Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk
<p>Research flow.</p> "> Figure 2
<p>Sensors’ acquisition system: (<b>a</b>) complete system for the acquisition of sensor data; (<b>b</b>) part of the sensors installed in the city center of Reggio Calabria.</p> "> Figure 3
<p>Urban digital twin architecture.</p> "> Figure 4
<p>Study area; Municipality of Reggio Calabria (Italy).</p> "> Figure 5
<p>Preview of the urban digital twin of Reggio Calabria: 3D representation of light pollution expressed in radiative flux.</p> "> Figure 6
<p>Preview of the urban digital twin of Reggio Calabria: 3D representation of hydrogeological risk.</p> "> Figure 7
<p>Correlation matrix between light pollution and CO<sub>2</sub>.</p> "> Figure 8
<p>Correlation matrix between land use, risk area, rainfall, and slope.</p> "> Figure 9
<p>Distribution of hazard areas by land use class.</p> ">
Abstract
:1. Introduction
- Public lighting management, aimed at reducing light pollution and improving energy efficiency.
- Hydrogeological risk assessment, with simulations of flood events to identify vulnerable areas.
Related Works
2. Materials and Methods
Implementation of the Proposed Methodology
3. Results
3.1. Study Area
3.2. Illumination
3.3. Hydrogeological Risk
- The most critical classes (12220, 22000, and 31000) have a wide dispersion and extremely high values, indicating a high risk.
- The moderate risk classes (12230, 12300, 20000, 30000, 32000, and 33000) have a significant but not extreme variance.
- The low-risk classes (11100, 11210, 11220, 11230, 13100, 13400, 14100, and 14200) show a narrower distribution with generally low values.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haughton, G. Environmental justice and the sustainable city. In The Earthscan Reader in Sustainable Cities; Routledge: London, UK, 2021; pp. 62–79. [Google Scholar]
- Chen, D.; Hu, W.; Li, Y.; Zhang, C.; Lu, X.; Cheng, H. Exploring the temporal and spatial effects of city size on regional economic integration: Evidence from the Yangtze River Economic Belt in China. Land Use Policy 2023, 132, 106770. [Google Scholar] [CrossRef]
- Pothukuchi, K. City light or star bright: A review of urban light pollution, impacts, and planning implications. J. Plan. Lit. 2021, 36, 155–169. [Google Scholar] [CrossRef]
- Goronczy, E.E. Light Pollution in Metropolises. Analysis, Impacts and Solutions; Springer: Wiesbaden, Germany, 2021. [Google Scholar]
- Ding, Y.; Zhang, D.; Lv, J. Comparison of the applicability of city-level building energy consumption quota methods. Energy Build. 2022, 261, 111933. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Seeling, S.; Seeger, M.K.; Ries, J.B. Light pollution: A review of the scientific literature. Anthr. Rev. 2023, 10, 367–392. [Google Scholar] [CrossRef]
- He, H. Light Pollution Assessment Models Based on Multimodal Machine Learning. Available at SSRN 4511502. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4511502 (accessed on 20 February 2025).
- Tom, R.O.; George, K.O.; Joanes, A.O.; Haron, A. Review of flood modelling and models in developing cities and informal settlements: A case of Nairobi city. J. Hydrol. Reg. Stud. 2022, 43, 101188. [Google Scholar] [CrossRef]
- Globa, A.; Wang, R.; Beza, B. Sensory urbanism and placemaking exploring virtual reality and the creation of place. In Proceedings of the 24th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA), Wellington, New Zealand, 15–18 April 2019. [Google Scholar]
- Daniel, S.; Doran, M.A. geoSmartCity: Geomatics contribution to the smart city. In Proceedings of the 14th Annual International Conference on Digital Government Research, Quebec City, QC, Canada, 17–20 June 2013; pp. 65–71. [Google Scholar]
- González-Zamar, M.D.; Abad-Segura, E.; Vázquez-Cano, E.; López-Meneses, E. IoT technology applications-based smart cities: Research analysis. Electronics 2020, 9, 1246. [Google Scholar] [CrossRef]
- Cecchini, C.; Magrini, A.; Gobbi, L. A 3D platform for energy data visualization of building assets. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012035. [Google Scholar] [CrossRef]
- Chun, P.J.; Yamane, T.; Maharjan, S. Advancing Infrastructure Inspection with AI and 3D Data Platform Integration for Improved Damage Assessment and Enhanced Modeling. In Proceedings of the International Conference on Sustainable Development, Rome, Italy, 11–12 September 2024; Springer Nature: Singapore, 2024; pp. 293–306. [Google Scholar]
- Qiu, D.; Lv, B.; Chan, C.M. How digital platforms enhance urban resilience. Sustainability 2022, 14, 1285. [Google Scholar] [CrossRef]
- Barrile, V.; Cotroneo, F.; Genovese, E. Platform Prototype for the Prediction of Landslide Susceptibility Through a 4D WebGIS Equipped with Cellular Automata and Neural Networks. In Proceedings of the Italian Conference on Geomatics and Geospatial Technologies, Padua, Italy, 18–20 December 2023; Springer Nature: Cham, Switzerland, 2023; pp. 81–95. [Google Scholar]
- Barrile, V.; Genovese, E. Bamboo structures: Innovative methods and applications for structural health monitoring and dissemination. Adv. Bamboo Sci. 2024, 7, 100079. [Google Scholar] [CrossRef]
- Barrile, V.; La Foresta, F.; Calcagno, S.; Genovese, E. Innovative System for BIM/GIS Integration in the Context of Urban Sustainability. Appl. Sci. 2024, 14, 8704. [Google Scholar] [CrossRef]
- Bilen, T.; Canberk, B.; Duong, T.Q. Digital twin evolution for hard-to-follow aeronautical ad-hoc networks in beyond 5g. IEEE Commun. Stand. Mag. 2023, 7, 4–12. [Google Scholar] [CrossRef]
- Bednarz, T.; Baier, A.; Paprocka, I. A framework for communicating and building a digital twin model of the electric car. Appl. Sci. 2024, 14, 1776. [Google Scholar] [CrossRef]
- Redeker, M.; Weskamp, J.N.; Rössl, B.; Pethig, F. A digital twin platform for Industrie 4.0. In Data Spaces: Design, Deployment and Future Directions; Springer International Publishing: Cham, Switzerland, 2022; pp. 173–200. [Google Scholar]
- Broo, D.G.; Bravo-Haro, M.; Schooling, J. Design and implementation of a smart infrastructure digital twin. Autom. Constr. 2022, 136, 104171. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the next generation of digitalization in agriculture based on digital twin paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study with Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Shengli, W. Is human digital twin possible? Comput. Methods Programs Biomed. Update 2021, 1, 100014. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y. Digital twin aided healthcare facility management: A case study of Shanghai tongji hospital. In Proceedings of the Construction Research Congress 2022, Arlington, VA, USA, 9–12 March 2022; pp. 1145–1155. [Google Scholar]
- Argota Sánchez-Vaquerizo, J. Getting real: The challenge of building and validating a large-scale digital twin of Barcelona’s traffic with empirical data. ISPRS Int. J. Geo-Inf. 2022, 11, 24. [Google Scholar] [CrossRef]
- Lee, A.; Lee, K.W.; Kim, K.H.; Shin, S.W. A geospatial platform to manage large-scale individual mobility for an urban digital twin platform. Remote Sens. 2022, 14, 723. [Google Scholar] [CrossRef]
- Xu, H.; Berres, A.; Shao, Y.; Wang, C.R.; New, J.R.; Omitaomu, O.A. Toward a Smart Metaverse City: Immersive Realism and 3D Visualization of Digital Twin Cities. In Advances in Scalable and Intelligent Geospatial Analytics; CRC Press: Boca Raton, FL, USA, 2023; pp. 245–257. [Google Scholar]
- Ferré-Bigorra, J.; Casals, M.; Gangolells, M. The adoption of urban digital twins. Cities 2022, 131, 103905. [Google Scholar] [CrossRef]
- Mazzetto, S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Snap4City. Available online: https://www.snap4city.org/dashboardSmartCity/management/iframeApp.php?linkUrl=https://www.snap4city.org/drupal&linkId=snap4cityPortalLink&pageTitle=www.snap4city.org&fromSubmenu=false (accessed on 15 February 2025).
- Schrotter, G.; Hürzeler, C. The digital twin of the city of Zurich for urban planning. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Schneider, R.; Koch, J.; Ondracek, M.; Troldborg, L.; Seidenfaden, I.K.; Kragh, S.J.; Bøgh, E.; Stisen, S. A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin). Water 2023, 15, 25. [Google Scholar] [CrossRef]
- Yu, D.; He, Z. Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: Advances, challenges, and opportunities. Nat. Hazards 2022, 112, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Qin, S. Urban flooding digital twin system framework. Syst. Sci. Control. Eng. 2025, 13, 2460432. [Google Scholar] [CrossRef]
- Ariyachandra, M.M.F.; Wedawatta, G. Digital twin smart cities for disaster risk management: A review of evolving concepts. Sustainability 2023, 15, 11910. [Google Scholar] [CrossRef]
- Shahat, E.; Hyun, C.T.; Yeom, C. City Digital Twin Potentials: A Review and Research Agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Koeva, M.; Tripathy, A.; Afzalinezhad, A. The Role of Digital Twins in Mitigating Urban Heat Islands: How Cities Are Leveraging Innovative Technology for Sustainable Urban Development; GIM International: Lemmer, The Netherlands, 2024. [Google Scholar]
- Chen, C.; Han, Y.; Galinski, A.; Calle, C.; Carney, J.; Ye, X.; van Westen, C. Integrating urban digital twins with cloud-based geospatial dashboards for coastal resilience planning: A case study in Florida. arXiv 2024, arXiv:2403.18188. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Balsamo, G.; Boussetta, S.; Dutra, E.; Beljaars, A. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts. Atmos. Chem. Phys. 2016, 16, 10399–10418. [Google Scholar] [CrossRef]
- DJI Enterprise. Available online: https://enterprise.dji.com/it/matrice-350-rtk/specs (accessed on 3 January 2024).
- Tarquini, S.; Isola, M.I.; Favalli, A.; Battistini, G.D. TINITALY, a Digital Elevation Model of Italy with a 10 Meters Cell Size (Version 1.1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2023. [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A new triangular irregular network of Italy. Ann. Geophys. 2007, 50, 407–425. [Google Scholar] [CrossRef]
- Available online: https://www.sandinginstrument.com/en/product_con.html?top=GNSS&c=RTKReceivers&short_url=AquaT5#:~:text=Aqua%20T5%20is%20a%20new%20product%20from%20SANDING,the%20ability%20of%20receiving%20higher%20quality%20satellites%20signals (accessed on 14 February 2024).
- Zippenfenig, P. Open-Meteo.com Weather API [Computer Software]; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Urban Atlas Land Cover/Land Use 2018 (Vector), Europe. [Data Set]. November 2024. Available online: https://land.copernicus.eu/en/products/urban-atlas/urban-atlas-2018 (accessed on 17 February 2024).
- Cesium. Available online: https://cesium.com/platform/cesium-ion/ (accessed on 3 January 2024).
- Pellegrino, A.; Borrelli, S. 23. Analisi del Dissesto da Frana in Calabria; APAT (Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici): Rome, Italy, 2007. [Google Scholar]
- Ferro-Escobar, R.; Vacca-González, H.; Gómez-Castillo, H. Smart and Sustainable Cities in Collaboration with IoT: The Singapore Success Case. In Machine Learning for Smart Environments/Cities; Intelligent Systems Reference Library; Marques, G., González-Briones, A., Molina López, J.M., Eds.; Springer: Cham, Switzerland, 2022; Volume 121. [Google Scholar] [CrossRef]
Data | Source |
---|---|
VIIRS Nighttime Lights (VNL) | https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/, (accessed on 15 February 2025) [42] |
CAMS Global Emission Inventories | https://ads.atmosphere.copernicus.eu/datasets/cams-global-emission-inventories?tab=overview, (accessed on 15 February 2025) [43] |
Tinitaly DEM | https://tinitaly.pi.ingv.it/, (accessed on 15 February 2025) [45,46] |
Light sources positions | Rover GNSS Sanding T5 [47] |
Precipitation data | https://open-meteo.com/en/docs/historical-weather-api, (accessed on 15 February 2025) [48] |
Urban Atlas | https://land.copernicus.eu/en/products/urban-atlas/urban-atlas-2018, (accessed on 15 February 2025) [49] |
Points cloud from drone equipped with LiDAR sensor | Survey with DJI Matrice 350 RTK drone [44] equipped with a LiDAR sensor |
Land Use Class | High Light Pollution Area Percentage |
---|---|
11100 Continuous Urban Fabric | 33.3% |
11210 Discontinuous Dense Urban Fabric | 16.67% |
11220 Discontinuous Medium Density Urban Fabric | 2.13% |
11230 Discontinuous Low Density Urban Fabric | 2.08% |
11300 Isolated Structures | 1.92% |
12100 Industrial, Commercial, Public, Military, and Private Units | 0.88% |
12210 Fast Transit Roads and Associated Land | 13.33% |
12220 Other Roads and Associated Land | 1.45% |
12230 Railways and Associated Land | 5% |
12300 Port Areas | 11% |
13100 Mineral Extraction and Dump Sites | 1.11% |
13400 Low without Current Use | 0.72% |
14100 Green Urban Areas | 1.27% |
14200 Sports and Leisure Facilities | 0.4% |
22000 Permanent Crops | 1.69% |
23000 Pastures | 0.75% |
31000 Forests | 4.35% |
32000 Herbaceous Vegetation Associations | 1.39% |
33000 Open Spaces with Little or No Vegetation | 0.53% |
Land Use Class | Risk Area Percentage |
---|---|
11100 Continuous Urban Fabric | 3.85% |
11210 Discontinuous Dense Urban Fabric | 4.78% |
11220 Discontinuous Medium Density Urban Fabric | 3.61% |
11230 Discontinuous Low Density Urban Fabric | 0.72% |
11300 Isolated Structures | 0.21% |
12100 Industrial, Commercial, Public, Military, and Private Units | 3.49% |
12210 Fast Transit Roads and Associated Land | 0.40% |
12220 Other Roads and Associated Land | 9.12% |
12230 Railways and Associated Land | 0.20% |
12300 Port Areas | 3.42% |
13100 Mineral Extraction and Dump Sites | 1.87% |
13400 Low without Current Use | 0.59% |
14100 Green Urban Areas | 0.68% |
14200 Sports and Leisure Facilities | 1.34% |
22000 Permanent Crops | 7.94% |
23000 Pastures | 39.58% |
31000 Forests | 0.50% |
32000 Herbaceous Vegetation Associations | 15.76% |
33000 Open Spaces with Little or No Vegetation | 1.94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrile, V.; Genovese, E.; Maesano, C.; Calluso, S.; Manti, M.P. Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk. Future Internet 2025, 17, 110. https://doi.org/10.3390/fi17030110
Barrile V, Genovese E, Maesano C, Calluso S, Manti MP. Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk. Future Internet. 2025; 17(3):110. https://doi.org/10.3390/fi17030110
Chicago/Turabian StyleBarrile, Vincenzo, Emanuela Genovese, Clemente Maesano, Sonia Calluso, and Maurizio Pasquale Manti. 2025. "Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk" Future Internet 17, no. 3: 110. https://doi.org/10.3390/fi17030110
APA StyleBarrile, V., Genovese, E., Maesano, C., Calluso, S., & Manti, M. P. (2025). Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk. Future Internet, 17(3), 110. https://doi.org/10.3390/fi17030110