A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin)
<p>Cases of high groundwater level and various consequences. Reprinted /adapted with permission from Ref. [<a href="#B25-water-15-00025" class="html-bibr">25</a>]. Copyright year 2021, Danish EPA.</p> "> Figure 2
<p>The national web portal and the HIP DT.</p> "> Figure 3
<p>DK-model HIP. Left: 10 submodels used in recalibration of DK-model HIP 100 m. Central left: 9 soil types. Central right: Land use with 28 vegetation types. Right: Distributed drainage depth [<a href="#B26-water-15-00025" class="html-bibr">26</a>].</p> "> Figure 4
<p>High-resolution modeling of winter groundwater level with gradient boost ML algorithm [<a href="#B8-water-15-00025" class="html-bibr">8</a>].</p> "> Figure 5
<p>Downscaling of climate change impacts on groundwater level from 500 m to 100 m climate using a random forest ML algorithm Reprinted/adapted with permission from Ref. [<a href="#B8-water-15-00025" class="html-bibr">8</a>].</p> "> Figure 6
<p>Monthly anomalies with indices for wetness and droughts, 2010–2019. Precipitation (P). Soil moisture deficit index (SMDI). Streamflow deficit index (SDI). Depth to groundwater table and piezometric head for deep groundwater: standard groundwater level deficit index (SGDI) [<a href="#B37-water-15-00025" class="html-bibr">37</a>]. The figure and indices illustrate how the meteorological drought cascaded into agricultural and hydrological drought for streamflow and shallow and deep groundwater during the extreme summer drought in Central–Northern Europe and Denmark in 2018–2019.</p> "> Figure 7
<p>Example of simulated drought indices for Denmark, mean for summer 2018 (JJA). The soil moisture (SMDI) was very dry for the entirety of Denmark situated in the epicenter of this Northern European drought. However, the groundwater (SGDI) was less affected (as it is more dependent on preceding winter conditions) and with more complex distribution for deep groundwater (some areas were wet). Streamflow (SDI) followed a complex mix of SMDI and SGDI shallow and deep [<a href="#B37-water-15-00025" class="html-bibr">37</a>].</p> ">
Abstract
:1. Introduction
- Half of the world’s population is assessed as being currently subject to severe water scarcity for at least one month per year due to climatic and nonclimatic factors (scarcity of freshwater combined with drought, flooding, and pollution, accelerated melting of glaciers, and changes in the timing of floods and droughts).
- Decreasing freshwater availability across space and time also affects water requirements for different sector uses [4]. Vulnerability to water-related impacts of climate change and extreme weather is already felt in major sectors (agriculture, energy, industry, health, sanitation, urban/peri-urban sector, and ecosystems).
- A large majority (~60%) of all adaptation responses documented since 2014 are about adapting to water-related hazards such as droughts, floods, and rainfall variability [5]. Irrigation, water, and soil moisture conservation, rainwater harvesting, and changes in crops are, here, possible adaptation measures.
- Limiting global warming to 1.5 °C would minimize the increase in risks in the various water use sectors. However, mitigation measures can potentially impact future water security (bioenergy, carbon capture, and afforestation can have a severe water footprint if utilized inappropriately or in the wrong places in the catchment). The full-system view, thus, is necessary that considers the direct impacts of mitigation measures on water resources and their indirect effects via limiting climate change.
1.1. The Role of Groundwater in Sustainable Water Management
1.2. The Role of Groundwater in the Climate System
1.3. Hydrology Digital Twins
1.4. Purpose of Paper
- To explore the Danish HIP DT and how observations and model results provide integrated high-resolution information for climate change adaptation planning for shallow groundwater.
- To evaluate how real-time modeling with daily updates and a 5–10-day prognosis (to be operational in 2025 on a national scale) can strengthen the use of HIP DT for disaster risk reduction.
- To provide a narrative that describes HIP DT as a tool for screening and adaptive planning to support screening of more resilient infrastructures, land uses, and robust water futures.
1.5. The Novelty of the Work
2. Materials and Methods
2.1. Digital Twins
2.2. Danish Case Study—HIP DT for Dealing with High Shallow Groundwater Levels and Water Security
2.2.1. Use of Data and Observations as Part of DK-Model HIP Setup—Calibration and Performance Assessment
2.2.2. Climate Change Impact Analysis
2.2.3. Hydrological Information and Prediction System (the HIP Portal)
2.3. Current/Future Developments
2.3.1. DK-Model HIP 100 m Real-Time Model
2.3.2. Plug-in Digital Twins and Boundary Conditions for Local Submodels
3. Results
3.1. Evaluation of the ‘Digital Twin Factor’ of the HIP DT
3.2. How Do Different Sectors in Denmark Evaluate Climate Change Flooding and Drought Hazard, Exposure, Vulnerability, and Risks Related to Water Security?
3.3. Who Are the Users of the Hydrological Services in Denmark (HIP Portal & DT)?
4. Discussion
4.1. The Integration of Observations and Model Results in HIP DT Visualization
4.2. Possible Strengthening of the Use of HIP DT with the Development of Real-Time Model with a 5–10-Day Forecast for Disaster Risk Reduction Purposes
4.3. HIP DT as a Tool for Screening and Adaptive Planning for More Resilient Infrastructures, Land Uses, and Robust Water Futures
4.4. The Main Preconditions for Introducing a National Hydrological Digital Twin
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EC 2021. EU Strategy on Adaptation to Climate Change. COM/2021/82 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2021:82:FIN (accessed on 1 December 2022).
- Pörtner, H.-O.; Roberts, D.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V. (Eds.) IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Grey, D.; Sadoff, C.W. Sink or Swim? Water security for growth and development. Water Policy 2007, 9, 545–571. [Google Scholar] [CrossRef]
- Bijl, D.L.; Biemans, H.; Bogaart, P.W.; Dekker, S.; Doelman, J.C.; Stehfest, E.; Van Vuuren, D.P. A Global Analysis of Future Water Deficit Based on Different Allocation Mechanisms. Water Resour. Res. 2018, 54, 5803–5824. [Google Scholar] [CrossRef] [Green Version]
- Berrang-Ford, L.; Siders, A.R.; Lesnikowski, A.; Fischer, A.P.; Callaghan, M.W.; Haddaway, N.R.; Mach, K.J.; Araos, M.; Shah, M.A.R.; Wannewitz, M.; et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Chang. 2021, 11, 989–1000. [Google Scholar] [CrossRef]
- Koch, J.; Berger, H.; Henriksen, H.J.; Sonnenborg, T.O. Modelling of the shallow water table at high spatial resolution using random forests. Hydrol. Earth Syst. Sci. 2019, 23, 4603–4619. [Google Scholar] [CrossRef] [Green Version]
- Koch, J.; Gotfredsen, J.; Schneider, R.; Troldborg, L.; Stisen, S.; Henriksen, H.J. High resolution water table modelling of the shallow groundwater using a knowledge-guided boosting decision tree model. Front. Water 2021, 3, 701726. [Google Scholar] [CrossRef]
- Schneider, R.; Koch, J.; Troldborg, L.; Henriksen, H.J.; Stisen, S. Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth. Hydrol. Earth Syst. Sci. 2022, 26, 5859–5877. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim Chang. 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling. Simulation of Flow and Advective Transport, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780120581030. [Google Scholar]
- Scholten, T.; Hartmann, T.; Split, T. The spatial component of integrated water resource management differentiating integration of land and water governance. Int. J. Water Resour. Dev. 2020, 36, 800–817. [Google Scholar] [CrossRef] [Green Version]
- Haasnoot, M.; Klooster, S.; val Alphen, J. Designing a monitoring system to detect signals to adapt to uncertain climate change. Glob. Environ. Chang. 2018, 52, 273–285. [Google Scholar] [CrossRef]
- Rigon, R.; Formetta, G.; Bancheri, M.; Tubini, N.; D’Amato, C.; David, O.; Massari, C. HESS Opinions: Participatory Digital Earth Twin Hydrology systems (DARTHs) for everyone: A blueprint for hydrologists. Hydrol. Earth Syst. Sci. 2022, 26, 4773–4800. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European hydrological system—Systeme hydrologique europeen, “She”, 2: Structure of a physically-based, distributed modeling system. J. Hydrol. 1986, 87, 61–77. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E.; Melchior, P. A Physics-Informed, Machine Learning Emulator of a 2D Surface Water Model: What Temporal Networks and Simulation-Based Inference Can Help Us Learn about Hydrologic Processes. Water 2021, 13, 3633. [Google Scholar] [CrossRef]
- Tran, H.; Leonarduzzi, E.; De la Fuente, L.; Hull, R.B.; Bansal, V.; Chennault, C.; Gentine, P.; Melchior, P.; Condon, L.E.; Maxwell, R.M. Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML. Water 2021, 13, 3393. [Google Scholar] [CrossRef]
- Koch, J.; Schneider, R. Long short-term memory networks enhance rainfall—runoff modelling at national scale of Denmark. GEUS Bull. 2022, 49, 8292. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in greenhouse horticulture: A review. Comput. Electron. Agric. 2022, 199, 107183. [Google Scholar] [CrossRef]
- Glaessgen, E.; Stargel, D. The Digital Twin Paradigm for Future NASA and US Air Force vehicles. 2012. Available online: https://ntrs.nasa.gov/api/citations/20120008178/downloads/20120008178.pdf (accessed on 1 December 2022).
- Korenhof, P.; Blok, V.; Kloppenburg, S. Steering Representations—Towards a Critical Understanding of Digital Twins. Philos. Technol. 2021, 34, 1751–1773. [Google Scholar] [CrossRef]
- Colgan, W.; Henriksen, H.J.; Bennike, O.; Ribeiro, S.; Keiding, M.; Seidenfaden, I.K.; Graversgaard, M.; Busck, A.; Fruergaard, M.; Knudsen, M.H.; et al. Sea-Level Projections for Denmark: Recent Advances. GEUS Bull. 2022. in print. Available online: https://geusbulletin.org/index.php/geusb (accessed on 1 December 2022). [CrossRef]
- Refsgaard, J.C.; Sonnenborg, T.O.; Butts, M.B.; Christensen, J.H.; Christensen, S.; Drews, M.; Jensen, K.H.; Jørgensen, F.; Jørgensen, L.F.; Larsen, M.A.D.; et al. Climate change impacts on groundwater hydrology—Where are the main uncertainties and can they be reduced? Hydrol. Sci. J. 2016, 61, 2312–2324. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.S.; Seidenfaden, I.K.; Jensen, K.H.; Sonnenborg, T.O. Climate change impacts and uncertainty on spatiotemporal variations of drought indices for an irrigated catchment. J. Hydrol. 2021, 601, 126814. [Google Scholar] [CrossRef]
- Karlsson, I.B.; Sonnenborg, T.O.; Seaby, L.P.; Jensen, K.H.; Refsgaard, J.C. Effect of a high-end CO2-emission scenario on hydrology. Clim. Res. 2015, 64, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Danish EPA. Report on Fast Track Project on High Groundwater Level in Urban Areas (In Danish: Afrapportering Fra Fast Track Projekt om Højtstående Grundvand I Byområder). 2019. Available online: https://www.klimatilpasning.dk/media/1840098/afrapportering-af-arbejdsgruppe-om-hoejtstaaende-grundvand-juni-2021.pdf (accessed on 1 December 2022).
- Henriksen, H.J.; Kragh, S.J.; Gotfredsen, J.; Ondracek, M.; van Til, M.; Jakobsen, A.; Schneider, R.J.M.; Koch, J.; Troldborg, L.; Rasmussen, P.; et al. Udvikling af Landsdækkende Modelberegninger af Terrænnære Hydrologiske Forhold i 100m Grid ved Anvendelse af DK-modellen (Development of Nationwide Model Simulations of Shallow Hydrogeology in a 100 m Grid with the DK Model); Geological Survey of Denmark and Greenland: Copenhagen, Denmark, 2022. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Stisen, S.; Koch, J. Hydrological process knowledge in catchment modelling—Lessons and perspectives from 60 years development. Hydrol. Processes 2022, 36, e14463. [Google Scholar] [CrossRef]
- Stisen, S.; Schneider, R.J.M.; Ondracek, M.; Henriksen, H.J. Modellering af Terrænnært Grundvand, Vandstand i Vandløb og Vand på Terræn for Storå og Odense Å. Slutrapport (FODS 6.1 Fasttrack Metodeudvikling). Udarbejdet af GEUS for SDFE i Regi af FODS 6.1—September 2018; (Danmarks og Grønlands Geologiske Undersøgelse Rapport; Vol. 2018, No. 36); GEUS: Copenhagen, Denmark, 2018. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Troldborg, L.; Nyegaard, P.; Sonnenborg, T.O.; Refsgaard, J.C.; Madsen, B. Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol. 2003, 280, 52–71. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Troldborg, L.; Højberg, A.L.; Refsgaard, J.C. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and numerical groundwater-surface water model. J. Hydrol. 2008, 348, 224–240. [Google Scholar] [CrossRef]
- Højberg, A.L.; Troldborg, L.; Stisen, S.; Christensen, B.B.S.; Henriksen, H.J. Stakeholder driven update and improvement of a national water resources model. Environ. Model. Softw. 2013, 40, 202–213. [Google Scholar] [CrossRef]
- Karlson, I.K.; Sonnenborg, T.O.; Stisen, S.; Kidmose, J. Quantification of climate change sensitivity of shallow and deep groundwater in Denmark. J. Hydrol. Reg. Stud. 2022, 41, 101100. [Google Scholar] [CrossRef]
- Soltani, M.; Bjerre, E.; Koch, J.; Stisen, S. Integrating remote sensing data in optimization of a national water resources modelt o improve the spatial pattern performance of evapotranspiration. J. Hydrol. 2021, 603, 127026. [Google Scholar] [CrossRef]
- Kraft, B.; Jung, M.; Körner, M.; Reichstein, M. Hybrid modeling: Fusion of a deep learning approach and a physics- based model for global hydrological modeling. Int. Arch. Photogramm. 2020, 43, 1537–1544. [Google Scholar] [CrossRef]
- Konapala, G.; Kao, S.-C.; Painter, S.L.; Lu, D. Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous US. Environ. Res. Lett. 2020, 15, 104022. [Google Scholar] [CrossRef]
- Pasten-Zapata, E.; Sonnenborg, T.O.; Refsgaard, J.C. Climate change: Sources of uncertainty in precipitation and temperature projections for Denmark. GEUS Bull. 2019, 43. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, H.J.; Schneider, R.J.M.; Nilsson, B. Analysis of Drought Indicators Based on a National Coupled Hydrological Model. Identification of Drought Events, Propagation of Drought Indices, Aggregation Level and Illustration of How Data from HIP Realtime Model Can Support Vulnerability Assessment for Damages to Houses; (Danmarks og Grønlands Geologiske Undersøgelse Rapport; Vol. 2022, No. 25); GEUS: Copenhagen, Denmark, 2022. [Google Scholar] [CrossRef]
- LaBianca, A.; Mortensen, M.H.; Sandersen, P.; Sonnenborg, T.O.; Jensen, K.H.; Kidmose, J. Impact of urban geology on shallow groundwater. Hydrol. Earth Syst. Sci. Discuss. 2022. in review. [Google Scholar] [CrossRef]
- Danapour, M.; Fienen, M.N.; Højberg, A.L.; Jensen, K.H.; Stisen, S. Multi-Constrained Catchment Scale Optimization of Groundwater Abstraction Using Linear Programming. Groundwater 2021, 59, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Denmark. Biennial Reports (BR). BR 3. National Communication (NC). NC 7. Available online: https://unfccc.int/documents/28946 (accessed on 1 December 2022).
- Quintero, F.; Villarini, G.; Prein, A.F.; Zhang, W.; Krajewski, W.F. Discharge and floods projected to increase more than precipitation extremes. Hydrol. Processes 2022, 36, e14738. [Google Scholar] [CrossRef]
- Lane, R.A.; Coxon, G.; Freer, J.; Seibert, J.; Wagener, T. A large-sample investigation into uncertain climate change impacts on high flows across Great Britain. Hydrol. Earth Syst. Sci. 2022, 26, 5535–5554. [Google Scholar] [CrossRef]
- van der Keur, P.; Henriksen, H.J. Højtstående Grundvand i Byer. REALDANIA. 2022. (in Danish). Available online: https://realdania.dk/publikationer/faglige-publikationer/hoejtstaaende-grundvand-i-byer/hoejstaaende-grundvand-i-byer (accessed on 1 December 2022).
- Skov, I.R.; Schneider, N.; Schweiger, G.; Schöggl, J.-P.; Posch, A. Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats. Energies 2021, 14, 913. [Google Scholar] [CrossRef]
- EEA. Climate Change as a Threat to Health and Infectious Diseases. EEA Report No 07. 2022. Available online: https://www.eea.europa.eu/publications/climate-change-impacts-on-health/at_download/file (accessed on 1 December 2022).
- Mielby, S.; Henriksen, H.J. Hydrogeological studies integrating the climate, fresheater cycle, and catchment geography for the benefit of urban resilience and sustainability. Water 2020, 12, 3324. [Google Scholar] [CrossRef]
- Danish EPA. FOHM—Fælles Offentlig Hydrologisk Model. 2019. Available online: https://mst.dk/natur-vand/vand-i-hverdagen/grundvand/grundvandskortlaegning/kortlaegning-2016-2020/fohm-faelles-offentlig-hydrologisk-model/ (accessed on 11 March 2020).
- Henriksen, H.J.; Troldborg, L.; Sonnenborg, T.; Højberg, A.L.; Stisen, S.; Kidmose, J.B.; Refsgaard, J.C. Best Practices in Groundwater Modelling (Hydrologisk Geovejledning 2017/1, in Danish). Available online: https://www.geovejledning.dk/gv7/ (accessed on 1 December 2022).
- Stisen, S.; Koch, J.; Sonnenborg, T.O.; Refsgaard, J.C.; Bircher, S.; Ringgaard, R.; Jensen, K.H. Moving beyond runoff calibration—Multi-variable optimization of a surface-subsurface-atmosphere model. Hydrol. Processes 2018, 32, 2654–2668. [Google Scholar] [CrossRef]
Exposure | The presence of people; livelihoods; species or ecosystems; environmental functions, services, and resources; infrastructure; or economic, social, or cultural assets in places and settings that could be adversely affected. |
Vulnerability | The propensity or predisposition to be adversely affected. It encompasses a variety of concepts and elements, including sensitivity or susceptibility to harm and lack of capacity to cope and adapt. Key risks have potentially severe adverse consequences for humans and social–ecological systems resulting from the interaction of climate-related hazards with vulnerabilities of societies and systems exposed. |
Resilience | The capacity of social, economic, and ecosystems to cope with a hazardous event or trend or disturbance, responding or reorganizing in ways that maintain their essential function, identity, and structure, as well as biodiversity in the case of ecosystems, while also maintaining the capacity for adaptation, learning, and transformation. Resilience is a positive attribute when it maintains such a capacity for adaptation, learning, and/or transformation. |
Water security | The capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human wellbeing, and socioeconomic development, for ensuring protection against waterborne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability [3]. |
Characteristic | Conceptualization Examples |
---|---|
Real-time | Real-time, current state, dynamic updating, monitoring, not a static representation, boundary conditions to plug-in digital twins. |
High-fidelity | Comprehensive, reliable, represents all digital information, very realistic, mirror, combining information, accurate, information-rich. |
Predictive | Prediction, prognostics, probabilistic, aggregate future states, continuous forecasting, assimilation; adaptation scenarios. |
Prescriptive | Improvement, solve problems, optimization, efficiency, reconfigure, diagnostics, uncover issues, recommend changes, increase lifespan of infrastructure, performance assessment, anomaly detection. |
Feedback | Integration, interaction, bidirectional, entangled relation, fusion, screening, change, seamlessly integrated, mitigating damage or degradation, linked, feedback loop, inverse calibration, decision-making. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henriksen, H.J.; Schneider, R.; Koch, J.; Ondracek, M.; Troldborg, L.; Seidenfaden, I.K.; Kragh, S.J.; Bøgh, E.; Stisen, S. A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin). Water 2023, 15, 25. https://doi.org/10.3390/w15010025
Henriksen HJ, Schneider R, Koch J, Ondracek M, Troldborg L, Seidenfaden IK, Kragh SJ, Bøgh E, Stisen S. A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin). Water. 2023; 15(1):25. https://doi.org/10.3390/w15010025
Chicago/Turabian StyleHenriksen, Hans Jørgen, Raphael Schneider, Julian Koch, Maria Ondracek, Lars Troldborg, Ida K. Seidenfaden, Søren Julsgaard Kragh, Eva Bøgh, and Simon Stisen. 2023. "A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin)" Water 15, no. 1: 25. https://doi.org/10.3390/w15010025
APA StyleHenriksen, H. J., Schneider, R., Koch, J., Ondracek, M., Troldborg, L., Seidenfaden, I. K., Kragh, S. J., Bøgh, E., & Stisen, S. (2023). A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin). Water, 15(1), 25. https://doi.org/10.3390/w15010025