NBTI and Power Reduction Using an Input Vector Control and Supply Voltage Assignment Method
<p>The flow of the proposed input vector control (IVC) and supply voltage assignment (SVA) combination method. NBTI, negative bias temperature instability.</p> "> Figure 2
<p>The input vector combination and corresponding delay increase for an NAND gate.</p> "> Figure 3
<p>The basic principle of supply voltage assignment.</p> "> Figure 4
<p>Leakage power change of an NAND gate under different supply voltage.</p> "> Figure 5
<p>Threshold voltage change for a positive-channel Metal Oxide Semiconductor (pMOS) transistor with different <span class="html-italic">V<sub>gs</sub></span>.</p> "> Figure 6
<p>Degradation and leakage minimization result by different ILP formulations. (<b>a</b>) c880 circuit; (<b>b</b>) c3540 circuit.</p> "> Figure 7
<p>Leakage power dissipation of SVA with different input vectors for c432 and c7552 circuits. c432 circuit; (<b>b</b>) c7552 circuit.</p> "> Figure 8
<p>Leakage and dynamic power of SVA for the c880 and c3540 circuits when using the input vector obtained by the co-optimization method in Ref. [<a href="#B27-algorithms-10-00094" class="html-bibr">27</a>] under different power constrain settings. (<b>a</b>) c880 circuit; (<b>b</b>) c3540 circuit.</p> "> Figure 9
<p>Leakage and dynamic power of SVA for c880 and c3540 circuits when using the input vector obtained by MC simulation and our proposed IVC #3 method. (<b>a</b>) c880 circuit; (<b>b</b>) c3540 circuit.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. NBTI-Induced Transistor Aging
2.2. Path-Based NBTI Model
2.3. Cell-Based Leakage Power Model
3. Methodology
3.1. ILP Formulation for NBTI Mitigation and Leakage Reduction Only
3.1.1. ILP Formulation for NBTI Mitigation
3.1.2. ILP Formulation for Leakage Reduction
3.2. Supply Voltage Assignment
3.3. Minimum NBTI Vector Selection Considering Power Effect
4. Experiment and Discussion
4.1. Experimental Setting
4.2. Result and Discusion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stathis, J.H.; Zafar, S. The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 2006, 46, 270–286. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, H.; He, K.; Luo, R.; Yang, H.; Xie, Y. Temperature-aware NBTI modeling and the impact of standby leakage reduction techniques on circuit performance degradation. IEEE Trans. Dependable Secur. Comput. 2011, 8, 756–769. [Google Scholar] [CrossRef]
- Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 2003, 91, 305–327. [Google Scholar] [CrossRef]
- Haihua, S.; Liu, F.; Devgan, A.; Acar, E.; Nassif, S. Full chip leakage-estimation considering power supply and temperature variations. In Proceedings of the 2003 International Symposium on Low Power Electronics and Design, ISLPED’03, Seoul, Korea, 27 August 2003; pp. 78–83. [Google Scholar]
- Chen, Y.-T.; Horng, M.-F.; Lo, C.-C.; Chu, S.-C.; Pan, J.-S.; Liao, B.-Y. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability. Sensors 2013, 13, 3951–3974. [Google Scholar] [CrossRef] [PubMed]
- Calimera, A.; Macii, E.; Poncino, M. NBTI-aware power gating for concurrent leakage and aging optimization. In Proceedings of the 2009 ACM/IEEE International Symposium on Low Power Electronics and Design, San Fancisco, CA, USA, 19–21 August 2009; pp. 127–132. [Google Scholar]
- Wang, Y.; Chen, X.; Wang, W.; Cao, Y.; Xie, Y.; Yang, H. Leakage power and circuit aging cooptimization by gate replacement techniques. IEEE Trans. Very Large Scale Integr. Syst. 2011, 19, 615–628. [Google Scholar] [CrossRef]
- Bian, S.; Shintani, M.; Wang, Z.; Hiromoto, M.; Chattopadhyay, A.; Sato, T. Runtime NBTI mitigation for processor lifespan extension via selective node control. In Proceedings of the 2016 IEEE 25th Asian Test Symposium (ATS), Hiroshima, Japan, 21–24 November 2016; pp. 234–239. [Google Scholar]
- Agarwal, M.; Paul, B.C.; Zhang, M.; Mitra, S. Circuit failure prediction and its application to transistor aging. In Proceedings of the 25th IEEE VLSI Test Symmposium, Berkeley, CA, USA, 6–10 May 2017; pp. 277–286. [Google Scholar]
- Chen, X.; Wang, Y.; Cao, Y.; Ma, Y.; Yang, H. Variation-aware supply voltage assignment for simultaneous power and aging optimization. IEEE Trans. Very Large Scale Integr. Syst. 2012, 20, 2143–2147. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Wang, W.; Vattikonda, R.; Cao, Y.; Vrudhula, S. Predictive modeling of the NBTI effect for reliable design. In Proceedings of the IEEE Custom Integrated Circuits Conference 2006, San Jose, CA, USA, 10–13 September 2006; pp. 189–192. [Google Scholar]
- Yang, Z.; Yu, Y.; Zhang, C.; Peng, X. NBTI-aware adaptive minimum leakage vector selection using a linear programming approach. Integr. VLSI J. 2016, 53, 126–137. [Google Scholar] [CrossRef]
- Alkabani, Y.; Massey, T.; Koushanfar, F.; Potkonjak, M. Input vector control for post-silicon leakage current minimization in the presence of manufacturing variability. In Proceedings of the 2008 45th ACM/IEEE Design Automation Conference, Anaheim, CA, USA, 8–13 June 2008; pp. 606–609. [Google Scholar]
- Bild, D.R.; Dick, R.P.; Bok, G.E. Static NBTI reduction using internal node control. ACM Trans. Des. Autom. Electron. Syst. 2012, 17, 1–30. [Google Scholar] [CrossRef]
- Lin, I.C.; Lin, C.H.; Li, K.H. Leakage and aging optimization using transmission gate-based technique. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 87–99. [Google Scholar] [CrossRef]
- Kumar, S.V.; Kim, C.H.; Sapatnekar, S.S. Adaptive techniques for overcoming performance degradation due to aging in CMOS circuits. IEEE Trans. Very Large Scale Integr. Syst. 2011, 19, 603–614. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, T. A fine-grained technique of NBTI-aware voltage scaling and body biasing for standard cell based designs. In Proceedings of the 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25–28 January 2011; pp. 603–608. [Google Scholar]
- Zhang, L.; Dick, R.P. Scheduled voltage scaling for increasing lifetime in the presence of NBTI. In Proceedings of the 2009 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 19–22 January 2009; pp. 492–497. [Google Scholar]
- Mintarno, E.; Skaf, J.; Zheng, R.; Velamala, J.B.; Cao, Y.; Boyd, S.; Dutton, R.W.; Mitra, S. Self-tuning for maximized lifetime energy-efficiency in the presence of circuit aging. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2011, 30, 760–773. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Qing, J.; Zeng, Y.; Shi, Y.; Guo, A.; Hu, S.; Chen, S.; Zhao, Y. Analytical parameter extraction for NBTI reaction diffusion and trapping/detrapping models. Microelectron. Reliab. 2016, 66, 10–15. [Google Scholar] [CrossRef]
- Velamala, J.B.; Sutaria, K.B.; Sato, T.; Cao, Y. Aging statistics based on trapping/detrapping: Silicon evidence, modeling and long-term prediction. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 2F.2.1–2F.2.5. [Google Scholar]
- Grasser, T.; Waltl, M.; Rzepa, G.; Goes, W.; Wimmer, Y.; El-Sayed, A.M.; Shluger, A.L.; Reisinger, H.; Kaczer, B. The permanent component of NBTI revisited: Saturation, degradation-reversal, and annealing. In Proceedings of the 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, 17–21 April 2016. [Google Scholar]
- Katsetos, A.A. Negative bias temperature instability (NBTI) recovery with bake. Microelectron. Reliab. 2008, 48, 1655–1659. [Google Scholar] [CrossRef]
- Mahapatra, S.; Goel, N.; Desai, S.; Gupta, S.; Jose, B.; Mukhopadhyay, S.; Joshi, K.; Jain, A.; Islam, A.E.; Alam, M.A. A comparative study of different physics-based NBTI models. IEEE Trans. Electron. Devices 2013, 60, 901–916. [Google Scholar] [CrossRef]
- Kaczer, B.; Grasser, T.; Roussel, P.J.; Franco, J.; Degraeve, R.; Ragnarsson, L.A.; Simoen, E.; Groeseneken, G.; Reisinger, H. Origin of NBTI variability in deeply scaled pfets. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 26–32. [Google Scholar]
- Zhao, K.; Stathis, J.H.; Linder, B.P.; Cartier, E.; Kerber, A. PBTI under dynamic stress: From a single defect point of view. In Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA, USA, 10–14 April 2011; pp. 4A.3.1–4A.3.9. [Google Scholar]
- Firouzi, F.; Kiamehr, S.; Tahoori, M.B. Power-aware minimum NBTI vector selection using a linear programming approach. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 100–110. [Google Scholar] [CrossRef]
- Bowman, K.A.; Austin, B.L.; Eble, J.C.; Xinghai, T.; Meindl, J.D. A physical alpha-power law mosfet model. IEEE J. Solid State Circuits 1999, 34, 1410–1414. [Google Scholar] [CrossRef]
- Xu, Q.; Nicolici, N.; Chakrabarty, K. Test wrapper design and optimization under power constraints for embedded cores with multiple clock domains. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 1539–1547. [Google Scholar] [CrossRef]
- Yang, M.; Liu, J. A maximum lifetime coverage algorithm based on linear programming. J. Inf. Hiding Multimed. Signal Process. 2014, 5, 295–300. [Google Scholar]
- Richards, A.; How, J.P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, 8–10 May 2002; Volume 1933, pp. 1936–1941. [Google Scholar]
- Gao, F.; Hayes, J.P. Exact and heuristic approaches to input vector control for leakage power reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2006, 25, 2564–2571. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, W.; Balakrishnan, V.; Cao, Y.; Xie, Y.; Yang, H. On the efficacy of input vector control to mitigate NBTI effects and leakage power. In Proceedings of the 2009 10th International Symposium on Quality Electronic Design, San Jose, CA, USA, 16–18 March 2009; pp. 19–26. [Google Scholar]
- Yu, C.H.; Lung, C.L.; Ho, Y.L.; Hsu, R.S.; Kwai, D.M.; Chang, S.C. Thermal-aware on-line scheduler for 3-d many-core processor throughput optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2014, 33, 763–773. [Google Scholar] [CrossRef]
Gate | Logic Function | Objective Function |
---|---|---|
INV | b = 1 − a | ΔD = D0b + D1a |
NAND | c = 1 − (ab) | ΔD = (2D00 + D11 − D01 − D10) + (D10 − D01)a + (D01 − D00)b − (D00 + D11 − D01 − D10)c |
NOR | c = 1 − (ab) | ΔD = (D01 + D10 − D11) + (D11 − D01)a + (D11 − D10)b − (D01 + D10 − D00 − D11)c |
Gate | Logic Constrains |
---|---|
INV | a + b = 1 |
NAND | c ≤ 2 − a − b; c ≥ 1 − a; c ≥ 1 − b |
NOR | c ≥ 1 − a − b; c ≤ 1 − a; c ≤ 1 − b |
Gate | Objective Function |
---|---|
INV | P = P0b + P1a |
NAND | P = (2P00 + P11 − P01 − P10) + (P10 − P01)a + (P01 − P00)b − (P00 + P11 − P01 − P10)c |
NOR | P = (P01 + P10 − P11) + (P11 − P01)a + (P11 − P10)b − (P01 + P10 − P00 − P11)c |
Circuit | ΔD (ps) | Pleak (µW) | ||||
---|---|---|---|---|---|---|
IVC #1 | IVC #2 | IVC #3 | IVC #1 | IVC #2 | IVC #3 | |
c432 | 10.68 | 11.85 | 10.8 | 6.24 | 5.69 | 5.90 |
c880 | 9.38 | 10.37 | 9.6 | 14.56 | 11.71 | 12.12 |
c1908 | 12.33 | 13.11 | 12.45 | 17.65 | 15.72 | 15.95 |
c2670 | 8.48 | 8.81 | 8.48 | 27.2 | 22.95 | 23.28 |
c3540 | 14.45 | 15.93 | 14.47 | 38.88 | 35.69 | 36.92 |
c5315 | 13.65 | 14.72 | 13.78 | 64.04 | 55.29 | 55.7 |
c7552 | 16.77 | 21.27 | 16.93 | 81.86 | 72.48 | 75.44 |
s5378 | 6.2 | 6.55 | 6.22 | 47.24 | 40.50 | 41.17 |
s9234 | 8.01 | 8.15 | 8.01 | 64.97 | 57.32 | 57.34 |
s13,207 | 12.01 | 12.83 | 12.03 | 100.84 | 82.66 | 83.19 |
Avg. | −0.69% | 8.32% | 13.15% | −2.01% |
Circuit | SVA + IVC #1 (µW) | SVA + IVC #2 (µW) | SVA + IVC #3 (µW) | |||
---|---|---|---|---|---|---|
Pleak | Pdyn | Pleak | Pdyn | Pleak | Pdyn | |
c432 | 9.24 | 17.86 | 8.06 | 18.28 | 7.95 | 17.90 |
c880 | 19.73 | 41.28 | 16.91 | 42.26 | 16.67 | 41.51 |
c1908 | 23.80 | 49.39 | 21.82 | 50.03 | 21.61 | 49.51 |
c2670 | 36.10 | 77.78 | 31.34 | 78.63 | 30.98 | 77.78 |
c3540 | 51.99 | 101.21 | 50.39 | 103.4 | 49.39 | 101.23 |
c5315 | 86.02 | 195.08 | 77.18 | 198.46 | 75.08 | 195.59 |
c7552 | 108.11 | 278.26 | 110.46 | 294.95 | 100.16 | 278.71 |
s5378 | 63.53 | 117.32 | 56.18 | 118.94 | 55.46 | 117.43 |
s9234 | 89.62 | 152.26 | 79.78 | 154.48 | 78.22 | 153.20 |
s13,207 | 138.88 | 204.41 | 117.46 | 207.18 | 115.67 | 204.49 |
Avg. | 13.82% | −0.22% | 2.49% | 1.89% |
Circuit | SVA + IVC #1 (µW) | SVA + IVC #2 (µW) | SVA + IVC #3 (µW) | |||
---|---|---|---|---|---|---|
Pleak | Pdyn | Pleak | Pdyn | Pleak | Pdyn | |
c432 | 8.52 | 17.26 | 7.65 | 17.89 | 7.38 | 17.34 |
c880 | 17.87 | 39.61 | 15.70 | 41.00 | 15.26 | 39.99 |
c1908 | 21.96 | 47.77 | 20.38 | 48.63 | 19.92 | 47.85 |
c2670 | 33.42 | 75.29 | 29.16 | 76.30 | 28.67 | 75.29 |
c3540 | 47.73 | 97.61 | 47.13 | 100.59 | 45.33 | 97.62 |
c5315 | 78.50 | 187.71 | 71.68 | 192.41 | 68.39 | 188.02 |
c7552 | 97.77 | 266.61 | 104.12 | 287.98 | 90.81 | 267.39 |
s5378 | 58.49 | 113.37 | 52.63 | 115.76 | 51.17 | 113.57 |
s9234 | 82.45 | 147.05 | 74.47 | 150.14 | 72.26 | 148.23 |
s13,207 | 127.09 | 197.03 | 109.01 | 200.94 | 105.96 | 197.17 |
Avg. | 13.54% | −0.31% | 4.28% | 2.69% |
Circuit | SVA + IVC #1 (µW) | SVA + IVC #2 (µW) | SVA + IVC #3 (µW) | |||
---|---|---|---|---|---|---|
Pleak | Pdyn | Pleak | Pdyn | Pleak | Pdyn | |
c432 | 10.18 | 18.58 | 8.58 | 18.77 | 8.70 | 18.60 |
c880 | 22.11 | 43.25 | 18.50 | 43.79 | 18.58 | 43.38 |
c1908 | 26.33 | 51.46 | 23.64 | 51.70 | 23.82 | 51.51 |
c2670 | 40.06 | 81.20 | 34.20 | 81.48 | 34.43 | 81.20 |
c3540 | 57.74 | 105.82 | 54.53 | 106.89 | 55.04 | 105.84 |
c5315 | 96.15 | 204.45 | 84.63 | 206.35 | 83.45 | 204.61 |
c7552 | 125.18 | 295.82 | 118.91 | 304.07 | 115.96 | 296.16 |
s5378 | 70.15 | 122.12 | 60.67 | 122.71 | 61.12 | 122.16 |
s9234 | 99.57 | 159.15 | 86.57 | 159.90 | 86.01 | 159.45 |
s13,207 | 153.49 | 213.15 | 128.55 | 215.10 | 127.77 | 213.20 |
Avg. | 14.16% | −0.10% | 0.03% | 0.87% |
Circuit | SVA + IVC #4 in Ref. [27] | the proposed SVA + IVC #3 | ||
---|---|---|---|---|
Pleak (µW) | Pdyn (µW) | Pleak (µW) | Pdyn (µW) | |
c432 | 7.95 | 17.90 | 7.95 | 17.90 |
c880 | 16.91 | 41.51 | 16.67 | 41.51 |
c1908 | 21.65 | 49.51 | 21.61 | 49.51 |
c2670 | 31.49 | 77.78 | 30.98 | 77.78 |
c3540 | 49.92 | 101.73 | 49.39 | 101.23 |
c5315 | 76.19 | 195.38 | 75.08 | 195.59 |
c7552 | 100.21 | 278.69 | 100.16 | 278.71 |
s5378 | 56.17 | 117.32 | 55.46 | 117.43 |
s9234 | 80.48 | 153.20 | 78.22 | 153.20 |
s13,207 | 117.51 | 204.41 | 115.67 | 204.49 |
Avg. | 1.16% | 0.02% |
Circuit | SVA + MC (µW) | SVA + IVC #3 | ||
---|---|---|---|---|
Pleak (µW) | Pdyn (µW) | Pleak (µW) | Pdyn (µW) | |
c432 | 8.37 | 17.93 | 7.95 | 17.90 |
c880 | 18.21 | 41.55 | 16.67 | 41.51 |
c1908 | 22.67 | 49.79 | 21.61 | 49.51 |
c2670 | 32.76 | 76.67 | 30.98 | 77.78 |
c3540 | 51.93 | 102.13 | 49.39 | 101.23 |
c5315 | 83.11 | 196.66 | 75.08 | 195.59 |
c7552 | 102.21 | 273.18 | 100.16 | 278.71 |
s5378 | 58.82 | 115.74 | 55.46 | 117.43 |
s9234 | 87.18 | 153.23 | 78.22 | 153.20 |
s13207 | 129.53 | 205.18 | 115.67 | 204.49 |
Avg. | 7.26% | −0.22% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Yang, Z.; Yu, Y.; Li, J.; Peng, X. NBTI and Power Reduction Using an Input Vector Control and Supply Voltage Assignment Method. Algorithms 2017, 10, 94. https://doi.org/10.3390/a10030094
Sun P, Yang Z, Yu Y, Li J, Peng X. NBTI and Power Reduction Using an Input Vector Control and Supply Voltage Assignment Method. Algorithms. 2017; 10(3):94. https://doi.org/10.3390/a10030094
Chicago/Turabian StyleSun, Peng, Zhiming Yang, Yang Yu, Junbao Li, and Xiyuan Peng. 2017. "NBTI and Power Reduction Using an Input Vector Control and Supply Voltage Assignment Method" Algorithms 10, no. 3: 94. https://doi.org/10.3390/a10030094