboratory-efficacy-of-hanpv-against-pod-borer-helicoverpa-armigera-hubner-infesting-chickpea.html (accessed on 15 April 2024).
- Das, P.K.; Panda, G.; Patra, K.; Jena, N.; Dash, M. The Role of Polyplexes in Developing a Green Sustainable Approach in Agriculture. RSC Adv. 2022, 12, 34463–34481. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Fong, S.W.; Lee, M.T. Study on Polymer Matrix Composites Used as Greenhouse Coverings: Optical Properties. Appl. Mech. Mater. 2017, 863, 15–19. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H.; Wang, Y.; Dong, L. Generation of Temperature Gradient on Microfluidic Plant Chip for High-Throughput Plant Phenotyping. In Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Los Angeles, CA, USA, 9–12 April 2017; pp. 398–401. [Google Scholar]
- Panova, G.G.; Krasnopeeva, E.L.; Laishevkina, S.G.; Kuleshova, T.E.; Udalova, O.R.; Khomyakov, Y.V.; Mirskaya, G.V.; Vertebny, V.E.; Zhuravleva, A.S.; Shevchenko, N.N.; et al. Polymer Gel Substrate: Synthesis and Application in the Intensive Light Artificial Culture of Agricultural Plants. Gels 2023, 9, 937. [Google Scholar] [CrossRef]
- McCabe, K.G.; Schrader, J.A.; Currey, C.J.; Grewell, D.; Graves, W.R. Soy-Composite Biocontainers Allow for Reduced Fertilizer Inputs during Container-Crop Production. HortScience 2016, 51, 927–934. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Perez-Puyana, V.; Guerrero, A.; Romero, A. Micronutrient-Controlled-Release Protein-Based Systems for Horticulture: Micro vs. Nanoparticles. Ind. Crop. Prod. 2022, 185, 115128. [Google Scholar] [CrossRef]
- Lincmaierová, K.; Botyanszká, L.; Lichner, L.; Toková, L.; Zafeiriou, I.; Bondarev, D.; Horák, J.; Šurda, P. Assessing Microplastic-Induced Changes in Sandy Soil Properties and Crop Growth. AgriEngineering 2023, 5, 1555–1567. [Google Scholar] [CrossRef]
- Yu, Y.; Flury, M. Current Understanding of Subsurface Transport of Micro- and Nanoplastics in Soil. Vadose Zone J. 2021, 20, e20108. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ingraffia, R.; de Souza Machado, A.A. Microplastic Incorporation into Soil in Agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef]
- Molecules|Free Full-Text|Influence of Different Microplastic Forms on pH and Mobility of Cu2+ and Pb2+ in Soil. Available online: https://www.mdpi.com/1420-3049/27/5/1744 (accessed on 15 April 2024).
- Accumulation of Microplastics in Agroecosystems and Its Effects on Terrestrial Plants: A Short Review|Current Applied Science and Technology. Available online: https://li01.tci-thaijo.org/index.php/cast/article/view/256076 (accessed on 15 April 2024).
- Qiang, L.; Hu, H.; Li, G.; Xu, J.; Cheng, J.; Wang, J.; Zhang, R. Plastic Mulching, and Occurrence, Incorporation, Degradation, and Impacts of Polyethylene Microplastics in Agroecosystems. Ecotoxicol. Environ. Saf. 2023, 263, 115274. [Google Scholar] [CrossRef] [PubMed]
- Chandran, R.R.; Thomson, B.I.; Natishah, A.J.; Mary, J.; Nachiyar, V. Nanotechnology in Plastic Degradation. Biosci. Biotechnol. Res. Asia 2023, 20, 53–68. [Google Scholar] [CrossRef]
- Barragán, D.H.; Pelacho, A.M.; Martin-Closas, L. Degradation of Agricultural Biodegradable Plastics in the Soil under Laboratory Conditions. Soil Res. 2016, 54, 216–224. [Google Scholar] [CrossRef]
- Abda, E.M.; Muleta, A.; Tafesse, M.; Prabhu, S.V.; Aemro, A. Recent Endeavors in Microbial Remediation of Micro- and Nanoplastics. Phys. Sci. Rev. 2023, 8, 2853–2877. [Google Scholar] [CrossRef]
- Chang, X.; Xue, Y.; Li, J.; Zou, L.; Tang, M. Potential Health Impact of Environmental Micro- and Nanoplastics Pollution. J. Appl. Toxicol. 2020, 40, 4–15. [Google Scholar] [CrossRef]
- Yee, M.S.-L.; Hii, L.-W.; Looi, C.K.; Lim, W.-M.; Wong, S.-F.; Kok, Y.-Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Xu, L.; Huang, H.-R.; Liang, Q.; Seth, C.S.; Li, Y.-R. Nano-Microplastic and Agro-Ecosystems: A Mini-Review. Front. Plant Sci. 2023, 14, 1283852. [Google Scholar] [CrossRef]
- Kumari, R.; Suman, K.; Karmakar, S.; Mishra, V.; Lakra, S.G.; Saurav, G.K.; Mahto, B.K. Regulation and Safety Measures for Nanotechnology-Based Agri-Products. Front. Genome Ed. 2023, 5, 1200987. [Google Scholar] [CrossRef]
- The Circular Economy for Plastics—A European Analysis 2024. Available online: https://plasticseurope.org/knowledge-hub/the-circular-economy-for-plastics-a-european-analysis-2024/ (accessed on 29 August 2024).
- Bioplastics Global Production Capacity 2022–2028, by Type, Statista Research Department. 2024. Available online: https://www.statista.com/statistics/678684/global-production-capacity-of-bioplastics-by-type/ (accessed on 29 August 2024).
- Global Bioplastics Industry—Statistics & Facts, Statista Research Department. 2024. Available online: https://www.statista.com/topics/8744/bioplastics-industry-worldwide/ (accessed on 29 August 2024).
- Global Market Value of Bioplastics 2023–2033, Statista Research Department. 2024. Available online: https://www.statista.com/statistics/981762/market-value-bioplastics-worldwide/ (accessed on 29 August 2024).
- Bergmann, M.; Almroth, B.; Brander, S.; Dey, T.; Green, D.; Gündoğdu, S.; Krieger, A.; Wagner, M.; Walker, T. A Global Plastic Treaty Must Cap Production. Science 2022, 376, 469–470. [Google Scholar] [CrossRef]
- Thompson, R.C.; Pahl, S.; Sembiring, E. Plastics Treaty—Research Must Inform Action. Nature 2022, 608, 472. [Google Scholar] [CrossRef]
- UNEP Environment Assembly (5th) 2021: End Plastic Pollution: Towards an International Legally Binding Instrument: Resolution/: Adopted by the United Nations Environment Assembly, Nairobi. 2022. Available online: https://digitallibrary.un.org/record/3999257?v=pdf (accessed on 29 August 2024).
Polymers | Application | Advantages | Disadvantages |
---|---|---|---|
Conventional Polymers | |||
PE | Mulching films; Greenhouse covers; Irrigation pipes | Durability; Chemical resistance; Cost-effective | Environmental pollution due to non-biodegradability |
PVC | Agrivoltaic systems; Irrigation pipes | High durability; weather resistance | Recycling difficulties; Cost issues |
PP | Agrofabrics; Packaging | Flexibility; UV resistance | Environmental hazards due to non-biodegradability |
Biodegradable Polymers | |||
PHA | Controlled release systems | Biodegradability; environmental safety | High production cost |
PBS | Controlled release systems; Mulching films; Composites | Biodegradability; suitable for blends | High crystallinity reduces degradation |
PLA | Controlled release systems; Agricultural films; Containers | Biodegradability; Flexibility | Hight cost; Brittleness |
Polymer Carrier | Active Ingredient | Reference |
---|---|---|
chitosan (CS) | Spinosad | [204] |
chitosan (CS) | Chlorantraniliprole | [205] |
carboxymethyl chitosan (CMCS) | Avermectin/ Spinetoram | [206] |
carboxymethyl chitosan (CMCS) | 2,4-D | [207] |
chitosan–guargum | Chlorpyrifos | [208] |
chitosan–alginate | Imidacloprid (IMI) | [209] |
chitosan/carboxymethylcellulose (CS/CMC) | Citral | [233] |
chitosan/Bagasse | KNO3 | [72] |
chitosan (CS) | NPK | [212] |
chitosan/activated coir fiber | NPK | [213] |
chitosan (CS) | urea | [214] |
chitosan–clay composite (CsGC) | NPK | [215] |
chitosan (CS) | urea | [216] |
cellulose diacetate | Citronellol, Terpineol, Methyl salicylate | [230] |
nanofibrillated cellulose (NFC) | Chlorpyrifos | [231] |
carboxymethylcellulose (CMC)/diallyldimethylammonium chloride (DMDAAC)/phosphorylated zein (P-Zein) (P-Zein/CMC-g-PDMDAAC) | Avermectin (AVM) | [234] |
carboxymethylcellulose (CMC)/rosin (RS) (CMC-g-PRSG) | Avermectin (AVM) | [235] |
carboxymethylcellulose (CMC) | Bispiribac (BP) | [236] |
Cellulose | urea | [237] |
Cellulose | ammonium chloride | [238] |
Cellulose | urea | [239] |
carboxymethylcellulose-g-polyacrylamide copolymer (CMC-g-PAM) | urea | [240] |
Alginate | Dicamba | [241] |
sodium alginate–gelatin–polyvinylpyrrolidone (SA-GEL-PVP) | Dinotefuran (DIN) | [242] |
polydopamine–kaolin–calcium alginate–poly(N-isopropylacrylamide)(PNIPAm)–nanodiamond (DND)–amino-silicone oil (ASO) (IPKCPD-ASO) | Imidacloprid (IMI) | [244] |
starch–chitosan–calcium alginate (SCCA); starch–alginate–calcium (SCA); chitosan–calcium alginate (CCA); calcium–alginate (CA) | Spirotetramat | [245] |
sodium alginate–lignin (SA-L) | diammonium phosphate (DAP) | [246] |
Ca(II)-alginate–yerba mate powder (YMP) | urea, potassium, phosphorus | [247] |
hydroxyapatite/alginate (HA/Alg) | NPK | [248] |
polyvinyl alcohol alginate (PVA-SA) | urea | [249] |
SNCs (starch nanocrystals) | Thiamethoxam (TMX) | [251] |
corn starch | Glyphosate | [252] |
starch citrate | Carbofuran | [253] |
PLGA/PEG- dextrin-g-PCL or maltodextrin-g-PCL | Metazachlor Pendimethalin | [250] |
cassava starch | urea | [254] |
starch acetate (SA)/polyvinyl alcohol (PVA)/glycerol (GLY) | diammonium phosphate (DAP) | [255] |
starch acetate (SA)/carboxymethyl starch/xanthan gum (CMS/XG) | urea | [256] |
dextrin-based microgels (PDXE MG) | urea | [257] |
PLA | λ-cyhalothrin (LC) | [267] |
PLA | Thiram | [268] |
PLA/PCL | Acetamiprid | [269] |
PCL | Metribuzin | [263] |
P(3HB) | Metribuzin, Triennuron-methyl, and fenoxaprop-P-ethyl | [271] |
P(3HB) | Tebuconazole, Metribuzin | [272] |
PBS/PLA | azoxystrobin and difenoconazole | [273] |
PBS | λ-cyhalothrin | [274] |
biochar-based controlled-release nitrogen fertilizer (BCRNF) coated polylactic acid (PLA) | ammonium sulfate | [275] |
polylactic acid (PLA) and cellulose acetate (CA) | diammonium phosphate (DAP) | [276] |
PCL-guar gum (GG)-halloysite nanotubes (HNT) (PCL-g-GG and PCL-g-HNT) | diammonium phosphate (DAP) | [277] |
poly(ε-caprolactone)–chitosan CS-g-PCL | diammonium phosphate (DAP) | [278] |
poly(3-hydroxybutyrate) (PHB)–montmorillonite clay (MMt) | KNO3 and NPK | [279] |
Polymer | Pesticide | Adsorption Process Parameters | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|
Chitin Chitosan | 2,4-D | pH 3.7, contact time = 60 min, 20 mL treated volume, 2.5 g/L dosage | 2.5 6.2 | [284] |
Chitin Chitosan | Glyphosate | pH 3.76–5.04, contact time = 60 min, 10 mL treated volume, 1.6 g/L dosage | 14.04 35.08 | [285] |
Chitin Chitosan | Linuron | pH 5.75, contact time = 120 min, 25 mg of chitin and chitosan in 20 mL of solution | 5.91 21.73 | [286] |
Chitosan | Ethoprophos | contact time = 24 h, pH 5.48, 100 mL treated volume, 1.0 g/L dosage, 25 °C | 121.75 | [287] |
Nanocellulose | Chlorpyrifos | contact time = 300 min, 25 mL treated volume, 2.0 g/L dosage, 25 °C | 7.24 | [288] |
β-cyclodextrin polymer | 2,4,6-TCP | solid/liquid, ratio = 1 mg/mL, contact time = 20 min, 25 °C | 108 | [290] |
Chitosan/Zeolite-A nanocomposite | Acephate Omthosate Methyl parathion | contact time = 480 min, pH 8, 250 mL treated volume, 0.2 g/L dosage, 20 °C | 650.7 506.5 560.8 | [291] |
Chitosan/gelatin composite | Atrazine Fenitrothion | contact time = 120 min, 0.1 g/L dosage, 50 mL treated volume | 75.19 36.23 | [293] |
Cellulose/Graphene Composite | Ametryn | pH 9, 10 mL treated volume, 3.0 g/L dosage, 25 °C | 8.53 | [294] |
chitosan-MMT-CuO composite | Dichlorvos | pH 10, 1.5 g/L dosage, 30 °C | 500.0 | [295] |
polylactic acid -MMT-CuO composite | Monocrotophos | pH 6, 15.0 g/L dosage, 30 °C | 200.0 | [296] |
Alginate beads with silver nanoparticles | Atrazine | contact time= 14 h, pH 6, 100 mL treated volume, 20.0 g/L dosage, room temperature | 1.57 | [297] |
Montmorillonite-alginate beads | Paraquat | four beads, contact time = 6 h, pH 5.5, 10 mL treated volume, 25 °C | 51.78 | [299] |
carboxymethyl cellulose–nanoorganoclay | Atrazine Butachlor Carbendazim Carbofuran Imidacloprid Isoproturon Pendimethalin Thiophanate methyl Thiamethoxam | contact time = 4 h, 10 mL treated volume, 10 g/L dosage | 0.333 0.204 0.667 0.625 0.385 0.227 0.313 0.263 0.345 | [299] |
carboxymethyl cellulose–nanoorganoclay | Imidacloprid Thiamethoxam Atrazine | contact time = 4 h, 10 mL treated volume, 10 g/L dosage | 2.00 1.67 1.43 | [300] |
Adsorbent | Pesticide | Initial Concentration [mg/L] | Other Parameters | Adsorption Capacity [mg/g] | Reference |
---|---|---|---|---|---|
PEI-cotton | Pirimiphos–methyl Monocrotophos | 100 | 10% of PEI in fabrics, 5 h, 5 cycles | 454.6 333.3 | [302] |
PEI-wool | Pirimiphos–methyl Monocrotophos | 100 | 10% of PEI in fabrics, 5 h, 5 cycles | 625.0 500.0 | |
MSNPs/PANI composite | Chloridazon | 2–100 | Natural pH, 1 h, 7 cycles | 30.1 | [303] |
Iron nanoparticles coated with β-CD polymer cross-linked via diphenylcarbonate | 4chlorophenoxyacetic acid 2,3,4,6-tetrachlorophenol | 150 | pH = 9, 1 h, 8 cycles | 125.2 17.8 | [306] |
MIP on silica gel particles with templated CBL | Carbaryl | 30 | pH = 7, 40 min, 8 cycles | 41.5 | [307] |
Cross-linked PVA with citric acid on MWCNTs’ surface | OPPs (diazinon, chlorpyrifos, pirimiphos–methyl, and malathion) | 0.1 | 4 cycles, Flow rate at 5 mL/min | - | [309] |
Poly-NIPAM coated MWCNTs/TiO2 | Pendimethalin | 10–40 | Adsorptive photocatalysis, 1 h, 5 cycles | 35.1 | [310] |
Chitin-cl-poly(acrylamide-co-itaconic acid) | Atrazine | 5–30 | 3 h, 5 cycles | 204.08 | [312] |
AC/β-CD composite | Imidacloprid | 200–500 | 3 cycles | 50 | [316] |
Application | Advantages | Disadvantages | References |
---|---|---|---|
Seeds Coating | Seed protection; Enhanced germination; Targeted delivery of nutrients and pesticides; Increased sowing efficiency. | Costs; Environmental concerns; Potential risk to soil microflora; Technology dependence. | [432,435,436,437,438,439,440] |
Soil Erosion Control | Soil stabilization; Enhanced water retention; Durability; Versatility. | Environmental implications; Costs; Effectiveness limitations; Application challenges; Potential removal issues. | [453,454,461,462,463,464,465,466] |
Tunnel and Greenhouse Protection | Weather resistance; Thermal insulation; Pest and disease protection; Ease of installation. | Costs; Degradation; Ventilation limitations; Maintenance; Challenges. | [477,478,479,482,483,491,492,495,496,498,499,500] |
Packaging | Lightweight; Corrosion resistance; Versatility; Low production cost. | Disposal challenges; Environmental impact; Degradation issues; Potential health hazards. | [509,510,511,513,516] |
Hoses and Irrigation Systems | Flexibility; Corrosion resistance; Lightweight; Mechanical durability. | Environmental impact; Potential health hazards; Repair difficulties; Temperature limitations. | [525,526,527,530,531,532] |
Protective Nets | Weather resistance; Flexibility; Durability; Ease of installation. | Costs; Disposal challenges; Potential animal hazards; Susceptibility to damage. | [534,535,536,537,540,543] |
Artificial Substrates | Control over composition and structure; Durability; Hygienic conditions; Lightweight. | Costs; Potential retention of chemical substances; Water and air permeability limitation; Environmental concerns. | [545,546] |
Micro- and Nanoplastics | Versatility of applications; Lightweight; Durability; Ease of forming. | Environmental pollution; Bioaccumulation; Public health risks; Biodiversity disruption. | [548,549,550,555,556,559,560] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewicka, K.; Szymanek, I.; Rogacz, D.; Wrzalik, M.; Łagiewka, J.; Nowik-Zając, A.; Zawierucha, I.; Coseri, S.; Puiu, I.; Falfushynska, H.; et al. Current Trends of Polymer Materials’ Application in Agriculture. Sustainability 2024, 16, 8439. https://doi.org/10.3390/su16198439
Lewicka K, Szymanek I, Rogacz D, Wrzalik M, Łagiewka J, Nowik-Zając A, Zawierucha I, Coseri S, Puiu I, Falfushynska H, et al. Current Trends of Polymer Materials’ Application in Agriculture. Sustainability. 2024; 16(19):8439. https://doi.org/10.3390/su16198439
Chicago/Turabian StyleLewicka, Kamila, Izabela Szymanek, Diana Rogacz, Magdalena Wrzalik, Jakub Łagiewka, Anna Nowik-Zając, Iwona Zawierucha, Sergiu Coseri, Ioan Puiu, Halina Falfushynska, and et al. 2024. "Current Trends of Polymer Materials’ Application in Agriculture" Sustainability 16, no. 19: 8439. https://doi.org/10.3390/su16198439
APA StyleLewicka, K., Szymanek, I., Rogacz, D., Wrzalik, M., Łagiewka, J., Nowik-Zając, A., Zawierucha, I., Coseri, S., Puiu, I., Falfushynska, H., & Rychter, P. (2024). Current Trends of Polymer Materials’ Application in Agriculture. Sustainability, 16(19), 8439. https://doi.org/10.3390/su16198439