Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey
Abstract
:1. Introduction
2. Remote Sensing and Technologies in PA
3. Yield Estimation and AI in PA
4. Sentinel-2 in Yield Estimation
5. Previous Review Studies and Contribution of the Study
- No previous review articles have examined Sentinel-2-based yield prediction studies. Therefore, this study is significant.
- The reviewed studies are recent (2019–2024).
- The crops used in previous yield studies and the types of VIs calculated are presented in a simple overview with a table.
6. Previous Sentinel-2 and Crop Yield Estimation Works
6.1. Studies Using Only ML Techniques
6.2. Studies Using DL Techniques
6.3. Studies Using Ensemble Methods
7. Interpretation of Previous Studies
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Definition | Formula |
---|---|---|
ARI2 | Anthocyanin Reflectance Index | |
ARVI | Atmospherically Resistant Vegetation Index | |
AWEI | Automated Water Extraction Index | |
BNDVI | Blue Normalized Diference Vegetation Index | |
CCCI | Canopy Chlorophyll Content Index | |
CIRed | Chlorophyll Index red edge | |
CIVE | Color Index of Vegetation Extraction | |
CMFI | Cropping Management Factor Index | |
CRI2 | Carotenoid Reflectance Index | |
CVI | Chlorophyll vegetation index | |
DVI | Difference Vegetation Index | |
EVI | Enhanced Vegetation Index | |
EVI2 | Enhanced Vegetation Index 2 | |
ExG | Excess Green | |
GARI | Green Atmospherically Resistant Index | |
GCVI | Green chlorophyll vegetation index | |
GDVI | Green Difference Vegetation Index | |
GLI | Green Leaf Index | |
GNDVI | Green normalized difference vegetation index | |
GRRI | Green-red ratio Index | |
GRVI | Green-Red Vegetation Index | |
GSAVI | Green Soil Adjusted Vegetation Index | |
IPVI | Infrared percentage vegetation index | |
IRECI | Inverted Red-Edge Chlorophyll Index | |
LAI | Leaf Area ındex | |
LSWI | Land surface water index | |
MNLI | Modified Non-linear Index | |
MNDWI | Modified Normalized Difference Vegetation Index | |
MSAVI | Modified soil adjusted vegetation index | |
MSRI | Modified Simple Ratio Index | |
NBR | Normalized Burn Ratio | |
NDBI | Normalized difference built-up index | |
NDII | Normalized Diference Infrared Index 1 | |
NDII2 | Normalized Diference Infrared Index 2 | |
NDRE1 | Normalized difference red edge1 | |
NDRE2 | Normalized difference red edge2 | |
NDVI | Normalized Difference Vegetation Index | |
NDVIRE | Normalized Difference Vegetation Index Red-edge | |
NDWI | Normalized Difference Water Index | |
NGBDI | Normalized green-blue difference Index | |
NGRDI | Normalized Green–Red Difference Index | |
NLI | Non-linear Index | |
NMDI | Normalized Multiband Drought Index | |
OSAVI | Optimized Soil Adjusted Vegetation Index | |
PSRI | Plant Senescence Reflectance Index | |
PVI | Perpendicular Vegetation Index | |
RDVI | Renormalized Difference Vegetation Index | |
REP | Red Edge Position | |
RGVI | Rice growth vegetation index | |
RVI | Ratio vegetation index | |
SAVI | Soil-adjusted vegetation index | |
SIPI | Structure Intensive Pigment Vegetation Index | |
SRI | Simple ratio index | |
TCARI | Transformed Chlorophyll Absorption in Reflectance Index | |
TGI | Triangular Greenness Index | |
TO | TCARI/OSAVI | |
TVI | Triangular vegetation index | |
VARI | Visible Atmospherically Resistant Index | |
VDVI | Visible-Band Difference Vegetation Index | |
WDRVI | Wide Dynamic Range Vegetation Index | |
WDVI | Weighted Difference Vegetation Index |
Appendix B
Abbreviation | Definition |
---|---|
ANN | Artificial Neural Network |
ARD | Automatic relevance determination |
ACNN | Attention-Based One-Dimensional Convolutional Neural Network |
BO-CatBoost | Bayesian optimized CatBoost |
BR | Boosting regression |
BRDF | Bidirectional Reflectance Distribution Function |
CNN | Convolutional Neural Network |
DT | Decision Tree |
DNN | Deep Neural Network |
GPR | Gaussian process regression |
KNN | K-Nearest Neighbor |
LASSO | Least Absolute Shrinkage and Selection Operator |
LR | Linear Regression |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MLPNN | Multilayer perceptron neural network |
MLR | Multiple linear regression |
MSE | Mean Squared Error |
PLSR | Partial Least Squares Regression |
RF | Random Forest |
RID | Ridge Regression |
RMSE | Root Mean Squared Error |
RR | Ridge Regression |
SCL | Scene Classification |
SGD | Stochastic Gradient Descent |
SPAD | Soil Plant Analysis Development |
SR | Stepwise Regression |
STACK | Stacked Averaging Ensemble |
SVM | Support Vector Model |
SVR | Support Vector Regression |
VI | Vegetation indices |
XGBoost | Extreme Gradient Boosting |
References
- Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses. Appl. Sci. 2022, 12, 1047. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; P. D. Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; R. Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Denton, O.; Aduramigba-Modupe, V.; Ojo, A.; Adeoyolanu, O.; Are, K.; Adelana, A.; Oyedele, A.; Adetayo, A.; Oke, A. Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food Agric. 2017, 3, 1279366. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Winkler, K.; Gessner, U.; Hochschild, V. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K. Goal distance-based UAV path planning approach, path optimization and learning-based path estimation: GDRRT*, PSO-GDRRT* and BiLSTM-PSO-GDRRT*. Appl. Soft Comput. 2023, 137, 110156. [Google Scholar] [CrossRef]
- Furlanetto, J.; Dal Ferro, N.; Longo, M.; Sartori, L.; Polese, R.; Caceffo, D.; Nicoli, L.; Morari, F. LAI estimation through remotely sensed NDVI following hail defoliation in maize (Zea mays L.) using Sentinel-2 and UAV imagery. Precis. Agric. 2023, 24, 1355–1379. [Google Scholar] [CrossRef]
- Binte Mostafiz, R.; Noguchi, R.; Ahamed, T. Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices. Land 2021, 10, 223. [Google Scholar] [CrossRef]
- Ali, U.; Esau, T.J.; Farooque, A.A.; Zaman, Q.U.; Abbas, F.; Bilodeau, M.F. Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms. ISPRS Int. J. Geo-Inf. 2022, 11, 333. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, D.; Liu, F.; Guo, Y.; Chen, S.; Wu, T.; Hou, Q. A Lightweight Multi-Label Classification Method for Urban Green Space in High-Resolution Remote Sensing Imagery. ISPRS Int. J. Geo-Inf. 2024, 13, 252. [Google Scholar] [CrossRef]
- Aslan, M.F. A hybrid end-to-end learning approach for breast cancer diagnosis: Convolutional recurrent network. Comput. Electr. Eng. 2023, 105, 108562. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Liu, K.; Lan, S.; Gao, T.; Li, M. Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms. Comput. Electron. Agric. 2023, 213, 108250. [Google Scholar] [CrossRef]
- Bhumiphan, N.; Nontapon, J.; Kaewplang, S.; Srihanu, N.; Koedsin, W.; Huete, A. Estimation of Rubber Yield Using Sentinel-2 Satellite Data. Sustainability 2023, 15, 7223. [Google Scholar] [CrossRef]
- Darra, N.; Espejo-Garcia, B.; Kasimati, A.; Kriezi, O.; Psomiadis, E.; Fountas, S. Can Satellites Predict Yield? Ensemble Machine Learning and Statistical Analysis of Sentinel-2 Imagery for Processing Tomato Yield Prediction. Sensors 2023, 23, 2586. [Google Scholar] [CrossRef]
- Franch, B.; Bautista, A.S.; Fita, D.; Rubio, C.; Tarrazó-Serrano, D.; Sánchez, A.; Skakun, S.; Vermote, E.; Becker-Reshef, I.; Uris, A. Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data. Remote Sens. 2021, 13, 4095. [Google Scholar] [CrossRef]
- Revel, C.; Lonjou, V.; Marcq, S.; Desjardins, C.; Fougnie, B.; Coppolani-Delle Luche, C.; Guilleminot, N.; Lacamp, A.-S.; Lourme, E.; Miquel, C.; et al. Sentinel-2A and 2B absolute calibration monitoring. Eur. J. Remote Sens. 2019, 52, 122–137. [Google Scholar] [CrossRef]
- Desloires, J.; Ienco, D.; Botrel, A. Out-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methods. Comput. Electron. Agric. 2023, 209, 107807. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Tian, H.; Tansey, K.; Liu, J.; Quan, W. A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables. Comput. Electron. Agric. 2023, 206, 107705. [Google Scholar] [CrossRef]
- Clark, M.L. Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California. ISPRS J. Photogramm. Remote Sens. 2020, 159, 26–40. [Google Scholar] [CrossRef]
- Liang, J.; Ren, C.; Li, Y.; Yue, W.; Wei, Z.; Song, X.; Zhang, X.; Yin, A.; Lin, X. Using Enhanced Gap-Filling and Whittaker Smoothing to Reconstruct High Spatiotemporal Resolution NDVI Time Series Based on Landsat 8, Sentinel-2, and MODIS Imagery. ISPRS Int. J. Geo-Inf. 2023, 12, 214. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Roznik, M.; Boyd, M.; Porth, L. Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks. Remote Sens. Appl. Soc. Environ. 2022, 25, 100693. [Google Scholar] [CrossRef]
- Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
- Oikonomidis, A.; Catal, C.; Kassahun, A. Deep learning for crop yield prediction: A systematic literature review. N. Z. J. Crop Hortic. Sci. 2023, 51, 1–26. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agric. Syst. 2023, 210, 103711. [Google Scholar] [CrossRef]
- Khairunniza-Bejo, S.; Mustaffha, S.; Ismail, W.I.W. Application of artificial neural network in predicting crop yield: A review. J. Food Sci. Eng. 2014, 4, 1. [Google Scholar]
- Dharani, M.K.; Thamilselvan, R.; Natesan, P.; Kalaivaani, P.C.D.; Santhoshkumar, S. Review on Crop Prediction Using Deep Learning Techniques. J. Phys. Conf. Ser. 2021, 1767, 012026. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield using Sentinel-2 and Machine Learning Techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Nazir, A.; Ullah, S.; Saqib, Z.A.; Abbas, A.; Ali, A.; Iqbal, M.S.; Hussain, K.; Shakir, M.; Shah, M.; Butt, M.U. Estimation and Forecasting of Rice Yield Using Phenology-Based Algorithm and Linear Regression Model on Sentinel-II Satellite Data. Agriculture 2021, 11, 1026. [Google Scholar] [CrossRef]
- Son, N.-T.; Chen, C.-F.; Cheng, Y.-S.; Toscano, P.; Chen, C.-R.; Chen, S.-L.; Tseng, K.-H.; Syu, C.-H.; Guo, H.-Y.; Zhang, Y.-T. Field-scale rice yield prediction from Sentinel-2 monthly image composites using machine learning algorithms. Ecol. Inform. 2022, 69, 101618. [Google Scholar] [CrossRef]
- Marshall, M.; Belgiu, M.; Boschetti, M.; Pepe, M.; Stein, A.; Nelson, A. Field-level crop yield estimation with PRISMA and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2022, 187, 191–210. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Sun, L.; Sibaldelli, R.N.R.; Junior, V.F.; Furlaneti, W.X.; Chen, R.; Sun, Z.; Wuyun, D.; Chen, Z.; Nanni, M.R.; et al. Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precis. Agric. 2022, 23, 1093–1123. [Google Scholar] [CrossRef]
- Ashourloo, D.; Manafifard, M.; Behifar, M.; Kohandel, M. Wheat yield prediction based on Sentinel-2, regression, and machine learning models in Hamedan, Iran. Sci. Iran. 2022, 29, 3230–3243. [Google Scholar] [CrossRef]
- Bebie, M.; Cavalaris, C.; Kyparissis, A. Assessing Durum Wheat Yield through Sentinel-2 Imagery: A Machine Learning Approach. Remote Sens. 2022, 14, 3880. [Google Scholar] [CrossRef]
- Segarra, J.; Araus, J.L.; Kefauver, S.C. Farming and Earth Observation: Sentinel-2 data to estimate within-field wheat grain yield. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102697. [Google Scholar] [CrossRef]
- Abebe, G.; Tadesse, T.; Gessesse, B. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. J. Indian Soc. Remote Sens. 2022, 50, 143–157. [Google Scholar] [CrossRef]
- Faqe Ibrahim, G.R.; Rasul, A.; Abdullah, H. Sentinel-2 accurately estimated wheat yield in a semi-arid region compared with Landsat 8. Int. J. Remote Sens. 2023, 44, 4115–4136. [Google Scholar] [CrossRef]
- Amankulova, K.; Farmonov, N.; Mucsi, L. Time-series analysis of Sentinel-2 satellite images for sunflower yield estimation. Smart Agric. Technol. 2023, 3, 100098. [Google Scholar] [CrossRef]
- Nuraeni, D.; Manessa, M.D.M. Spatial machine learning for monitoring tea leaves and crop yield estimation using sentinel-2 imagery, (A Case of Gunung Mas Plantation, Bogor). Int. J. Remote Sens. Earth Sci. (IJReSES) 2023, 19, 133–142. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Edrris, M.K.; Edrees, H.F.; Alameen, A.A. Optimal Timing of Carrot Crop Monitoring and Yield Assessment Using Sentinel-2 Images: A Machine-Learning Approach. Appl. Sci. 2024, 14, 3636. [Google Scholar] [CrossRef]
- Kamenova, I.; Chanev, M.; Dimitrov, P.; Filchev, L.; Bonchev, B.; Zhu, L.; Dong, Q. Crop Type Mapping and Winter Wheat Yield Prediction Utilizing Sentinel-2: A Case Study from Upper Thracian Lowland, Bulgaria. Remote Sens. 2024, 16, 1144. [Google Scholar] [CrossRef]
- de Freitas, R.G.; Oldoni, H.; Joaquim, L.F.; Pozzuto, J.V.F.; do Amaral, L.R. Predicting on-farm soybean yield variability using texture measures on Sentinel-2 image. Precis. Agric. 2024. [Google Scholar] [CrossRef]
- Fernandez-Beltran, R.; Baidar, T.; Kang, J.; Pla, F. Rice-Yield Prediction with Multi-Temporal Sentinel-2 Data and 3D CNN: A Case Study in Nepal. Remote Sens. 2021, 13, 1391. [Google Scholar] [CrossRef]
- Narin, O.G.; Sekertekin, A.; Saygin, A.; Balik Sanli, F.; Gullu, M. Yield Estimation of Sunflower Plant with CNN and ANN Using Sentinel-2. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 385–389. [Google Scholar] [CrossRef]
- Perich, G.; Turkoglu, M.O.; Graf, L.V.; Wegner, J.D.; Aasen, H.; Walter, A.; Liebisch, F. Pixel-based yield mapping and prediction from Sentinel-2 using spectral indices and neural networks. Field Crops Res. 2023, 292, 108824. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, X.; Niu, Q.; Li, X.; Li, X.; Zhong, L.; Huang, J. Winter wheat yield estimation at the field scale using sentinel-2 data and deep learning. Comput. Electron. Agric. 2024, 216, 108555. [Google Scholar] [CrossRef]
- Mancini, A.; Solfanelli, F.; Coviello, L.; Martini, F.M.; Mandolesi, S.; Zanoli, R. Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning. Agronomy 2024, 14, 109. [Google Scholar] [CrossRef]
- Amankulova, K.; Farmonov, N.; Abdelsamei, E.; Szatmári, J.; Khan, W.; Zhran, M.; Rustamov, J.; Akhmedov, S.; Sarimsakov, M.; Mucsi, L. A Novel Fusion Method for Soybean Yield Prediction Using Sentinel-2 and PlanetScope Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13694–13707. [Google Scholar] [CrossRef]
- Pejak, B.; Lugonja, P.; Antić, A.; Panić, M.; Pandžić, M.; Alexakis, E.; Mavrepis, P.; Zhou, N.; Marko, O.; Crnojević, V. Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data. Remote Sens. 2022, 14, 2256. [Google Scholar] [CrossRef]
- Meghraoui, K.; Sebari, I.; Pilz, J.; Ait El Kadi, K.; Bensiali, S. Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges. Technologies 2024, 12, 43. [Google Scholar] [CrossRef]
- Pandey, K. Nutrient Management Strategies for Water and Nutrient Saving in Substrate Soilless Culture under Protected Cultivation. In Artificial Intelligence and Smart Agriculture: Technology and Applications; Pandey, K., Kushwaha, N.L., Pande, C.B., Singh, K.G., Eds.; Springer Nature: Singapore, 2024; pp. 369–386. [Google Scholar]
No | Study | Publication Year | Crop Type | VI | Learning Method |
---|---|---|---|---|---|
1 | Hunt, Blackburn, Carrasco, Redhead and Rowland [33] | 2019 | Wheat | GCVI, GNDVI, NDVI, SRI | RF |
2 | Kayad, Sozzi, Gatto, Marinello and Pirotti [34] | 2019 | Corn | NDVI, NDRE1, NDRE2, GNDVI, GARVI, EVI, WDRVI, mWDRVI, GCVI | RF, SVM, MLR |
3 | Gómez, Salvador, Sanz and Casanova [35] | 2019 | Potato | ARI2, CRI2, IRECI2, LCC, NDVI, PSRI, WDVI | RF, SVM, LR |
4 | Zhao, Potgieter, Zhang, Wu and Hammer [36] | 2020 | Wheat | NDVI, OSAVI, SR, DVI, EVI, EVI2, CIred, TCARI, TO, GCVI, GDVI, NDRE1, NDRE2, CCCI | LR |
5 | Fernandez-Beltran, Baidar, Kang and Pla [51] | 2021 | Rice | NDVI | CNN, LR, RID, SVR, GPR |
6 | Narin, Sekertekin, Saygin, Balik Sanli and Gullu [52], | 2021 | Sunflower | NDVI, NDVIRed | LR, ANN, CNN |
7 | Franch, Bautista, Fita, Rubio, Tarrazó-Serrano, Sánchez, Skakun, Vermote, Becker-Reshef and Uris [19] | 2021 | Rice | WDRVI, SAVI, RVI, LSWI, NDBI, TVI, IPVI, RGVI, CIred, NDRE1, NDRE2 | LR |
8 | Nazir, Ullah, Saqib, Abbas, Ali, Iqbal, Hussain, Shakir, Shah and Butt [37] | 2021 | Rice | NDVI, EVI, SAVI, REP | PLSR |
9 | Son, Chen, Cheng, Toscano, Chen, Chen, Tseng, Syu, Guo and Zhang [38], | 2022 | Rice | EVI | RF, SVM, ANN |
10 | Marshall, Belgiu, Boschetti, Pepe, Stein and Nelson [39] | 2022 | Corn, rice, soybean, wheat | NDVI | PLSR, RF |
11 | Crusiol, Sun, Sibaldelli, Junior, Furlaneti, Chen, Sun, Wuyun, Chen, Nanni, Furlanetto, Cezar, Nepomuceno and Farias [40] | 2022 | Soybean | BNDVI, GNDVI, NDVI, NDRE, NDII, NDII 2, EVI1, EVI2 | PLSR, SVR |
12 | Ashourloo, Manafifard, Behifar and Kohandel [41] | 2022 | Wheat | NDVI, SR, GCVI, GNDVI, WDRVI, DVI, EVI, SAVI, GRRI, NGBDI | KNN, NN, DT, SVR, GPR, RF, LR, SR |
13 | Bebie, Cavalaris and Kyparissis [42] | 2022 | Wheat | EVI, NMDI | RF, KNN, BR |
14 | Segarra, Araus and Kefauver [43] | 2022 | Wheat | GNDVI, NDVI, RVI, EVI, TGI, NGRDI, CVI | RF, SVM, BR |
15 | Abebe, Tadesse and Gessesse [44] | 2022 | Sugarcane | NDVI, EVI, SAVI, MSAVI, SR, GNDVI, SIRI | SVR, MLPNN, MLR |
16 | Pejak, Lugonja, Antić, Panić, Pandžić, Alexakis, Mavrepis, Zhou, Marko and Crnojević [57] | 2022 | Soya | NDVI, EVI, ARVI, SAVI, NDVIRed, VARI, NDWI, MNDWI, VDVI, NLI, MNLI, NMDI, GLI, ExG, CIVE, AWEI, GRVI, GARI, DVI, LAI | MLR, SVM, XGBoost, SGD |
17 | Perich, Turkoglu, Graf, Wegner, Aasen, Walter and Liebisch [53] | 2023 | Winter Wheat | NDVI, GCVI | Four S2 scenes, RNN |
18 | Bhumiphan, Nontapon, Kaewplang, Srihanu, Koedsin and Huete [17] | 2023 | Rubber | GSAVI, MSRI, NBR, NDVI, NR, and RVI | LR, MLR |
19 | Faqe Ibrahim, Rasul and Abdullah [45] | 2023 | Wheat | EVI, NDVI, NDWI, SAVI, SRI, RVI, GRVI, NDRE, CMFI, chlorophyll, LAI | LR |
20 | Desloires, Ienco and Botrel [21] | 2023 | Corn | GNDVI, NDRE, NDWI, LAI, LCC | RR, RF, SVR, MLP, XGBoost, STACK |
21 | Zhang, Zhang, Liu, Lan, Gao and Li [16] | 2023 | Wheat | NDVI, GNDVI, RVI, EVI2, WDRVI | BO-CatBoost, LASSO, SVM, RF |
22 | Darra, Espejo-Garcia, Kasimati, Kriezi, Psomiadis and Fountas [18] | 2023 | Tomato | NDVI, WDVI, PVI, RVI, SAVI | ARD&SVR (Ensemble) |
23 | Amankulova, Farmonov and Mucsi [46] | 2023 | Sunflower | NDVI | RF |
24 | Nuraeni and Manessa [46] | 2023 | Tea Leaves | NDVI | RF, SVM |
25 | Xiao, Zhang, Niu, Li, Li, Zhong and Huang [54] | 2024 | Wheat | LSWI, IRECI, GCVI, NDVI | ACNN, RF |
26 | Mancini, Solfanelli, Coviello, Martini, Mandolesi and Zanoli [55] | 2024 | Wheat | NDVI, NDRE | PLSR, VGG16, VGG19, MobileNetv2 |
27 | Madugundu, Al-Gaadi, Tola, Edrris, Edrees and Alameen [48] | 2024 | Carrot | NDVI, RDVI, GNDVI, SIPI, GLI | RF |
28 | Kamenova, Chanev, Dimitrov, Filchev, Bonchev, Zhu and Dong [49] | 2024 | Winter Wheat | GNDVI | RF, SVM |
29 | Amankulova, Farmonov, Abdelsamei, Szatmári, Khan, Zhran, Rustamov, Akhmedov, Sarimsakov and Mucsi [56] | 2024 | Soybean | NDVI, GNDVI, NDRE, EVI, SAVI | ANN, DNN, KNN, RF, SVR, XGBoost |
30 | de Freitas, Oldoni, Joaquim, Pozzuto and do Amaral [50] | 2024 | Soybean | EVI, GNDVI, GRNDVI, NDMI, NDRE, NDVI, SFDVI | RF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslan, M.F.; Sabanci, K.; Aslan, B. Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability 2024, 16, 8277. https://doi.org/10.3390/su16188277
Aslan MF, Sabanci K, Aslan B. Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability. 2024; 16(18):8277. https://doi.org/10.3390/su16188277
Chicago/Turabian StyleAslan, Muhammet Fatih, Kadir Sabanci, and Busra Aslan. 2024. "Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey" Sustainability 16, no. 18: 8277. https://doi.org/10.3390/su16188277
APA StyleAslan, M. F., Sabanci, K., & Aslan, B. (2024). Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability, 16(18), 8277. https://doi.org/10.3390/su16188277